scholarly journals Naive CD8+ T cells differentiate into protective memory-like cells after IL-2–anti–IL-2 complex treatment in vivo

2007 ◽  
Vol 204 (8) ◽  
pp. 1803-1812 ◽  
Author(s):  
Daisuke Kamimura ◽  
Michael J. Bevan

An optimal CD8+ T cell response requires signals from the T cell receptor (TCR), co-stimulatory molecules, and cytokines. In most cases, the relative contribution of these signals to CD8+ T cell proliferation, accumulation, effector function, and differentiation to memory is unknown. Recent work (Boyman, O., M. Kovar, M.P. Rubinstein, C.D. Surh, and J. Sprent. 2006. Science. 311:1924–1927; Kamimura, D., Y. Sawa, M. Sato, E. Agung, T. Hirano, and M. Murakami. 2006. J. Immunol. 177:306–314) has shown that anti–interleukin (IL) 2 monoclonal antibodies that are neutralizing in vitro enhance the potency of IL-2 in vivo. We investigated the role of IL-2 signals in driving CD8+ T cell proliferation in the absence of TCR stimulation by foreign antigen. IL-2 signals induced rapid activation of signal transducer and activator of transcription 5 in all CD8+ T cells, both naive and memory phenotype, and promoted the differentiation of naive CD8+ T cells into effector cells. IL-2–anti–IL-2 complexes induced proliferation of naive CD8+ T cells in an environment with limited access to self–major histocompatibility complex (MHC) and when competition for self-MHC ligands was severe. After transfer into wild-type animals, IL-2–activated CD8+ T cells attained and maintained a central memory phenotype and protected against lethal bacterial infection. IL-2–anti–IL-2 complex–driven memory-like CD8+ T cells had incomplete cellular fitness compared with antigen-driven memory cells regarding homeostatic turnover and cytokine production. These results suggest that intense IL-2 signals, with limited contribution from the TCR, program the differentiation of protective memory-like CD8+ cells but are insufficient to guarantee overall cellular fitness.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1342-1342
Author(s):  
Ruth Seggewiss ◽  
Karin Lore ◽  
Elisabeth Greiner ◽  
Magnus K. Magnusson ◽  
David A. Price ◽  
...  

Abstract We and others have shown that the tyrosine kinase inhibitor imatinib (STI571, Gleevec®) inhibits T-cell proliferation and activation at concentrations achieved in vivo. At 10μM, imatinib inhibited T-cell receptor (TCR)-mediated proliferation of purified peripheral blood T-cells almost completely. Up-regulation of the activation markers CD25 and CD69 at 24h in response to TCR cross-linking was suppressed by imatinib at a mean IC50 of 5.4μM and 7.3μM, respectively and IL-2 production was also severely impaired. However, these assays may not fully reflect the response to clinical relevant antigens. Therefore, we chose to investigate the antigen-triggered proliferation of memory CD8+ T-cells specific for immunodominant CMV and EBV HLA-A2 peptide epitopes. We used HLA-peptide tetramers to identify healthy blood donors with detectable CMV- or EBV-specific CD8+ T-cell populations. Purified T-cells from these donors were then stimulated with the CMV peptide pp65495–503 or the EBV peptide BMFLI259–267. Antigen-induced proliferation was measured by dilution of the vital dye CFSE over a period of 4 or 8 days. The magnitude of the virusspecific CD8+ T-cell population ranged from 0.5 % to 7.1% of CD8+ T-cells for CMV and from 0.05% to 0.35% of CD8+ T-cells for EBV. Antigen-specific CD8+ T-cells from all 10 donors studied proliferated in response to the CMV peptide. In 8 from 10 donors, imatinib reduced CMV peptide induced proliferation. With increasing imatinib concentrations (range: 5 – 10μM), we observed dose dependent reduction of both the number of cells undergoing cell division and the average number of divisions completed per cell. Comparable inhibition of specific T-cell proliferation in response to the EBV-derived peptide was observed in two donors. Immunoblots demonstrated that imatinib substantially reduced tyrosine phosphorylation of ZAP70 and LAT in response to TCR-mediated activation in Jurkat T-cells. Sequence comparisons of all 90 tyrosine kinase genes in the human genome for homology in the ATP binding pocket identified Lck, which is required for ZAP70 activation, as a likely target for imatinib. Our results indicate that imatinib may interfere with clinically important T-cell effector functions. As concentrations sufficient for half-maximal inhibition of TCR signalling are achieved in vivo, imatinib could increase the risk of opportunistic infections and impact on GVH and GVL reactions post-transplantation especially when used in conjuction with other immunosuppressive agents. Therefore, close monitoring of patients on imatinib for CMV reactivation or EBV-induced lymphoproliferative diseases, especially in stem cell transplant recipients, appears warranted.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1041-1041
Author(s):  
Emily R Summerbell ◽  
Cynthia R. Giver ◽  
Sravanti Rangaraju ◽  
Katarzyna Anna Darlak ◽  
Edmund K. Waller

Abstract Introduction Vasoactive intestinal peptide (VIP) is a neuropeptide hormone that suppresses Th1 immunity and inhibits antiviral immunity. Decreased Th1 immunity is problematic for allogeneic bone marrow transplant (allo-BMT) patients requiring T-cell immunity against blood cancers (Graft-versus-Tumor) and against secondary infections such as CMV. VIPhyb, a modified VIP peptide, is a VIP receptor antagonist that decreases VIP signaling. VIP-knockout mice and mice treated with VIPhyb after allo-BMT are known to have better antiviral immunity and survival after CMV infection without increasing GvHD (Li et al. PLoS One. 2013 May 27;8(5):e63381) (Li et al. Blood. 2013 Mar 21;121(12):2347-51.), thus making VIPhyb of interest for pharmacological use in humans to improve the efficacy of allo-BMT The effects of VIPhyb on T-cell immunity are not yet fully profiled. This study aimed to analyze the effects of VIPhyb on CD4+ and CD8+ T-cell proliferation and activation in order to better understand the mechanistic implications of VIP inhibition on T-cell adaptive immunity. This study also aimed to show that mixed lymphocyte reactions (MLRs), an in vitro allo-BMT model, could be used to provide rapid and reliable results that are consistent with in vivo data. It was hypothesized that VIPhyb would increase T-cell immunity as profiled by: increased T-cell proliferation, CD69 and PD1 co-upregulation in early T-cell activation, and PD1 downregulation in T-cells after initial activation. Methods Splenocytes from two histoincompatible mice were cultured together at 37°C in a 1:1 ratio in a one-way MLR. BALB/c splenocytes (stimulators) were irradiated at 20Gy, and Pepboy splenocytes (responders) were labeled with CFSE to trace proliferation. VIPhyb was added daily to the cell cultures in doses of 0.1μM, 0.3μM, 1μM, or 3μM. Treatment groups were compared to a PBS control. Proliferation, CD69, and PD1 were assessed by flow cytometry on the BD FACSAria. All results are shown as mean ± SEM (n=3). One-way ANOVA tests with Dunnett post-tests were calculated using Prism software. *p < 0.05; **p < 0.01; ***p < 0.001 Results VIPhyb increased CD4+ and CD8+ T-cell proliferation: 3, 5, and 7 days after initiating a one-way MLR, CFSE expression of Pepboy responder T-cells was assessed using flow cytometry (Figure 1). As the VIPhyb dose increased, the percentage of initial splenocytes that underwent proliferation increased in both CD4+ and CD8+ T-cells. VIPhyb increased early T-cell CD69 expression and abrogated later PD1 upregulation in CD8+ T-cells: 3, 5, and 7 days after initiating a one-way MLR, expression levels of CD69 and PD1 on Pepboy responder T-cells were assessed by flow cytometry. Significant upregulation of CD69 on CD4+ and CD8+ T-cells on day 3 occurred with increasing VIPhyb doses (Figures 2A and 2B). PD1 was co-upregulated with CD69 during early activation, and VIPhyb significantly decreased PD1 expression on CD8+ T-cells on days 5 and 7 (Figures 2C and 2D). Conclusions VIPhyb increased T-cell proliferation; CD8+ T-cells were affected more significantly. VIPhyb increased early co-upregulation of CD69 and PD1 in all T-cells and significantly decreased later CD8+ T-cell PD1 expression, indicating that VIPhyb increases T-cell activation. We hypothesize that the decreased PD1 expression will be critical for understanding the pathways involved in VIP inhibition. Importantly, since it has been shown in vivo that VIPhyb does not increase GvHD, then it can be assumed that the VIPhyb-induced T-cell proliferation and activation will increase GvL and adaptive immunity without increasing alloreactivity. Notably, these results are consistent with published in vivo data, which demonstrates that the MLR can be used as a faster method of analyzing pharmacological compounds than in vivo experiments. Given these results, VIPhyb is still of interest as a potential therapy for allo-BMT patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1211-1211
Author(s):  
Ying Qu ◽  
Zhengxu Sun ◽  
Yan Yuan ◽  
Fen Wang ◽  
Kunpeng Wu ◽  
...  

Aplastic anemia (AA) is a hematopoietic disorder resulted from immune-related hypocellular hematopoiesis in bone marrow (BM). It has been clearly addressed that the activated T cells contribute to the exhaustion of hematopoietic progenitors and hypo-hematopoiesis. The adipogenic BM is one of the characteristics to make AA diagnosis. However, little is known about the relationship of intra-BM immune imbalance and hematopoietic microenvironment abnormity in this disease entity. Functional hematopoiesis relies on not only abundant hematopoietic stem cells (HSCs) but also the balanced supportive hematopoietic niche. Intra-BM immune balance, at either cellular or cytokine level, is one of the key footstones to maintain hematopoietic microenvironment. Various intra-BM immune cellular components play both sides of one coin. Among them, myeloid-derived suppressive cells (MDSCs) are heterogeneous myeloid progenitor cells characterized by the negative immune response in cancers and other inflammatory diseases. In BM aspiration and biopsy samples from the patients who were diagnosed as AA in our study, massive activated lymphocytes infiltration and adipocytes accumulation were observed. Interestingly, the absolute numbers of immune modulatory MDSCs either in AA patients' PB or in BM of immune-related AA mice were reduced, indicating a potential link between polarized BM adipo-osteogenic microenvironment and immune disorder under AA circumstance. We thus adopted AA mice model to look into the embedded details both in vivo and in vitro. We clarified that BM components were more vulnerable to the attack of CD8+ T cells than that of CD4+ T cells. Taking into the fact that BM adipocytes are more abundant either in AA patients or in AA mice models, we differentiated mesenchymal stromal cells (MSCs), the major BM stroma cells, into osteoblastic or adipogenic lineages to mimic the osteo-adipogenic differentiation in BM microenvironment. Interestingly, CD8+ T cells and interferon-γ(IFN-γ) exerted dramatically adipocytic stimulation on BM-MSCs either in vitro or in vivo, by determination of increasing expression of adipogenetic genes including Ap2, Perilipin, Pparg and Cebpα, as well as staining of Oil Red O and perilipin. To dissect intra-BM cellular immune balance, MDSCs were isolated as representative immune regulating population to investigate their function on osteo-adipogenic balance. Interestingly, not CD11b+Ly6G+Ly6C-granulocytic-MDSCs (gMDSCs) but CD11b+Ly6G-Ly6C+monocytic-MDSCs (mMDSCs) inhibited both T cell proliferation and IFN-γ production. Addition of L-NMMA, the antagonist of iNOS pathway in mMDSCs-containing system restored T cell proliferative curve and cell numbers, whereas Nor-NOHA, the antagonist of Arg-1 pathway didn't abrogate mMDSCs' immune-regulation properties, indicating that mMDSCs inhibited T cell proliferation via iNOS pathway. We then performed single dose or multi-dose injection of mMDSCs in AA mice to see whether mMDSCs are able to reconstitute the impacted hematopoiesis. Single injection of mMDSCs was able to prevent from CTL infiltration in a very short term. However, multi-injection of mMDSCs showed significant benefit in overall survival rate compared to AA mice. We further detected the function of mMDSCs on polarized BM-MSCs adipo-osteogenic differentiation potential. To detect sequential BM adipogenetic progression in AA microenvironment, we performed in vivo fluorescent microscopy on AP2 (Fabp4)-Cre×mT/mG reporting mice at different transfusion time points of T cells and mMDSCs. GFP-expressing AP2+ adipocytes accumulated adjacently to perivascular niches whose boarders were labelled by Dextran-CY5 in a time-dependent manner after T cell infusion. Monocytic MDSCs transfused AA mice showed decreased GFP+ adipocytes which was coincident with our in vitro findings. In conclusion, intra-BM immune balance is one of the environmental factors seesawing by activating and suppressive ends to support functional hematopoiesis. Adoptive transfusion of mMDSCs, the immune-suppressive population might be a novel immune-regulating strategy to treat AA, relying on not only restoring the intra-BM immune balance but also improving stroma's multi-differentiating microenvironment. Figure Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ewa Kuca-Warnawin ◽  
Magdalena Plebańczyk ◽  
Krzysztof Bonek ◽  
Ewa Kontny

Background. In ankylosing spondylitis (AS), accompanied by chronic inflammation, T cell expansion plays a pathogenic role; the immunoregulatory properties of bone marrow-derived mesenchymal stem cells (BM-MSCs) are impaired, while functional characteristics of their adipose tissue-derived counterparts are (ASCs) unknown. Methods. We evaluated the antiproliferative activity of AS/ASCs, obtained from 20 patients, towards allogeneic and autologous T lymphocytes, using ASCs from healthy donors (HD/ASCs) as the reference cell lines. The PHA-activated peripheral blood mononuclear cells (PBMCs) were cocultured in cell-cell contact and transwell conditions with untreated or TNF + IFNγ- (TI-) licensed ASCs, then analyzed by flow cytometry to identify proliferating and nonproliferating CD4+ and CD8+ T cells. The concentrations of kynurenines, prostaglandin E2 (PGE2), and IL-10 were measured in culture supernatants. Results. In an allogeneic system, HD/ASCs and AS/ASCs similarly decreased the proliferation of CD4+ and CD8+ T cells and acted mainly via soluble factors. The concentrations of kynurenines and PGE2 inversely correlated with T cell proliferation, and selective inhibitors of these factors synthesis significantly restored T cell response. AS/ASCs exerted a similar antiproliferative impact also on autologous T cells. Conclusion. We report for the first time that despite chronic in vivo exposure to inflammatory conditions, AS/ASCs retain the normal capability to restrain expansion of allogeneic and autologous CD4+ and CD8+ T cells, act primarily via kynurenines and PGE2, and thus may have potential therapeutic value. Some distinctions between the antiproliferative effects of AS/ASCs and HD/ASCs suggest in vivo licensing of AS/ASCs.


2017 ◽  
Author(s):  
Biliang Hu ◽  
Jiangtao Ren ◽  
Yanping Luo ◽  
Brian Keith ◽  
Regina M. Young ◽  
...  

AbstractInterleukin 18 (IL18) is known to induce the expression of interferon-γ (IFNG), but its effects on T cell proliferation and costimulation are not completely understood. In this study, we demonstrate that ectopic expression of IL18 in CART cells caused significant T cell proliferationin vitroandin vivo,and enhanced antitumor effects in xenograft models. Moreover, IL18 mediated T cell expansion required neither tumor antigen nor CAR expression, and produced severe GVHD in NSG mice. Furthermore, recombinant IL18 costimulated IFNG secretion and proliferation of anti-CD3 beads treated T cells. Interestingly, IL18 costimulation could expand purified CD4 T cells, but not CD8 T cells. However, CD8 T cells proliferated greater than CD4 T cells in magnitude within bulk T cells, suggesting CD4 help effect was involved. Using CRISPR/Cas9 gene editing, we confirmed that IL18-driven expansion was both TCR and IL18 receptor (IL18R) dependent. Importantly, we demonstrated that TCR-deficient, IL18-expressing CD19 CART cells exhibited remarkable proliferation and persistent antitumor activity against CD19-expressing tumor cellsin vivo, without eliciting any detectable GVHD symptom. Finally, we describe APACHE T cells, a novel strategy for coupling IL18 expression in CART cells to antigen stimulation, thereby limiting potential toxicity associated with persistent IL18 production. In sum, our study supports human IL18 as a T cell costimulatory cytokine for fueling CART therapy.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2017 ◽  
Vol 214 (6) ◽  
pp. 1593-1606 ◽  
Author(s):  
Hossam A. Abdelsamed ◽  
Ardiana Moustaki ◽  
Yiping Fan ◽  
Pranay Dogra ◽  
Hazem E. Ghoneim ◽  
...  

Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell–mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7– and IL-15–mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2046-2046
Author(s):  
David M Markusic ◽  
Ashley T Martino ◽  
Federico Mingozzi ◽  
Katherine A. High ◽  
Roland W Herzog

Abstract Abstract 2046 Long-term partial correction of severe hemophilia B following peripheral vein delivery of an AAV8-factor IX vector in human subjects has recently been reported. However, the two patients in the high-dose cohort experienced a rise in liver transaminases and drop in circulating F.IX levels that was halted with steroid treatment. In both the AAV8 and in an earlier AAV2-based trial, a dose of 2×1012 vg/kg seemed above a threshold for the activation of capsid specific memory CD8+ cytotoxic T lymphocytes (CTL). Therefore, reaching a target of > 5% sustained F.IX level (for a change to mild disease) is currently limited by activation of T cell immunity against capsid. New clinical trials are in the pipeline with AAV8 vectors expressing hyperactive F.IX variants that provide therapeutic F.IX expression at lower vector doses, with a goal of avoiding activation of CD8+ T cell memory response. Lack of a preclinical model to study CTL-mediated loss of AAV gene therapy has hampered efforts at clinical development. Neither mice nor non-human primates have recapitulated the human experience, making it difficult to evaluate, prior to clinical trial design, the effect of the serotype, vector dose, and other parameters of the protocol on targeting by capsid-specific T cells. To solve this problem, we have recently developed a murine model, in which male BALB/c RAG −/− mice receive hepatic AAV gene transfer followed by intravenous administration of in vitro expanded strain-matched capsid-specific CD8+ T cells (specific to an MHC I capsid epitope conserved between AAV2 and AAV8 serotypes shared between BALB/c mice and humans expressing the B*0702 molecule). In this model, AAV2-F.IX transduced mice showed a rise in liver enzymes, loss of circulating F.IX, and loss of F.IX expressing hepatocytes, following adoptive transfer of the CTL one day but not 7 or 14 days after gene transfer. CD8+ T cell infiltrates were observed 7 days following adoptive transfer and were absent at 28 days, suggesting a small window for optimal AAV2 capsid antigen presentation in the liver. Additionally, mice were protected from capsid specific CD8+ T cells when treated with the proteasome inhibitor bortezomib, which impairs the generation of peptide epitopes for MHC I antigen presentation. We next tested in our model AAV8 vectors, which in mice show superior tropism for liver. Published pre-clinical data by others suggested lack of capsid-specific CD8+ cell activation with this serotype. While this was not borne out in a clinical trial, the onset of T cell responses and of transaminitis in humans appeared to be delayed for AAV8 vector (8–9 weeks after gene transfer) compared to AAV2 (3–4 weeks). In comparison to AAV2, CD8+ T cell transfer in AAV8 injected mice had a milder impact on circulating F.IX levels (<50% loss of expression as opposed to 4-fold loss with AAV2), and CD8+ T cell infiltrates were largely absent at day 7. In two different experiments, 25–40% of F.IX expressing hepatocytes were lost compared to AAV8-F.IX transduced mice that received no or control CD8+ T cells. However, when the T cells were transferred 7 or 14 days after AAV8 administration, a more robust loss of systemic F.IX expression was observed (3- to 5-fold), with a 45% and 32% reduction in F.IX expressing hepatocytes, respectively (Fig 1 A-C). CD8+ T cell infiltrates were prevalent by day 42 in the livers of these animals. Together, these data suggest that optimal AAV8 capsid presentation in the murine liver occurs between days 28 and 42 following gene transfer. This delay in targeting of AAV8 transduced murine liver is consistent with the delay observed between the AAV2 and AAV8 F.IX clinical trials. This murine model should be useful to (1) evaluate novel AAV serotypes and capsid variants, (2) test the effect of the vector dose, (3) test the effect of pharmacological modulation on capsid presentation and targeting by capsid-specific CTL, and (4) provide guidance for the timing for immune suppression. Figure 1. In vivo model for AAV8 capsid specific CD8 T cell response following AAV8 hF.IX liver gene transfer. (A) hF.IX levels (B) % hF.IX hepatocytes 42 days post vector (C) liver sections stained for hF.IX (red) and CD8 (green) 42 days post vector. Figure 1. In vivo model for AAV8 capsid specific CD8 T cell response following AAV8 hF.IX liver gene transfer. (A) hF.IX levels (B) % hF.IX hepatocytes 42 days post vector (C) liver sections stained for hF.IX (red) and CD8 (green) 42 days post vector. Disclosures: High: Amsterdam Molecular Therapeutics: ; Baxter Healthcare: Consultancy; Biogen Idec: Consultancy; bluebird bio, Inc.: Membership on an entity's Board of Directors or advisory committees; Genzyme, Inc.: Membership on an entity's Board of Directors or advisory committees; Novo Nordisk: ; Sangamo Biosciences: ; Shire Pharmaceuticals: Consultancy. Herzog:Genzyme Corp.: Royalties, AAV-FIX technology, Royalties, AAV-FIX technology Patents & Royalties.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4484-4484 ◽  
Author(s):  
Antonio Pierini ◽  
Lucrezia Colonna ◽  
Maite Alvarez ◽  
Dominik Schneidawind ◽  
Byung-Su Kim ◽  
...  

Adoptive transfer of CD4+CD25+FoxP3+ regulatory T cells (Tregs) prevents graft versus host disease (GvHD) in several animal models and following allogeneic hematopoietic cell transplantation (HCT) in clinical trials. In these models donor derived Tregs have been mainly used as they share the same major histocompatibility complex (MHC) with conventional CD4+ and CD8+ T cells (Tcons) that are primarily responsible for GvHD onset and persistence. Third-party derived Tregs are a promising alternative tool for cellular therapy as they can be prepared in advance, screened for pathogens and activity and banked. In this study we explored MHC disparities between Tregs and Tcons in HCT to evaluate the impact of these different cell populations in GvHD prevention and survival after transplant. Methods and Results We evaluated the ability of highly purified Treg to suppress proliferation of C57BL/6 (H-2b) Tcons following exposure to irradiated splenocytes from BALB/C (H-2d) mice in vitro in a mixed lymphocyte reaction (MLR). Either donor derived C57BL/6 (H-2b) or third party FVB (H-2q) Tregs suppressed Tcon proliferation at the Treg/Tcon ratios of 1:2 and 1:4. The same Treg population effectively suppressed different MHC derived Tcons where BALB/C (H-2d) or FVB (H-2q, third-party) Tcons were incubated with irradiated splenocytes from C57BL/6 (H-2b) mice and were effectively suppressed with BALB/C (H-2d) Tregs. In the MLR, third-party Tregs present the same activation molecule expression patterns as MHC matched Tregs: CTLA4 and LAG3 expression is enhanced after stimulation with interleukin-2 (IL-2) and anti-CD3/CD28 beads, while MHC class II molecule expression is increased after 3-4 days of culture with Tcons and irradiated splenocytes. Furthermore third-party and MHC matched Tregs express the same levels of interleukin-10 (IL-10). We translated these results to in vivo studies in animal models. In these studies T cell depleted bone marrow (TCD BM) from C57BL/6 (H-2b) mice was injected into lethally irradiated (total body irradiation, 8 Gy) BALB/C (H-2d) recipient mice. 2 days later GvHD was induced by injecting luc+ donor derived Tcons (1x106/mouse). Using this model GvHD was evaluated following the adoptive transfer of freshly isolated CD4+CD25+FoxP3+ Tregs derived from BALB/C (H-2d, host type), C57BL/6 (H-2b, donor type), FVB (H-2q, third-party) or BALB/B (H-2b, minor mismatched with the donor, major mismatched with the host) mice at the different Treg/Tcon ratios of 1:1, 1:2 and 1:4. As expected, donor Tregs exerted the strongest dose dependent GvHD protection (p = 0.028), while host Tregs did not improve mouse survival (p = 0.58). Third-party and minor mismatched with the donor Tregs improved mouse survival (third-party and minor mismatched with the donor respectively, p = 0.028 and p = 0.17) but mice had worse GvHD score profiles (both p< 0.001) and could not recover their weight as well as mice treated with donor Tregs (both p< 0.001). In vivoTcon bioluminescent imaging confirmed these results showing a reduced Tcon proliferation in mice treated with donor, third-party and minor mismatched with the donor Tregs, the first exerting the strongest effect (after 6 weeks of observation, p< 0.001). Conclusions Our studies indicate that MHC disparities between Tregs and Tcons do not represent an insurmountable barrier for Treg function. In vitro and in vivo data strongly suggest that Tregs can suppress Tcon proliferation without requiring MHC matching. In vivo GvHD prevention efficiency was affected by MHC disparities with donor derived Treg being the most effective, however, third party Treg also resulted in GvHD attenuation. These studies indicate that both donor and third party Treg could be effective in clinical application raising the possibility of screening and banking Treg for use. Further, these studies highlight the need for activation of the Treg on host tissues to effectively suppress conventional T cell proliferation and GvHD induction. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 210 (7) ◽  
pp. 1463-1479 ◽  
Author(s):  
Salvador Iborra ◽  
Manuel Ramos ◽  
David M. Arana ◽  
Silvia Lázaro ◽  
Francisco Aguilar ◽  
...  

Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate.


Sign in / Sign up

Export Citation Format

Share Document