Down-Regulation of MicroRNA-143 and -145 in Childhood B-Lineage Acute Lymphoblastic Leukemia at Initial Diagnosis and in Relapse but up-Regulated When in Remission

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4886-4886
Author(s):  
Yung-Li Yang ◽  
Shiann-Tarng Jou ◽  
Shu-Wha Lin ◽  
Dong-Tsamn Lin ◽  
Chung-Yi Hu ◽  
...  

Abstract Inappropriate expression of microRNAs (miRNAs) is strongly associated with leukemogenesis. miRNAs (miRs)-143 and -145, previously shown to be reduced in colon cancers, have been demonstrated recently to be down-regulated in B-cell malignancies including chronic lymphoblastic leukemia, B-cell lymphoma, Burkitt’s lymphoma. In this study, we determined the role of miR-143 and miR-145 in childhood leukemia treated by the standard TPOG (Taiwan Pediatric Oncology Group)-2002 protocols approved for treatment of patients in Taiwan. Ten patients with childhood B-lineage ALL and four ALL leukemia cells lines including REH (CRL-8286TM), CCRF-SB (CCL-120TM), RS4 (CRL-1873TM), and SUP-B15 (CRL-1929) were measured for the miRNA expression using a TagMan quantitative RT-PCR method. Our results showed that miR-143 and miR-145 were both down-regulated 0.09 and 0.19 times individually (n= 13, p <0.001 and p = 0.011) in mononuclear cells in bone marrow of newly-diagnosed and relapsed samples in comparison with the same cell types of remission samples (n=16). To examine possible suppressive functions of miR-143 and miR-145 with respect to cell growth, the REH cells were used for expression with precursor form and mature form miR-143 and miR-145, and subsequently measured for cell growth rate. Preliminary results showed that the two miRNAs did not alter the growth rate of the REH over-expressing either miRNA. Taken together, we have identified miR-143 and miR-145 as biomarkers that may differentiate malignant and normal B cells. miR-143 and miR-145 may contribute to leukemogenesis in childhood B-lineage ALL by new yet to be defined mechanisms.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4082-4082
Author(s):  
Daniel Schaefer ◽  
Marianne Olsen ◽  
Ulrik Lausten-Thomsen ◽  
Cyrill Schipp ◽  
Martin Stanulla ◽  
...  

Abstract Pediatric acute lymphoblastic leukemia (ALL) is characterized by preleukemic recurrent chromosomal translocations that emerge in utero. The translocation t(12;21) resulting in the formation of the chimeric transcription factor ETV6-RUNX1 is the most frequent structural aberration occurring in 25% of B-cell precursor patients. A previous study suggested that ETV6-RUNX1-positive preleukemic cells are present in every hundredth human newborn, thus exceeding the actually observed incidence of ETV6-RUNX1-positive ALL in children (1/10,000) by a factor of 100. This finding strongly indicated that secondary cooperating oncogenic hits were necessary for development of overt leukemia. However, later studies could not confirm this high frequency. To analyze the actual frequency of ETV6-RUNX1 preleukemic cells in newborns we developed a PCR-based method termed genomic inverse PCR for exploration of ligated breakpoints (GIPFEL) and applied this technique to a population-based retrospective screening of 300 cord blood samples from Danish newborns. The GIPFEL method is capable of detecting the most common gene fusions associated with childhood leukemia without prior knowledge of the exact breakpoint. In contrast to previously used RNA-based methods, it relies on DNA as sample material, which is more stable than RNA. In the case of ETV6-RUNX1-positive leukemia GIPFEL exploits the unique presence of a genomic fragment joining material from chromosome 12 and 21. These fragments can be digested and re-circularized by ligation creating a junction across the restriction site whose sequence can be predicted from published genome data. The ligation site is independent of the translocation point within the individual DNA circle. Digestion of the breakpoint regions of the ETV6 and RUNX1 gene with the restriction enzyme SacI generates fragments smaller than 50 kb. Primer pairs amplify the complete set of theoretically predicted circularized fragments requiring 37 primers for the ETV6-RUNX1 translocation. Genomic DNA was prepared from mononuclear cells from cord blood samples of 300 newborns that were cryopreserved within 24 h (median 12 h) from birth. After B cell enrichment and column purification of DNA, the DNA was subjected to SacI restriction digest, ligated and remaining linear DNA was removed by exonuclease III. After ethanol precipitation the reaction products were subjected to a partially multiplexed, semi-nested PCR to quantify all possible ligation/junction products specific for the translocation. Samples that screened positive underwent one further demultiplexed PCR, agarose gelelectrophoresis and Sanger sequencing to validate the result and to identify the breakpoint region. An internal RUNX1 genomic ligation product served as a quality control and allowed the relative quantification of the translocation product. In previously published proof-of-principle blinded studies we tested 61 samples obtained from ETV6-RUNX1-positive ALL patients. Without any unspecific result, 64% for ETV6-RUNX1 fusion genes were detected in that sample set. The sensitivity of the technique was estimated to be 10-4, i.e. one translocation carrying cell within 10,000 normal cells can theoretically be detected. Within the analyzed cohort of 300 healthy newborns 6 screened positive for the ETV6-RUNX1 translocation (2%) (Table 1). Further 700 cord blood samples are currently screened. Table 1: 6 of 300 cord blood samples from healthy newborns screened positive for the ETV6-RUNX1 translocation using the GIPFEL technique (Fueller E*, Schaefer D* et al. PloS One 2014, 9(8): e104419). Number of the positively tested healthy newborn within the cohort, used primers, and introns of RUNX1 and ETV6 affected by the translocation are presented. Our results indicate that the actual incidence of ETV6-RUNX1-positive cells in healthy newborns might be even higher than previously assumed, potentially due to instability of the ETV6-RUNX1 RNA transcript in preserved cord blood samples. This would hint at a comparably low penetrance and leukemia inducing potential of the chimeric transcription factor ETV6-RUNX1 in human newborns and further strengthen the importance of secondary environmentally caused or spontaneously occurring cooperating oncogenic lesions for ETV6-RUNX1-positive childhood leukemia to emerge. Table Table. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 13 (4) ◽  
pp. 27-36
Author(s):  
E. V. Glukhanyuk ◽  
A. V. Stepanov ◽  
A. M. Popov ◽  
M. A. Maschan

Immunotherapy is the most rapidly evolving field in clinical malignant hematology. Targeting of the B-lineage surface antigen CD19 in B-lineage acute lymphoblastic leukemia and B-cell lymphoma is a story of great success. Recently two approaches of CD19 immunotargeting were approved for clinical application: CD3 × CD19 bi-specific T-cell engager blinatumomab and CD19 chimeric antigen receptor (CAR) Tcells. Both approaches demonstrated an unprecedented activity in a cohort of patients with relapsed and refractory B-cell leukemia and lymphoma both in the adult and pediatric population. Early clinical research has showed that tumors are able to escape the immunological control and become resistant to the immune attack. Mechanisms of the tumor immune escape are being actively studied and include diverse pathways, such as alternative splicing of CD19 and immunosuppressive tumor microenvironment. Current review briefly summarizes data regarding the mechanisms of CD19-positive leukemia resistance to CD19 immune targeting and discusses potential approaches to overcome it.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-7
Author(s):  
Claire E. Pillsbury ◽  
Jairo A. Fonseca ◽  
Jodi Dougan ◽  
Hasan Abukharma ◽  
Linda N. Liu ◽  
...  

Despite advances that have greatly improved the overall survival of pediatric B cell acute lymphoblastic leukemia (B-ALL), it remains one of the leading causes of cancer-related death in children. Immunotherapy has shown efficacy in treatment of refractory disease, highlighting the need for greater understanding of the immune evasion mechanisms underlying this disease so that additional immune modulating therapeutic strategies can be developed. Siglec-15 (Sig15) was recently reported to have immune modulatory functions in the context of solid tumors. We have found that SIGLEC15 is overexpressed at the RNA level in primary B cell acute lymphoblastic leukemia (B-ALL), acute myelogenous leukemia (AML), and diffuse large B cell lymphoma as compared to healthy donor controls. As compared to healthy donor PBMCs, we have confirmed higher expression of Sig15 at the RNA and protein levels through RT-qPCR, immunoblotting, and flow cytometry across a panel of human B-ALL, AML, DLBCL, and T cell acute lymphoblastic leukemia (T-ALL) cell lines. Knockout of Sig15 expression in a BCR-ABL1+ murine model of B-ALL engrafted in immunocompetent and Rag1-/- immunodeficient recipients resulted in leukemia clearance in immunocompetent, but not immunodeficient, recipients and 100% survival (Figure 1). These data suggest a prominent role for Sig15 in the suppression of adaptive immune response to B-ALL as well as other hematological malignancies. Additional studies suggest that SIGLEC15 expression is positively regulated by NFκB signaling, which is known to be constitutively activated in certain B-ALL subsets. Importantly, we have observed release of a soluble form of Sig15 (sSig15) from B-ALL cells, which is regulated by PKC and calcineurin-mediated signaling. To discover translational application, we measured sSig15 in the plasma of both healthy and pediatric leukemia patients and found significantly higher levels of sSig15 as compared to healthy individuals (Figure 2; LLD = 5 pg/ml; **P<0.01). Together, these results suggest Siglec-15 is a novel and potent immunosuppressive molecule active in leukemia that may be targeted therapeutically to activate lymphocytes against leukemia cells. Disclosures Abukharma: NextCure, Inc.: Current Employment. Liu:NextCure, Inc.: Current Employment.


2007 ◽  
Vol 48 (2) ◽  
pp. 230-232
Author(s):  
Itaru Kato ◽  
Atsushi Manabe ◽  
Chiaki Aoyama ◽  
Takahiro Kamiya ◽  
Tsuyoshi Morimoto ◽  
...  

2021 ◽  
pp. 104063872110110
Author(s):  
Alessandro Ferrari ◽  
Marzia Cozzi ◽  
Luca Aresu ◽  
Valeria Martini

An 8-y-old spayed female Beagle dog was presented with peripheral lymphadenomegaly. Lymph node cytology and flow cytometry led to the diagnosis of large B-cell lymphoma (LBCL). We detected minimal percentages of LBCL cells in peripheral blood and bone marrow samples. However, a monomorphic population of neoplastic cells different from those found in the lymph node was found in the bone marrow. T-cell acute lymphoblastic leukemia was suspected based on flow cytometric immunophenotyping. PCR for antigen receptor rearrangement (PARR) revealed clonal rearrangement of both B-cell and T-cell receptors, and the presence of both neoplastic clones in the lymph node, peripheral blood, and bone marrow. The dog was treated with multi-agent chemotherapy but died 46 d following diagnosis. Tumor staging and patient classification are needed to accurately establish a prognosis and select the most appropriate therapeutic protocol.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii361-iii361
Author(s):  
Brandon Brown ◽  
Paolo Tambaro ◽  
Kris Mahadeo ◽  
Sajad Khazal ◽  
Priti Tewari ◽  
...  

Abstract INTRODUCTION Immune effector cell associated neurotoxicity (ICANS) and cytokine release syndrome (CRS) are potentially life-threatening complications associated with immune effector cell (IEC) therapies. We characterize ICANS in pediatric and adult young adolescent (AYA) patients receiving IEC therapy at our institution. METHODS We reviewed clinical characteristics and severity (based on ASTCT Consensus Criteria) in pediatric and AYA patients with IEC products from 2018–2019 at MDACC. RESULTS Nine patients, median age 15.5 (range: 3–25) years received chimeric antigen receptor (CART) IEC therapy. Four (44%) developed ICANS within median of 8 (range: 3–27) days of CAR T cell infusion and median 6 (range: 2–7) days after CRS. Primary diagnoses were pre-B cell acute lymphoblastic leukemia (8) and mediastinal large B-cell lymphoma (1). Median CRS and ICANS severity grade was 2 (range 1–4). Symptoms included altered mental status (AMS) (5), seizure (1), aphasia (2), impaired ability to write a standard sentence (4). Neuroimaging did not correlate to ICANS symptoms or severity. EEG was performed in 3 and 1 had background slowing correlating with aphasia. CSF was obtained in two revealing lymphocytosis. All received prophylactic anti-epileptic medication and tocilizumab for concomitant CRS. Three received steroids. CONCLUSION ICANS may present in almost half of pediatric patients within one week of receiving CART products associated with CRS. CAR-T trafficking into the CSF may explain pleocytosis in the CSF. Prospective studies may clarify. Impaired ability to write a standard sentence and the Cornell Assessment of Pediatric Delirium (CAPD) may be early indicators of ICANS in pediatric/AYA patients.


2006 ◽  
Vol 130 (4) ◽  
pp. 483-520 ◽  
Author(s):  
Cherie H. Dunphy

Abstract Context.—Gene expression (GE) analyses using microarrays have become an important part of biomedical and clinical research in hematolymphoid malignancies. However, the methods are time-consuming and costly for routine clinical practice. Objectives.—To review the literature regarding GE data that may provide important information regarding pathogenesis and that may be extrapolated for use in diagnosing and prognosticating lymphomas and leukemias; to present GE findings in Hodgkin and non-Hodgkin lymphomas, acute leukemias, and chronic myeloid leukemia in detail; and to summarize the practical clinical applications in tables that are referenced throughout the text. Data Source.—PubMed was searched for pertinent literature from 1993 to 2005. Conclusions.—Gene expression profiling of lymphomas and leukemias aids in the diagnosis and prognostication of these diseases. The extrapolation of these findings to more timely, efficient, and cost-effective methods, such as flow cytometry and immunohistochemistry, results in better diagnostic tools to manage the diseases. Flow cytometric and immunohistochemical applications of the information gained from GE profiling assist in the management of chronic lymphocytic leukemia, other low-grade B-cell non-Hodgkin lymphomas and leukemias, diffuse large B-cell lymphoma, nodular lymphocyte–predominant Hodgkin lymphoma, and classic Hodgkin lymphoma. For practical clinical use, GE profiling of precursor B acute lymphoblastic leukemia, precursor T acute lymphoblastic leukemia, and acute myeloid leukemia has supported most of the information that has been obtained by cytogenetic and molecular studies (except for the identification of FLT3 mutations for molecular analysis), but extrapolation of the analyses leaves much to be gained based on the GE profiling data.


Blood ◽  
2021 ◽  
Author(s):  
Julia Hauer ◽  
Ute Fischer ◽  
Arndt Borkhardt

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common form of childhood cancer. Chemotherapy is associated with life-long health sequelae and fails in approximately 20% of cases. Thus, prevention of leukemia would be preferable to treatment. Childhood leukemia frequently starts before birth, during fetal hematopoiesis. A first genetic hit (e.g. the ETV6-RUNX1 gene fusion) leads to the expansion of pre-leukemic B-cell clones, which are detectable in healthy newborn cord blood (up to 5%). These pre-leukemic clones give rise to clinically overt leukemia in only about 0.2% of carriers. Experimental evidence suggests that a major driver of conversion from the pre-leukemic to the leukemic state is exposure to immune challenges. Novel insights have shed light on immune host responses and how they shape the complex interplay between (A) inherited or acquired genetic predispositions, (B) exposure to infection, and (C) abnormal cytokine release from immunologically untrained cells. Here, we integrate the recently emerging concept of "trained immunity" into existing models of childhood BCP-ALL and suggest future avenues towards leukemia prevention.


2018 ◽  
Author(s):  
Mustafa Al-Kawaaz ◽  
Teresa Sanchez ◽  
Michael J Kluk

AbstractAggressive, mature B-cell lymphomas represent a heterogeneous group of diseases including Burkitt Lymphoma (BL), High Grade B Cell Lymphomas (HGBL) (eg, Double-Hit B cell lymphomas (HGBL-DH: HGBL with MYC and BCL2 and/or BCL6 translocations)), HGBL, Not Otherwise Specified (HGBL, NOS) and Diffuse Large B Cell Lymphoma. The overlapping morphologic and immunohistochemical features of these lymphomas may pose diagnostic challenges in some cases, and a better understanding of potential diagnostic biomarkers and possible therapeutic targets is needed. Sphingosine 1 Phosphate Receptors (S1PR1-5) represent a family of G-protein coupled receptors that bind the sphingolipid (S1P) and influence migration and survival pathways in a variety of cell types, including lymphocytes. S1PRs are emerging as biomarkers in B cell biology and interaction between S1PR pathways and STAT3 or FOXP1 has been reported, especially in DLBCL. Our aim was to extend the understanding of the S1PR1, STAT3 and S1PR2, FOXP1 expression beyond DLBCL, into additional aggressive, mature B cell lymphomas such as BL, HGBL-DH and HGBL,NOS.Herein, we report that S1PR1 and S1PR2 showed different patterns of expression in mantle zones and follicle centers in reactive lymphoid tissue and, among the lymphomas in this study, Burkitt lymphomas showed a unique pattern of expression compared to HGBL and DLBCL. Additionally, we found that S1PR1 and S1PR2 expression was typically mutually exclusive and were expressed in a low proportion of cases (predominantly HGBL involving extranodal sites). Lastly, FOXP1 was expressed in a high proportion of the various case types and pSTAT3 was detected in a significant proportion of HGBL and DLBCL cases. Taken together, these findings provide further evidence that S1PR1, pSTAT3, S1PR2 and FOXP1 play a role in a subset of aggressive mature B cell lymphomas.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1020-1034 ◽  
Author(s):  
FM Uckun ◽  
AS Fauci ◽  
NA Heerema ◽  
CW Song ◽  
SR Mehta ◽  
...  

The purpose of this study was to analyze the expression of B cell growth factor (BCGF) receptors and to elucidate the biologic effects of biochemically purified natural BCGF at the B cell precursor stage of human B lineage lymphoid differentiation. The specific binding of radioiodinated high-mol-wt BCGF (125I-HMW-BCGF) and low-molecular-wt BCGF (125I-LMW-BCGF) to fresh marrow blasts from B cell precursor acute lymphoblastic leukemia (ALL) patients was initially investigated. The estimated number of radioiodinated BCGF molecules bound per blast ranged from undetectable to 24.3 X 10(3) for HMW-BCGF, and from 11.5 X 10(3) to 457.8 X 10(3) for LMW-BCGF. In 3H-TdR incorporation assays, 75% of cases showed a significant response to LMW-BCGF with a median stimulation index of 9.3. By comparison, only 33% of cases showed a significant response to HMW-BCGF with a median stimulation index of 2.4. Subsequently, B cell precursor colony assays were performed to assess and compare the biologic effects of BCGF on leukemic B lineage lymphoid progenitor cells. Among 28 cases studied, 57% responded to both HMW-BCGF and LMW-BCGF, 21% responded only to LMW-BCGF, and the remaining cases showed no proliferative response to either growth factor. The response patterns of virtually pure populations of FACS- sorted leukemic B cell precursors were essentially identical to the proliferative responses of unsorted leukemic B-cell precursors. Synergistic effects between HMW-BCGF and LMW-BCGF were observed in 80% of the cases that responded to both. The numbers of cell-bound radioiodinated BCGF molecules, the stimulation indices, as well as the number of B cell precursor colonies in BCGF-stimulated cultures showed a marked interpatient variation. Patients with structural chromosomal abnormalities (SCAs) involving 12p11–13 or patients with a Philadelphia chromosome showed a greater HMW-BCGF response at the level of leukemic progenitor cells than did other patients (P = .02). The LMW-BCGF response was significantly greater for patients with SCA than for patients without SCA (P = .04). The response of leukemic progenitor cells to HMW-BCGF or LMW-BCGF did not correlate with sex, age, disease status, FAB morphology, WBC at diagnosis, or immunophenotype. To our knowledge, this study represents the first detailed analyses of BCGF receptor expression and BCGF effects in B cell precursor ALL. The data presented provide direct evidence for the expression of functional receptors for both HMW-BCGF and LMW-BCGF in B cell precursor ALL.


Sign in / Sign up

Export Citation Format

Share Document