scholarly journals 2% of Healthy Newborns Reveal ETV6-RUNX1 Fusion By Genomic Inverse PCR for Exploration of Ligated Breakpoints (GIPFEL)

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4082-4082
Author(s):  
Daniel Schaefer ◽  
Marianne Olsen ◽  
Ulrik Lausten-Thomsen ◽  
Cyrill Schipp ◽  
Martin Stanulla ◽  
...  

Abstract Pediatric acute lymphoblastic leukemia (ALL) is characterized by preleukemic recurrent chromosomal translocations that emerge in utero. The translocation t(12;21) resulting in the formation of the chimeric transcription factor ETV6-RUNX1 is the most frequent structural aberration occurring in 25% of B-cell precursor patients. A previous study suggested that ETV6-RUNX1-positive preleukemic cells are present in every hundredth human newborn, thus exceeding the actually observed incidence of ETV6-RUNX1-positive ALL in children (1/10,000) by a factor of 100. This finding strongly indicated that secondary cooperating oncogenic hits were necessary for development of overt leukemia. However, later studies could not confirm this high frequency. To analyze the actual frequency of ETV6-RUNX1 preleukemic cells in newborns we developed a PCR-based method termed genomic inverse PCR for exploration of ligated breakpoints (GIPFEL) and applied this technique to a population-based retrospective screening of 300 cord blood samples from Danish newborns. The GIPFEL method is capable of detecting the most common gene fusions associated with childhood leukemia without prior knowledge of the exact breakpoint. In contrast to previously used RNA-based methods, it relies on DNA as sample material, which is more stable than RNA. In the case of ETV6-RUNX1-positive leukemia GIPFEL exploits the unique presence of a genomic fragment joining material from chromosome 12 and 21. These fragments can be digested and re-circularized by ligation creating a junction across the restriction site whose sequence can be predicted from published genome data. The ligation site is independent of the translocation point within the individual DNA circle. Digestion of the breakpoint regions of the ETV6 and RUNX1 gene with the restriction enzyme SacI generates fragments smaller than 50 kb. Primer pairs amplify the complete set of theoretically predicted circularized fragments requiring 37 primers for the ETV6-RUNX1 translocation. Genomic DNA was prepared from mononuclear cells from cord blood samples of 300 newborns that were cryopreserved within 24 h (median 12 h) from birth. After B cell enrichment and column purification of DNA, the DNA was subjected to SacI restriction digest, ligated and remaining linear DNA was removed by exonuclease III. After ethanol precipitation the reaction products were subjected to a partially multiplexed, semi-nested PCR to quantify all possible ligation/junction products specific for the translocation. Samples that screened positive underwent one further demultiplexed PCR, agarose gelelectrophoresis and Sanger sequencing to validate the result and to identify the breakpoint region. An internal RUNX1 genomic ligation product served as a quality control and allowed the relative quantification of the translocation product. In previously published proof-of-principle blinded studies we tested 61 samples obtained from ETV6-RUNX1-positive ALL patients. Without any unspecific result, 64% for ETV6-RUNX1 fusion genes were detected in that sample set. The sensitivity of the technique was estimated to be 10-4, i.e. one translocation carrying cell within 10,000 normal cells can theoretically be detected. Within the analyzed cohort of 300 healthy newborns 6 screened positive for the ETV6-RUNX1 translocation (2%) (Table 1). Further 700 cord blood samples are currently screened. Table 1: 6 of 300 cord blood samples from healthy newborns screened positive for the ETV6-RUNX1 translocation using the GIPFEL technique (Fueller E*, Schaefer D* et al. PloS One 2014, 9(8): e104419). Number of the positively tested healthy newborn within the cohort, used primers, and introns of RUNX1 and ETV6 affected by the translocation are presented. Our results indicate that the actual incidence of ETV6-RUNX1-positive cells in healthy newborns might be even higher than previously assumed, potentially due to instability of the ETV6-RUNX1 RNA transcript in preserved cord blood samples. This would hint at a comparably low penetrance and leukemia inducing potential of the chimeric transcription factor ETV6-RUNX1 in human newborns and further strengthen the importance of secondary environmentally caused or spontaneously occurring cooperating oncogenic lesions for ETV6-RUNX1-positive childhood leukemia to emerge. Table Table. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5340-5340
Author(s):  
Ute Fischer ◽  
Daniel Schäfer ◽  
Elisa Füller ◽  
Katrine Ask ◽  
Pina Fanny Ida Krell ◽  
...  

Abstract Pediatric acute lymphoblastic leukemia (ALL) is characterized by recurrent chromosomal translocations that frequently occur in utero in preleukemic cells. The translocation t(12;21) resulting in the formation of the chimeric transcription factor ETV6-RUNX1 is the most frequent structural aberration occurring in 25% of B-cell ALL. A previous study suggested that ETV6-RUNX1 positive preleukemic cells are present in every hundredth human newborn, thus exceeding the actually observed incidence of ETV6-RUNX1 positive ALL in children by a factor of 100. This finding indicated that secondary, but relatively rare cooperating oncogenic hits are necessary for the development of overt leukemia. However, later studies could not confirm this high incidence of preleukemic cells in newborns. To analyze the actual frequency of ETV6-RUNX1 preleukemic cells in newborns we developed a PCR based method termed genomic inverse PCR for exploration of ligated breakpoints (GIPFEL) and applied this technique to a population-based screening of ≈1000 cord blood samples from healthy newborns. The GIPFEL method is capable to detect the most common gene fusions associated with childhood leukemia without prior knowledge of the exact breakpoint. In the case of ETV6-RUNX1 positive leukemia, GIPFEL exploits the unique presence of a genomic fragment joining material from chromosomes 12 and 21 in the translocation-positive cells. These fragments can be digested and re-circularized by ligation creating a junction across the restriction site whose sequence can be predicted from published genome data. Importantly, the ligation site is independent of the translocation point within the individual DNA circle. The published breakpoint regions of the ETV6 and RUNX1 genes involved in the translocation were analyzed in silico for restriction sites that allow digestion of all possible translocation events to yield fragments smaller than approximately 50 kb. This condition was met for ETV6-RUNX1 breakpoints by digestion with SacI. Primer pairs were designed amplifying the complete set of theoretically predicted circularized fragments requiring 36 primers for the ETV6-RUNX1 translocation. Genomic DNA was prepared from cell lines, diagnostic specimens from ALL patients, peripheral blood from healthy donors and cord blood samples from newborns by column purification. The equivalent of approximately 4x105 cells (2.5 µg DNA) was subjected to the SacI restriction digest, ligated and remaining linear DNA was removed by exonuclease III. After ethanol precipitation the reaction products were subjected to a partially multiplexed, semi-nested PCR to quantify all possible ligation/junction products specific for the translocation. An internal RUNX1 genomic ligation product served as a quality control and allowed the relative quantification of the translocation product. In a first proof-of-principle study employing the ETV6-RUNX1 translocation positive cell line REH, process optimization close to the theoretical limits was carried out. Cell dilution and mixing studies revealed that under optimal conditions approximately 40 translocation positive cells (=10-4) present in the input DNA are sufficient to produce a reliable output signal. The method was next tested in a blinded study with 60 samples obtained from ETV6-RUNX1 diagnostic ALL samples. ETV6-RUNX1 samples positive at 10-4, being diluted from these diagnostic samples, still gave a reliable output signal. There was no false positive result. Detection coverage (=sensitivity) was 64%. This method was then applied to a retrospective sample set of cryopreserved anonymized cord blood samples of ≈1000 healthy newborns to determine frequency and levels of translocation-positive cells. First results will be presented. In conclusion this population-based study will allow an estimate of the actual incidence of ETV6-RUNX1 positive preleukemic cells in healthy newborns. The results will enable us to evaluate the penetrance and leukemia inducing potential of the chimeric transcription factor ETV6-RUNX1 in human newborns and will provide a basis for the assessment of potential secondary environmental or spontaneously occurring cooperating oncogenic lesions in ETV6-RUNX1 positive childhood leukemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4093-4093
Author(s):  
Daniel Hein ◽  
Karin Dreisig ◽  
Shai Izraeli ◽  
Kjeld Schmiegelow ◽  
Arndt Borkhardt ◽  
...  

Abstract Pediatric acute lymphoblastic leukemia (ALL) is characterized by recurrent chromosomal translocations. The translocation t(1;19) that fuses the gene encoding the basic helix-loop-helix transcription factor TCF3 with the gene encoding the homeodomain protein PBX1 is the second most common one occurring in approximately 5-10% of precursor B ALL cases. Backtracking of clonotypic TCF3-PBX1 translocations that were identified in leukemia patients by PCR amplification of Guthrie cards from these individuals provided weak evidence for a prenatal origin of a minority of TCF3-PBX1 translocations (2 of 15 cases). The presence of N-nucleotides at the recombination junction, IGH rearrangements and the specific JH and DH segment usage indirectly supported a postnatal origin of the majority of translocations, but could not definitely date the fusion event during development (Wiemels et al. PNAS 2002). We recently developed a novel, DNA-based screening technique (genomic inverse PCR for exploration of ligated breakpoints, GIPFEL) for the detection of translocations without prior knowledge of the exact breakpoint (Fueller et al. PLOS ONE 2015). By GIPFEL screening of 1,000 umbilical cord blood samples, we confirmed a high prevalence (≥5%) of the most frequent ALL associated translocation, t(12;21), in healthy newborns (Schaefer et al. BLOOD 2018). This translocation was 500-fold more frequent than the corresponding leukemia incidence (1/10,000) indicating a low penetrance of the leukemic fusion and a greater importance of secondary oncogenic events. In order to trace the origin of the TCF3-PBX1 fusion and to assess the risk of children bearing the translocation to develop leukemia, we collected 340 cord blood samples of healthy newborns and subjected them to GIPFEL screening. The GIPFEL technique uses stable DNA as a sample and detects a translocation by inverse PCR after restriction enzyme digest of the DNA and circularization of fragments by ligation. For t(1;19) screening, DNA was isolated from CD19+ enriched mononuclear cells, digested with the enzyme MfeI and ligated. Remaining linear DNA fragments were removed by exonuclease digest. After ethanol precipitation of the DNA circles a partially multiplexed, semi-nested PCR was carried out to quantify all possible ligation/junction products specific for the translocation. Samples that screened positive underwent one further demultiplexed PCR, agarose gel electrophoresis and Sanger sequencing to validate the result. An internal PBX1 genomic ligation product served as a positive control. TCF3-PBX1 positive cells at a frequency ≥10-4 to 10-5 would be detected by the GIPFEL method. Of the 340 screened cord bloods, 292 are currently undergoing evaluation and 48 are validated. So far, none of the 48 samples was positive for the TCF3-PBX1 translocation. In case all 340 cord bloods are negative, the result could suggest that TCF3-PBX1 translocations occur very rarely prenatally and that they have a high oncogenic penetrance if they arise in utero, although cooperating secondary mutations are clearly necessary. This would be in line with the strong capability of the TCF3-PBX1 oncoprotein to transform many cell types in vitro and with the generation of diverse (although late occurring) tumors observed in TCF3-PBX1 transgenic mice (reviewed in Aspland et al. Oncogene 2001). These results would support the previous finding of clonotypic TCF3-PBX1 transcripts in 2 of 15 Guthrie cards derived from individuals who later developed leukemia (Wiemels et al. PNAS 2002). Complete results of GIPFEL screening of 340 newborns will be available and presented at the conference. Although the number of healthy newborns investigated is still low, these results will help to determine the origin of the t(1;19) TCF3-PBX1 fusion. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4886-4886
Author(s):  
Yung-Li Yang ◽  
Shiann-Tarng Jou ◽  
Shu-Wha Lin ◽  
Dong-Tsamn Lin ◽  
Chung-Yi Hu ◽  
...  

Abstract Inappropriate expression of microRNAs (miRNAs) is strongly associated with leukemogenesis. miRNAs (miRs)-143 and -145, previously shown to be reduced in colon cancers, have been demonstrated recently to be down-regulated in B-cell malignancies including chronic lymphoblastic leukemia, B-cell lymphoma, Burkitt’s lymphoma. In this study, we determined the role of miR-143 and miR-145 in childhood leukemia treated by the standard TPOG (Taiwan Pediatric Oncology Group)-2002 protocols approved for treatment of patients in Taiwan. Ten patients with childhood B-lineage ALL and four ALL leukemia cells lines including REH (CRL-8286TM), CCRF-SB (CCL-120TM), RS4 (CRL-1873TM), and SUP-B15 (CRL-1929) were measured for the miRNA expression using a TagMan quantitative RT-PCR method. Our results showed that miR-143 and miR-145 were both down-regulated 0.09 and 0.19 times individually (n= 13, p <0.001 and p = 0.011) in mononuclear cells in bone marrow of newly-diagnosed and relapsed samples in comparison with the same cell types of remission samples (n=16). To examine possible suppressive functions of miR-143 and miR-145 with respect to cell growth, the REH cells were used for expression with precursor form and mature form miR-143 and miR-145, and subsequently measured for cell growth rate. Preliminary results showed that the two miRNAs did not alter the growth rate of the REH over-expressing either miRNA. Taken together, we have identified miR-143 and miR-145 as biomarkers that may differentiate malignant and normal B cells. miR-143 and miR-145 may contribute to leukemogenesis in childhood B-lineage ALL by new yet to be defined mechanisms.


Blood ◽  
2011 ◽  
Vol 117 (1) ◽  
pp. 186-189 ◽  
Author(s):  
Ulrik Lausten-Thomsen ◽  
Hans Ole Madsen ◽  
Therese Risom Vestergaard ◽  
Henrik Hjalgrim ◽  
Jacob Nersting ◽  
...  

Abstract t(12;21)(p13;q22)[ETV6-RUNX1] is the most common chromosomal translocation in childhood acute lymphoblastic leukemia, and it can often be backtracked to Guthrie cards supporting prenatal initiation and high levels of circulating t(12;21)-positive cells at birth. To explore the prevalence of ETV6-RUNX1–positive cells in healthy neonates, mononuclear cells from 1417 umbilical cord blood samples were isolated within 24 hours from birth and subsequently screened for ETV6-RUNX1 transcripts using a highly sensitive real-time reverse transcription polymerase chain reaction assay. In first-run polymerase chain reaction, 14 samples were positive at levels below 10−5, of which specific hybridization reflecting the relevant genetic region was positive in 9 cases. Repeated analyses using stored mRNA and flowcytometric sorting of a CD19+, CD8+, and CD19−/CD8− subpopulations from cryopreserved mononuclear cells from the same cord blood samples (mean sorted: 18 × 106 cells) revealed no positive findings, which demonstrates that the level and/or frequency of ETV6-RUNX1–positive cells is markedly lower than suggested in previous studies.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 300-300
Author(s):  
Rachael E Hough ◽  
Bronwen E. Shaw ◽  
Pip Patrick ◽  
Nigel Russell ◽  
Antonio Pagliuca ◽  
...  

Abstract Background Umbilical cord blood (UCB) is an established alternative haemopoietic cell source for use in clinical transplantation for life-threatening malignant and non-malignant disorders. One challenge in using UCB in adolescents and adults has been delayed engraftment due to the finite and limited cell dose of a single unit, which has been shown to be a key determinant of engraftment, transplant related mortality and survival. The use of double unit transplantation, pioneered at the University of Minnesota, has become one of the most successful approaches to overcome this limitation to date. This group have also developed a reduced intensity conditioning (RIC) regimen, successfully broadening access to UCB transplant to older patients and those with co-morbidities. The kinetics of granulocyte, T cell and B cell chimerism in this setting require detailed study. Methods Since 2009, the British Society of Blood and Marrow Transplantation have conducted a prospective, phase II study of UCB transplantation using the Minnesota RIC conditioning regimen (Fludarabine 200mg/m2, Cyclophosphamide 50mg/kg and TBI 2Gy), with Ciclosporin and Mycophenolate Mofetil graft versus host disease prophylaxis. Lineage specific chimerism was performed at days 7, 14, 21, 28, 35, 60, 100, 180, 360 and 720 post transplant and analysed at laboratories associated with participating centres. Results 28 consecutive adult trial patients who have received a double unit transplant, have engrafted and have chimerism data up to at least day 35 are included in this analysis. The ‘winning' unit had a median unit:recipient match of 4/6 (range 4-6/6), with a median pre freeze total nucleated cell (TNC) count of 189x107 (range 83-250) and CD34 of 84x105 (range 23-169). The ‘losing' unit had a median unit:recipient match of 5/6 (range 4-6/6), with a median pre freeze total nucleated cell (TNC) count of 183x107 (range 127-303) and CD34 of 55x105 (range 42-95). Despite the low white count early post transplant, peripheral blood (PB) lineage specific chimerism for mononuclear cells (PBMC), T cells and granulocytes was feasible in nearly all patients. B cell chimerism was unsuccessful or not available in 55% of time points. The pattern of early T cell and granulocyte chimerism is summarised in the table. From day 60 onwards, the median granulocyte and T cell chimerism remained 100% winning unit. However, T cell chimerism at day 14 identified the winning unit in all patients with a result at this time point (n=25). Contribution to the B cell compartment was 100% winning unit by day 35, with 83% recipient at day 7 and 24% at day 14 and 4% losing unit at day 7 and 14. Conclusions Lineage specific chimerism is technically feasible in the immediate post transplant period and gives important insights into the kinetics of double cord blood unit engraftment. Although the ‘losing' unit may contribute to the B and T cell compartments in the first 2 weeks, it contributes little after day 21. The winning unit is clearly identifiable by day 14 in all lineages. Early granulocyte recovery (driven by G-CSF) in the RIC setting is seen to be primarily due to autologous recovery until around day 21 after which the winning unit predominates. These data provide an insight into the biology of engraftment that may also inform additional novel strategies such as ex vivo CD34 expansion and adding in haploidentical stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Author(s):  
Julia Hauer ◽  
Ute Fischer ◽  
Arndt Borkhardt

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common form of childhood cancer. Chemotherapy is associated with life-long health sequelae and fails in approximately 20% of cases. Thus, prevention of leukemia would be preferable to treatment. Childhood leukemia frequently starts before birth, during fetal hematopoiesis. A first genetic hit (e.g. the ETV6-RUNX1 gene fusion) leads to the expansion of pre-leukemic B-cell clones, which are detectable in healthy newborn cord blood (up to 5%). These pre-leukemic clones give rise to clinically overt leukemia in only about 0.2% of carriers. Experimental evidence suggests that a major driver of conversion from the pre-leukemic to the leukemic state is exposure to immune challenges. Novel insights have shed light on immune host responses and how they shape the complex interplay between (A) inherited or acquired genetic predispositions, (B) exposure to infection, and (C) abnormal cytokine release from immunologically untrained cells. Here, we integrate the recently emerging concept of "trained immunity" into existing models of childhood BCP-ALL and suggest future avenues towards leukemia prevention.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 49-49
Author(s):  
Qiuling Chen ◽  
Yuelong Jiang ◽  
Qinwei Chen ◽  
Long Liu ◽  
Bing Xu

Acute lymphoblastic leukemia (ALL) derives from the malignant transformation of lymphoid progenitor cells with ~85% being originated from B-cell progenitors (B-ALL). Despite fairly good prognoses for most pediatric B-ALL patients, the outcome is fatal in over 50% of adult patients who have a recurrent or progressive disease and lack of effective therapeutic approaches. Therefore, novel treatment strategies with high efficacy and low toxicity are an unmet need for B-ALL patients, especially those with relapsed or refractory status. Angiogenesis is a process of new vessel formation that requires the participation of multiple proangiogenic factors (e.g., VEGF, PDGF, and FGF) and their corresponding receptors (e.g., VEGFR, PDGFR, and FGFR). Angiogenesis, a well-established feature of solid tumors, also contributes to leukemia progression and correlates with the involvement of specific sanctuary sites in ALL, highlighting that the perturbation of angiogenesis would be an attractive approach for ALL treatment. Anlotinib is an oral tyrosine kinase (TKI) inhibitor with a broad range of antitumor effects via the suppression of VEGFR, PDGFR and FGFR. Of importance, anlotinib has been approved for the treatment of advanced lung cancer in China. Here, we evaluated the antileukemia activity of anlotinib in preclinical B-ALL models and its underlying molecular mechanisms. In this study, we observed that anlotinib significantly blunted the capability of cell proliferation and arrested cell cycle at G2 phase in B-ALL cell lines. Subsequently, we found that anlotinib resulted in remarkably enhanced apoptosis in B-ALL in vitro. To assess the in vivo antileukemia potential, we established a B-ALL patient-derived xenograft (PDX) mouse model and then treated the B-ALL PDX model with anlotinib. As a result, oral administration of anlotinib pronouncedly delayed in vivo B-ALL cell growth and reduced leukemia burden with acceptable safety profiles in this model. As for the mechanism of action, the antileukemia effect of anlotinib was associated with the disruption of the role of VEGFR2, PDGFRb, and FGFR3. Moreover, we revealed that this drug blocked the PI3K/AKT/mTOR/ signaling, a pathway that is linked with angiogenesis and its proangiogenic regulators, including VEGFR2, PDGFRb, and FGFR3. In aggregate, these results indicate that anlotinib is a potent antitumor agent for the treatment of B-ALL via the inhibition of angiogenic relevant pathways, which provide a novel potential treatment intervention for patients with B-ALL who have little effective therapy options. Disclosures No relevant conflicts of interest to declare. OffLabel Disclosure: Anlotinib originally designed by China is a novel orally active multitarget inhibitor that is evaluating in clinical trials against multiple solid tumors.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 26-26
Author(s):  
Arpan A. Sinha ◽  
Pilar I. Andrade ◽  
Megan Malone-Perez ◽  
Syed T Ahmed ◽  
J. Kimble Frazer

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, representing >25% of all cancers in children 0-14 years. Despite major advancements in pediatric ALL treatment, it remains the second most lethal childhood cancer, accounting for ~25% of deaths. The two types of ALL are precursor-B, or B-ALL, and precursor-T, or T-ALL, which have distinct molecular landscapes. Of these types, T-ALL comprises about 15% and 25% of pediatric and adult cases, respectively, and is historically considered more aggressive and treatment-resistant, with an inferior prognosis. In the precision medicine era, it is imperative to identify genetic alterations and aberrant gene expression patterns, to better understand tumor biology and improve treatment outcomes by identifying new therapeutic targets. Our study investigates a novel transcription factor, odd-skipped related transcription factor 2 (OSR2), which we hypothesize is a putative T-ALL tumor suppressor. We are using a zebrafish T-ALL model expressing transgenic human MYC (hMYC) regulated by a lymphoblast-specific promoter, rag2. Prior work in zebrafish and human T-ALL found low OSR2 levels in ~95% of T-ALL. Based on this, we then used RNA-seq to analyze 10 hMYC zebrafish T-ALL, confirming low-to-absent osr2 in all 10 T-ALL relative to wild-type (WT) T cells. We further confirmed decreased osr2 expression by qRT-PCR of additional T-ALL and WT thymocytes. We hypothesized that if OSR2 suppresses T-ALL, impaired zebrafish Osr2 function might increase T-ALL incidence and shorten latency. To test this, we bred osr2-mutant fish to rag2:hMYC transgenic animals to create three genotypes: heterozygous osr2-mutant (osr2het) fish, heterozygous hMYC (hMYChet) fish, and compound-heterozygote (osr2het;hMYChet) fish. We screened these genotypes for T-ALL incidence by serial fluorescence microscopy, with T-ALL subsequently confirmed by fluorescence-based flow cytometry. By 7 months of age, we found 9/18 (50%) of double-heterozygous fish developed T-ALL, compared to 0/7 hMYChet fish (p = 0.026); osr2het fish also did not develop T-ALL. Together, our findings suggest osr2 allelic loss accelerates MYC-driven T-ALL, supporting our hypothesis that osr2 is a T-ALL tumor suppressor. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 810-810 ◽  
Author(s):  
Haiying Qin ◽  
Sang M Nguyen ◽  
Sneha Ramakrishna ◽  
Samiksha Tarun ◽  
Lila Yang ◽  
...  

Abstract Treatment of pre-B cell acute lymphoblastic leukemia (ALL) using chimeric antigen receptor expressing T cells (CART) targeting CD19 have demonstrated impressive clinical results in children and young adults with up to 70-90% complete remission rate in multiple clinical trials. However, about 30% of patients relapse due to loss of the targeted epitope on CD19 or CART failure. Our CD22-targeted CAR trial has generated promising results in relapsed/refractory ALL, including CD19 antigen negative ALL, but relapse associated with decreased CD22 site density has occurred. Thus, developing strategies to prevent relapses due to changes in antigen expression have the potential to increase the likelihood of durable remissions. In addition, dual targeting of both CD19 and CD22 on pre-B ALL may be synergistic compared to targeting a single antigen, a potential approach to improve efficacy in patients with heterogeneous expression of CD19 and CD22 on leukemic blasts. We describe the systematic development and comparison of the structure and therapeutic function of three different types (over 15 different constructs) of novel CARs targeting both CD19 and CD22: (1) Bivalent Tandem CAR, (2) Bivalent Loop CAR, and (3) Bicistronic CAR. These dual CARs were assembled using CD19- and CD22-binding single chain fragment variable (scFv) regions derived from clinically validated single antigen targeted CARs. They are structurally different in design: both tandem and loop CARs have the CD19 and CD22 scFv covalently linked in the same CAR in different orders, whereas, bicistronic CARs have 2 complete CAR constructs connected with a cleavable linker. The surface expression on the transduced T cell of the CD19/CD22 dual CARs was detected with CD22 Fc and anti-idiotype of CD19 and compared to single CD19 or CD22 CARs. Activities of dual CARs to either CD19 or CD22 were evaluated in vitro with cytotoxicity assays or killing assays against K562 cells expressing either CD19 or CD22 or both antigens and also tested against a leukemia CD19+/CD22+ cell line, NALM6, and NALM6 with CRISPER/CAS9 knockout of CD19 or CD22 or both antigens. Therapeutic function of the top candidates of the dual CARs was then validated in vivo against these NALM6 leukemia lines. Some of these dual CARs were also further tested against patient-derived xenografts. Finally, we tested the dual targeting CARs in an artificial relapse model in which mice were co-injected with a mix of CD19 knockout and CD22 knockout NALM6 leukemia lines. From these studies, we established that the order of the scFv, size of the linker, type of leader sequence, and co-stimulatory domain in the CAR constructs all impact the efficacy of the dual targeting CARs. Tandem, Loop, and Bicistronic CARs all demonstrate some levels of in vitro and in vivo activities, but the bicistronic CAR was most effective at clearing leukemia and preventing relapse. In the CD19+/CD22+ NALM6 model, bicistronic CAR treated mice remain disease free while CD19 CAR or CD22 CAR treated mice already died or relapsed on day 27. In the relapse model, as expected, CD19 or CD22 single CAR T cell treatment resulted in progression of the corresponding antigen-negative NALM6. Treatment with dual targeted bicistronic CARs resulted in clearance of both CD19 and CD22 negative ALL with durable remission. In summary, we described novel CD19/CD22 dual targeting CARs with robust pre-clinical activity against pre-B cell ALL, and validated this approach in the prevention of resistance to single-antigen targeted CARs in preclinical models. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Giovanni Smaldone ◽  
Giuliana Beneduce ◽  
Mariarosaria Incoronato ◽  
Katia Pane ◽  
Monica Franzese ◽  
...  

AbstractLeukemic cells originate from the malignant transformation of undifferentiated myeloid/lymphoid hematopoietic progenitors normally residing in bone marrow. As the precise molecular mechanisms underlying this heterogeneous disease are yet to be disclosed, the identification and the validation of novel actors in leukemia is of extreme importance. Here, we show that KCTD15, a member of the emerging class of KCTD ((K)potassium Channel Tetramerization Domain containing) proteins, is strongly upregulated in patients affected by B-cell type acute lymphoblastic leukemia (B-ALL) and in continuous cell lines (RS4;11, REH, TOM-1, SEM) derived from this form of childhood leukemia. Interestingly, KCTD15 downregulation induces apoptosis and cell death suggesting that it has a role in cellular homeostasis and proliferation. In addition, stimulation of normal lymphocytes with the pokeweed mitogen leads to increased KCTD15 levels in a fashion comparable to those observed in proliferating leukemic cells. In this way, the role of KCTD15 is likely not confined to the B-ALL pathological state and extends to activation and proliferation of normal lymphocytes. Collectively, data here presented indicate that KCTD15 is an important and hitherto unidentified player in childhood lymphoid leukemia, and its study could open a new scenario for the identification of altered and still unknown molecular pathways in leukemia.


Sign in / Sign up

Export Citation Format

Share Document