A Frame Shift-Induced Stop Codon Causes Hemophilia a in Sheep.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3378-3378 ◽  
Author(s):  
Chad Sanada ◽  
Josh A Wood ◽  
Wansheng Liu ◽  
Jay Nelson Lozier ◽  
Graca Almeida-Porada ◽  
...  

Abstract Hemophilia A (HA), or Factor VIII (FVIII) deficiency, is the most common severe hereditary coagulation disorder, affecting 1 in 5000 males. We have successfully re-established and characterized a line of sheep with a bleeding disorder that closely mimics severe human HA. These animals have almost non-existent levels of FVIIIc and an extremely prolonged PTT, with normal levels of platelets, fibrinogne, FVII, FIX, and vWF. All animals that survived birth have exhibited prolonged tail and nail cuticle bleeding, multiple episodes of severe spontaneous bleeding including hemarthroses, muscle hematomas, and hematuria, all of which have responded to recombinant human FVIII. Thus far, low-titer inhibitors to human FVIII have been detected in 3 treated animals, further validating the clinical relevance of this model. Unfortunately, almost nothing is known about the sheep FVIII gene or about the nature of the mutation causing HA in these animals. We thus undertook to characterize the normal sheep FVIII mRNA and elucidate the nature of the hemophilia-inducing mutation. RT-PCR of mRNA from the spleen of normal sheep, followed by overlapping sequence analysis allowed us to walk along the mRNA and obtain the sequence of the complete coding sequence for factor VIII. The coding sequence for ovine FVIII is 6765 nucleotides, which is translated into a protein consisting of 2254 amino acids (a.a.). BLAST alignment of this sequence to that of human FVIII at the a.a. level revealed a high degree of identity in all regions except the B domain (which in humans is known to be dispensable for clotting activity). Specifically, the A1 domain (ovine a.a. 1–332) showed 81% identity, A2 (a.a. 333–709) 88%, A3 (a.a. 1596–1924) 87%, C1 (a.a. 1925–2074) 90%, and C2 (a.a. 2075–2254) 86%, while the B domain (a.a. 710–1595) exhibited only 47% identity. A comparison of these sequences taking into consideration conservative a.a. changes that maintain the chemical properties of sheep and human FVIII proteins indicated even higher levels of homology, with the A1 domain exhibiting 87% positivity, A2 94%, A3 93%, C1 94%, and C2 93%. Even with this approach, however, there was still very low conservation (59%) of the B domain between the two species. Analysis of mRNA isolated from the spleen of a deceased HA sheep revealed several conservative point mutations in the hemophiliac and identified 11bp in exon 14 that differed between the wild type and the hemophiliac. Importantly, this difference included a frame-shift that introduced a premature stop codon in exon 14, as is seen in some human patients with HA. Using a PCR-based RFLP analysis, we can unequivocally distinguish sheep that are wild-type, heterozygous, or homozygous for the HA mutation, and thus confirm the genotype of all 26 existing carriers and 8 hemophiliac sheep. This PCR-based assay will greatly facilitate studies using these sheep, since it is now possible to either screen embryos prior to implantation or screen fetuses in utero using a small volume of blood or amniotic fluid, as is done for prenatal diagnosis of human genetic diseases. These studies thus defined the molecular basis for the HA in these sheep that are a valuable model of human disease. Given the close physiologic similarity between sheep and humans, the high degree of identity in their FVIII protein, and the decades of experience using the sheep to study both normal physiology and a wide array of diseases, we hope that this large animal model will contribute to a better understanding of HA and the development of novel treatments such as stem cell transplantation and gene therapy-based approaches that can directly translate to human patients with hemophilia.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 199-199 ◽  
Author(s):  
Xavier M. Anguela ◽  
Liron Elkouby ◽  
Raffaella Toso ◽  
Marti DiPietro ◽  
Robert J. Davidson ◽  
...  

Abstract Clinical studies of adeno-associated viral (AAV)-mediated gene transfer of factor IX for hemophilia B have demonstrated long term expression of therapeutic levels of factor IX but revealed that the AAV vector dose may be limiting due to anti-AAV immune responses (Nathwani, 2011). While there is significant interest in moving this approach forward for hemophilia A, it is challenging to express high levels of human factor VIII (hFVIII) due to its intrinsic properties that result in lower expression levels compared to similarly sized proteins (Lynch, 1993). Approaches using codon optimization and variants of hFVIII with enhanced function (increased activity, stability and/or secretion) may provide strategies to increase hFVIII expression to support AAV clinical studies for hemophilia A. For example, we previously developed a codon-optimized hFVIII (CO3) that expressed 5-8-fold higher protein levels than wild type hFVIII after AAV delivery in the context of an optimized expression cassette utilizing a modified transthyretin (TTRm) promoter. Introduction of a PACE-furin (P/F) variant (Siner, 2013) that deletes residues 1645-47 (Δ3) or 1645-48 (Δ4) of the PACE-furin recognition site in CO3 resulted in hFVIII expression after AAV delivery that was 18 (Δ3) or 12-fold (Δ4) better than wild type hFVIII. To date, only one published study has reported clinically relevant levels of human FVIII following AAV treatment in a large animal model. This study used a hFVIII variant that contained a 17 amino acid synthetic sequence flanked by 14-amino acid SQ residues from the N- and C-terminal ends of the B domain (McIntosh, 2013). While the presence of the synthetic spacer allowed for an increase in circulating hFVIII levels, the use of a non-wild-type FVIII sequence in hemophilia A patients may increase the risk of development of neutralizing antibodies to FVIII due to its potential neo-antigenicity. Our goal in this study was to generate an AAV-hFVIII vector capable of expressing therapeutic doses of FVIII at a clinically relevant vector dose without adding any neoantigens to the protein. To this end, we generated 26 codon-optimized hFVIII-SQ constructs under the control of the TTRm promoter. Hydrodynamic delivery of the pAAV-TTRm-hFVIII plasmids identified 11 candidates that expressed FVIII 2-7 fold higher than CO3. Nine of these FVIII expression constructs were made into AAV vectors and delivered to hemophilia A/CD4 KO mice (1x1011 vg/mouse) using a novel capsid, AAV-Spark100. At 4 weeks post vector administration, 2/9 constructs were similar to CO3, 5/9 were 3-4 fold higher than CO3 and 2/9 (SPK-8003 and SPK-8005) were 4-6 fold higher than CO3. To determine if the deletion of the PACE-furin site would result in higher FVIII expression, the Δ4 P/F deletion was introduced into SPK-8003. The levels of FVIII expression after AAV-TTRm-SPK-8003-Δ4 P/F delivery were 2-fold higher than AAV-TTRm-SPK-8003. In order to evaluate the potency of these novel cassettes in a large animal model, SPK-8005 was administered as a single dose via intravenous infusion to male cynomolgus macaques and followed for 8 weeks of observation. At two weeks after gene transfer, NHPs transduced with 2x1012 vg/kg of SPK-8005 expressed hFVIII antigen levels of 12.7 ± 2.1% (average ± standard error of the mean, n=3). Average FVIII expression after treatment with 5x1012 vg/kg was 22.6 ± 0.8% (n=2). Finally, at the highest tested dose of 1x1013 vg/kg, hFVIII antigen levels of 54.1 ± 15.6% were observed two weeks after AAV infusion (n=3). As anticipated, hFVIII expression declined in approximately one third of the animals around week 4, concomitant with the appearance of inhibitory antibodies to human factor VIII in these macaques. In summary, these data using highly active, novel codon-optimized FVIII constructs devoid of potential neoantigens demonstrate the feasibility of lowering the AAV capsid load for a gene-based therapeutic approach for hemophilia A to a dosage level that appears to be efficacious and safe in the treatment of hemophilia B. Disclosures Anguela: Spark Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Elkouby:Spark Therapeutics, Inc.: Employment, Equity Ownership. Toso:Spark Therapeutics, Inc.: Employment, Equity Ownership. DiPietro:Spark Therapeutics, Inc.: Employment, Equity Ownership. Davidson:Spark Therapeutics: Consultancy. High:Spark Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties: AAV gene transfer technology. Sabatino:Spark Therapeutics, Inc.: Research Funding.


1979 ◽  
Author(s):  
S.S. Shapiro

Approximately 15% of patients with hemophilia A develop inhibitors to Factor VIII. These inhibitors have a high degree of specificity for Factor VIII procoagulant activity. Inhibitor patients seem to fall into 2 groups: roughly 3/4 are “strong” responders, whose Factor VIII antibody titer rises substantially after exposure to Factor VIII, while the remainder are “weak” responders, whose antibody level remains below 3-5 Bethesda units/ml despite exposure to Factor VIII. The latter group can be treated successfully with Factor VIII, although the dose required may be greater than in non-inhibitor patients. The “strong” responders can be treated with Factor VIII if their antibody titer is very low, although anamnesis will ensue within 3-4 days, reaching a maximum in 10-20 days. When antibody titers are high, treatment can be extremely difficult. Use of Factor VIII may still be possible, when combined with massive plasmapheresis; otherwise treatment with vitamin K-dependent factor concentrates may be attempted. A variety of such concentrates is available, both “non-activated” and “activated”. The former type of product may have become less useful for the treatment of inhibitor patients in recent years. The NTH Cooperative Study of Factor VIII Inhibitors in Hemophilia A has recently conducted a double-blind study of Konyne and Proplex in the treatment of Inhibitor patients. These results will be presented.


Blood ◽  
2011 ◽  
Vol 117 (3) ◽  
pp. 798-807 ◽  
Author(s):  
Natalie J. Ward ◽  
Suzanne M. K. Buckley ◽  
Simon N. Waddington ◽  
Thierry VandenDriessche ◽  
Marinee K. L. Chuah ◽  
...  

Abstract Gene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII. In this study, we tested various BDD constructs in the context of either wild-type or codon-optimized cDNA sequences expressed under control of the strong, ubiquitous Spleen Focus Forming Virus promoter within a self-inactivating HIV-based lentiviral vector. Transduced 293T cells in vitro demonstrated detectable FVIII activity. Hemophilic mice treated with lentiviral vectors showed expression of FVIII activity and phenotypic correction sustained over 250 days. Importantly, codon-optimized constructs achieved an unprecedented 29- to 44-fold increase in expression, yielding more than 200% normal human FVIII levels. Addition of B domain sequences to BDD-FVIII did not significantly increase in vivo expression. These significant findings demonstrate that shorter FVIII constructs that can be more easily accommodated in viral vectors can result in increased therapeutic efficacy and may deliver effective gene therapy for hemophilia A.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3798-3798
Author(s):  
Lilley Leong ◽  
Irina N. Chernysh ◽  
Yifan Xu ◽  
Cornell Mallari ◽  
Billy Wong ◽  
...  

Abstract Patients with severe factor VIII (FVIII) deficiency (hemophilia A [HemA]) develop neutralizing antibodies (inhibitors) against FVIII in up to ~30% of cases. For HemA patients with inhibitors, activated recombinant factor VII (rFVIIa) is a treatment option. High levels of rFVIIa are required for treating HemA patients with inhibitors to induce direct activation of factor X on the surface of activated platelets via a tissue factor (TF)-independent mechanism (Hoffman M, Monroe DM. Thromb Res. 2010;125(suppl 1):S16-S18). To assess how rFVIIa-mediated clot formation in HemA patients with inhibitors may differ from unaffected individuals, we compared the effect of rFVIIa on HemA versus control (or HemA supplemented with 100% FVIII) clot formation in human and/or mouse systems. By TF-induced thrombin generation assay, increasing rFVIIa from 5 nM to 100 nM did not appreciably alter the kinetics or extent of thrombin generation compared with the same human HemA plasma containing 100% FVIII. Confocal microscopy of human HemA plasma clots generated with 75 nM rFVIIa and TF showed few branching fibrin fibers and an open fibrin meshwork. In contrast, TF-induced coagulation of the same HemA plasma containing 100% FVIII formed fibrin clots with numerous branches, interconnecting to form a dense meshwork. To confirm that these findings reflect rFVIIa-mediated clot formation in vivo, we assessed the intrinsic coagulation of mouse HemA whole blood collected without anticoagulant and spiked with rFVIIa. Intrinsic coagulation with rFVIIa was assessed by T2 magnetic resonance (T2MR), a technique capable of monitoring the separation of whole blood into serum, loose-clot, and tight-clot compartments during coagulation (Skewis et al. Clin Chem. 2014;60:1174-1182; Cines et al. Blood. 2014;123:1596-1603). By T2MR, rFVIIa induced the separation of HemA whole blood into the serum and clot compartments, indicating that the reduced fibrin generation with rFVIIa did not interfere with whole blood coagulation. Furthermore, saphenous vein puncture of HemA mice treated with rFVIIa showed a dose-dependent decrease in clot times. Scanning electron microscopy of the clots extracted from these HemA mice indicated markedly different composition than clots extracted from wild-type mice. In wild-type clots, fibrin and polyhedral erythrocytes formed a large proportion of the total structures. In contrast, clots from rFVIIa-treated HemA mice consisted primarily of platelets and erythrocytes with forms intermediate between discoid and polyhedral but, surprisingly, low fibrin content. Taken together, these data suggest that rFVIIa-mediated clot formation may require greater activated platelet involvement, which would be consistent with the TF-independent mechanism of action proposed for rFVIIa in HemA. Finally, the compositional difference between clots from wild-type versus HemA mice dosed with rFVIIa suggest that evaluating HemA therapies for their ability to form more physiologic clots could be an approach to improve treatment options for patients with HemA. Disclosures Leong: Bayer: Employment. Xu:Bayer: Employment. Mallari:Bayer: Employment. Wong:Bayer: Employment. Sim:Bayer: Employment. Cuker:Stago: Consultancy; Genzyme: Consultancy; Amgen: Consultancy; Biogen-Idec: Consultancy, Research Funding; T2 Biosystems: Research Funding. Marturano:T2 Biosystems: Employment. Lowery:T2 Biosystems: Employment. Kauser:Bayer: Employment. Weisel:Bayer: Research Funding.


Blood ◽  
1995 ◽  
Vol 85 (9) ◽  
pp. 2447-2454 ◽  
Author(s):  
RC Hoeben ◽  
FJ Fallaux ◽  
SJ Cramer ◽  
DJ van den Wollenberg ◽  
H van Ormondt ◽  
...  

Hemophilia A is caused by a deficiency of factor-VIII procoagulant (fVIII) activity. The current treatment by frequent infusions of plasma-derived fVIII concentrates is very effective but has the risk of transmittance of blood-borne viruses (human immunodeficiency virus [HIV], hepatitis viruses). Use of recombinant DNA-derived fVIII as well as gene therapy could make hemophilia treatment independent of blood-derived products. So far, the problematic production of the fVIII protein and the low titers of the fVIII retrovirus stocks have prevented preclinical trials of gene therapy for hemophilia A in large-animal models. We have initiated a study of the mechanisms that oppose efficient fVIII synthesis. We have established that fVIII cDNA contains sequences that dominantly inhibit its own expression from retroviral as well as from plasmid vectors. The inhibition is not caused by instability of the fVIII mRNA (t1/2, > or = 6 hours) but rather to repression at the level of transcription. A 305-bp fragment is identified that is involved in but not sufficient for repression. This fragment does not overlap the region recently identified by Lynch et al (Hum Gene Ther 4:259, 1993) as a dominant inhibitor of RNA accumulation. The repression is mediated by a cellular factor (or factors) and is independent of the orientation of the element in the transcription unit, giving the repressor element the hallmarks of a transcriptional silencer.


1998 ◽  
Vol 79 (05) ◽  
pp. 943-948 ◽  
Author(s):  
W. C. Pieneman ◽  
P. Fay ◽  
E. Briët ◽  
P. H. Reitsma ◽  
R. M. Bertina

SummaryWe further characterised the abnormal factor VIII molecule (factor VIII Leiden) of a Crm+, mild hemophilia A patient with a factor VIII activity of 0.18 IU/ml and a factor VIII antigen of 0.95 IU/ml. Mutation analysis of the coding region, promoter and 3’ untranslated region of the factor VIII gene revealed the presence of a C to T substitution at codon 527. This nucleotide change predicts the replacement of an arginine to tryptophan in the A2 domain close to a suggested binding site for factor IXa. Since a previous study of this mutant factor VIII protein suggested that this protein had a reduced affinity for factor IXa, position 527 in the protein might be involved in the interaction with factor IXa.In this study we gathered evidence for our hypothesis that the Arg to Trp mutation at position 527 is the cause of the reduced activity of factor VIII Leiden. Replacement of the mutated A2 domain by wild type A2 domain partially corrected the defect.Factor VIII from normal and factor VIII Leiden plasma was concentrated by cryoprecipitation, activated with thrombin and incubated with excess wild type A2 domain. Competition with excess isolated human A2 domain resulted in a partial reconstitution of the factor VIIIa activity of thrombin treated factor VIII Leiden. This supports the hypothesis that the mutation in the A2 domain is the cause of the reduced factor VIII activity.


1993 ◽  
Vol 105 (4) ◽  
pp. 1069-1078 ◽  
Author(s):  
D.R. Mitchell ◽  
Y. Kang

The ODA6 locus of Chlamydomonas reinhardtii encodes a 70 kDa intermediate chain protein of the flagellar outer row dynein ATPase, and mutations at this locus prevent assembly of the entire outer row dynein arm complex. To initiate a structure-function analysis of the 70 kDa protein, we used transformation with chimeric mutant/wild-type genes to localize the defect in one assembly mutation, oda6-95. Sequence analysis revealed a frame-shift mutation in codon 53, which is followed by a stop codon after 13 amino acids in the new reading frame. By selecting intragenic pseudorevertants of this mutation we obtained 11 new oda6 alleles. Many of these pseudorevertants encode intermediate chain proteins that permit assembly of outer row arms but do not restore full wild-type motility. Revertant strains fall into two phenotypic classes, one with average beat frequencies of 54 Hz (similar to wild type) and one with average frequencies of 27 Hz (compared with 24 Hz for oda6-95) during normal forward swimming. Low beat frequency strains also display abnormalities during photophobic reversal (symmetric waveform). Amplification and sequence analysis of revertant alleles indicated that each reversion caused a second frame-shift, within a 115 nt interval, which restored the original reading frame, and that phenotypic severity was related to both direction (5′ or 3′) and distance between the original mutation and the reversion event. On the basis of immunoblot analysis of outer arm proteins, we conclude that revertant motility defects do not correlate with deficits in assembly of a specific dynein heavy chain or intermediate chain polypeptide, and electron microscopy confirms that revertants have normal outer arm structures. These results suggest that the 70 kDa intermediate chain plays a direct role in outer arm function distinct from its role in the assembly process.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 27-27
Author(s):  
Shannon Meeks ◽  
Ernest T Parker ◽  
Amy L. Dunn ◽  
John F Healey ◽  
Pete Lollar

Abstract Abstract 27 Patients with hemophilia A have a congenital deficiency of the factor VIII (fVIII) protein due to a mutation in the fVIII gene that frequently leads to absence of detectable expression of fVIII. Accordingly, the therapeutic replacement fVIII protein potentially is recognized as non-self by the immune system. Thirty percent of patients with severe hemophilia A develop detectable inhibitory anti-fVIII antibodies (inhibitors). Additionally, greater than 90 percent of hemophilia A mice treated with human fVIII develop inhibitors using dosing schedule that mimics use in humans. Because fVIII is an immunologically foreign protein, it might be expected that a hemophilia A patient would make a fVIII inhibitor. However, intravenous injection of soluble proteins in either humans or rodents usually results in tolerance rather than a humoral immune response. One major difference between fVIII and other proteins is that it is released from its large carrier protein von Willebrand factor (VWF) and is potentially exposed to the immune system at sites of active hemostasis and inflammation. Heat-inactivated, denatured fVIII, which maintains all T-cell epitopes but lacks several B-cell epitopes, is less immunogenic than native fVIII, suggesting that fVIII-dependent thrombin generation along the intrinsic pathway of blood coagulation may provide co-stimulatory signals necessary for the immune response (Skupsky BS, Zhang A, Scott DW Blood 2008; 112:1220a). We constructed a B domain-deleted human fVIII mutant, designated fVIIIi, which contains alanine substitutions at two critical thrombin cleavage sites, Arg372 and Arg1689, and purified it to homogeneity. FVIIIi does not develop procoagulant activity and is not released from VWF in response to thrombin. Therefore fVIIIi is less likely than wild-type fVIII to be exposed to the immune system at sites of active hemostasis and inflammation. Additionally, VWF binds to the immunodominant fVIII C2 domain and potentially hides part of fVIII from the immune system. FVIIIi was antigenically intact judging from intact binding to a panel of11 mouse anti-fVIII monoclonal antibodies whose epitope specificity was represented by all five domains of BDD fVIII. The immunogenicity of wild-type fVIII and fVIIIi was compared in a murine hemophilia A model in which groups of 25 mice received 8 weekly injections of physiologic doses of fVIII. Plasma was collected weekly for total anti-fVIII antibody titers by ELISA and one week following the last injection for total anti-fVIII antibody titers, inhibitor titers by Bethesda assay and for epitope mapping. Mice treated with fVIIIi had significantly lower levels of inhibitory as well as total anti-fVIII antibodies than mice treated with wild-type fVIII. Domain mapping using single human domain hybrid human/porcine molecules as ELISA antigens revealed that hemophilia A mice broadly recognized all fVIII domains in response to either wild-type or fVIIIi, although fVIIIi produced less anti-light chain antibodies. Mice in both the wild-type fVIII and fVIIIi groups produced antibodies that recognized the phospholipid-binding site of the C2 domain, even though this site overlaps the VWF binding site on fVIII. There was no difference in the isotype spectrum of the antibodies made to fVIII or fVIIIi. This study indicates that inactivatable fVIII is less immunogenic than native fVIII and suggests that the immunogenicity of fVIII is related either to its interaction with VWF or to events triggered by activation of the coagulation mechanism. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 526-534 ◽  
Author(s):  
Ali Ramezani ◽  
Robert G. Hawley

Abstract Insertional mutagenesis by retroviral vectors is a major impediment to the clinical application of hematopoietic stem cell gene transfer for the treatment of hematologic disorders. We recently developed an insulated self-inactivating gammaretroviral vector, RMSinOFB, which uses a novel enhancer-blocking element that significantly decreases genotoxicity of retroviral integration. In this study, we used the RMSinOFB vector to evaluate the efficacy of a newly bioengineered factor VIII (fVIII) variant (efVIII)—containing a combination of A1 domain point mutations (L303E/F309S) and an extended partial B domain for improved secretion plus A2 domain mutations (R484A/R489A/P492A) for reduced immunogenicity—toward successful treatment of murine hemophilia A. In cell lines, efVIII was secreted at up to 6-fold higher levels than an L303E/F309S A1 domain–only fVIII variant (sfVIIIΔB). Most important, when compared with a conventional gammaretroviral vector expressing sfVIIIΔB, lower doses of RMSin-efVIII-OFB–transduced hematopoietic stem cells were needed to generate comparable curative fVIII levels in hemophilia A BALB/c mice after reduced-intensity total body irradiation or nonmyeloablative chemotherapy conditioning regimens. These data suggest that the safety-augmented RMSin-efVIII-OFB platform represents an encouraging step in the development of a clinically appropriate gene addition therapy for hemophilia A.


Blood ◽  
2003 ◽  
Vol 101 (4) ◽  
pp. 1351-1358 ◽  
Author(s):  
Marc Jacquemin ◽  
Valérie Vantomme ◽  
Cécile Buhot ◽  
Renaud Lavend'homme ◽  
Wivine Burny ◽  
...  

Mild/moderate hemophilia A patients carrying certain mutations in the C1 domain of factor VIII (FVIII) have a higher risk of inhibitor occurrence. To analyze the mechanisms responsible for inhibitor development in such patients, we characterized FVIII-specific CD4+ T-cell clones derived from a mild hemophilia A patient carrying an Arg2150His substitution in the C1 domain and who presented with a high titer inhibitor toward normal but not self-FVIII. All T-cell clones recognized synthetic peptides encompassing Arg2150. The peptides were presented to the T-cell clones by DRB1*0401/DRB4*01 or DRB1*1501/DRB5*01. Interestingly, the latter haplotype was previously reported as being associated with an increased incidence of inhibitor formation. Peptide I2144-T2161 also bound to other DR molecules such as DRB1*0101 and DRB1*0701, indicating that the peptide binds to major histocompatibility complex (MHC) class II molecules expressed in more than 60% of the population. None of the T-cell clones recognized recombinant FVIII carrying the substitution Arg2150His, even when FVIII was presented by an FVIII-specific B-cell line. The mutation likely alters T-cell recognition of the mutated peptide associated to MHC molecules, because the mutated peptide bound to immunopurified DR molecules nearly as effectively as the native peptide. These observations demonstrate that T cells of this patient with mutation Arg2150His distinguish between self- and wild-type FVIII and provide a plausible mechanism for the frequent occurrence of an inhibitor in patients carrying this substitution. A similar phenomenon may occur with other mutations associated to an increased incidence of inhibitor formation.


Sign in / Sign up

Export Citation Format

Share Document