BAALC and WT1 Transcript Amount Discriminates Secondary or Reactive Eosinophilia from Idiopathic Hypereosinophilic Syndrome or Chronic Eosinophilic Leukemia

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5222-5222
Author(s):  
Jiannong Cen ◽  
Zixing Chen ◽  
Xiaofei Qi ◽  
Li Yao ◽  
Jun He ◽  
...  

Abstract Idiopathic hypereosinophilic syndromes (HES) or chronic eosinophilic leukemia (CEL) comprise a spectrum of indolent to aggressive diseases characterized by persistent hypereosinophilia. Hypereosinophilia can result from the presence of a defect in the hematopoietic stem cell giving rise to eosinophilia, it can present in many myeloproliferative disorders or alternatively it may be a reactive form, secondary to many clinical conditions. The fusion gene FIP1L1-PDGFR alpha was identified in a subset of patients presenting with HES/CEL. In spite of this, the majority of HES/CEL patients do not present detectable molecular lesions and for many of them the diagnosis is based on exclusion criteria and sometimes it remains doubt. CD34-positive progenitor cells from bone marrow (BM) express BAALC and WT1. Overexpression of BAALC and WT1 were seen in patients with AML and ALL. In a subset of AML it marked poor prognosis, suggesting a role for BAALC or WT1 overexpression in acute leukemia. To explored the possibility to distinguish between HES/CEL and reactive hypereosinophilia based on the measurement of BAALC and WT1 transcript amount. Twenty-two patients with hypereosinophilia were characterized at the molecular level and analyzed for BAALC and WT1 expression. The transcription of FIP1L1-PDGFRalpha fusion gene was detected by nested RT-PCR. The relative transcript amount of BAALC and WT1 were determined by real time PCR analyses. The FIP1L1-PDGFRalpha fusion gene expressed has been identified in bone marrow mononuclear cells of 4 cases. The relative expression level of BAALC and WT1 in these 4 cases with positive FIP1L1-PDGFRalpha fusion gene expression were 2.27(0.27–6.8) and 0.39(0.002–0.90), respectively. Whereas the relative amount of transcripts of BAALC and WT1 in 18 patients with negative FIP1L1-PDGFRalpha fusion gene were 0.069(0.015–0.11) and 0.054(0–0.34) respectively. The relative amount of transcripts of BAALC and WT1 in patients with HES/CEL were 32 times and 7 times than that in those with negative FIP1L1-PDGFRalpha fusion gene, respectively. These results clearly demonstrates that BAALC and WT1 quantitative assessment allows to discriminate between HES/CEL and reactive eosinophilia and represents a useful tool for disease monitoring especially in the patients lacking a marker of clonality.

Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2500-2507 ◽  
Author(s):  
Yoshiyuki Yamada ◽  
Abel Sanchez-Aguilera ◽  
Eric B. Brandt ◽  
Melissa McBride ◽  
Nabeel J. H. Al-Moamen ◽  
...  

Abstract Expression of the fusion gene FIP1-like 1/platelet-derived growth factor receptor alpha (FIP1L1/PDGFRα, F/P) and dysregulated c-kit tyrosine kinase activity are associated with systemic mastocytosis (SM) and chronic eosinophilic leukemia (CEL)/hypereosinophilic syndrome (HES). We analyzed SM development and pathogenesis in a murine CEL model induced by F/P in hematopoietic stem cells and progenitors (HSCs/Ps) and T-cell overexpression of IL-5 (F/P-positive CEL mice). These mice had more mast cell (MC) infiltration in the bone marrow (BM), spleen, skin, and small intestine than control mice that received a transplant of IL-5 transgenic HSCs/Ps. Moreover, intestinal MC infiltration induced by F/P expression was severely diminished, but not abolished, in mice injected with neutralizing anti–c-kit antibody, suggesting that endogenous stem cell factor (SCF)/c-kit interaction synergizes with F/P expression to induce SM. F/P-expressing BM HSCs/Ps showed proliferation and MC differentiation in vitro in the absence of cytokines. SCF stimulated greater migration of F/P-expressing MCs than mock vector–transduced MCs. F/P-expressing bone marrow–derived mast cells (BMMCs) survived longer than mock vector control BMMCs in cytokine-deprived conditions. The increased proliferation and survival correlated with increased SCF-induced Akt activation. In summary, F/P synergistically promotes MC development, activation, and survival in vivo and in vitro in response to SCF.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 60-60 ◽  
Author(s):  
Hiroaki Tanaka ◽  
Masahiro Takeuchi ◽  
Yusuke Takeda ◽  
Kayo Oda ◽  
Daijiro Abe ◽  
...  

Abstract Chronic myeloproliferative diseases (CMPD), a group of hematopoietic stem cell disorders often accompanied by myelofibrosis, are associated with several recently identified genetic abnormalities. However, the mechanism responsible for myelofibrosis is still unclear. TEL is an ets family transcription factor located on 12p13 which on translocation is known to form fusion genes with more than 20 partners including protein tyrosine kinases (PTK) and transcription factors. Here, we identified a novel TEL-Lyn fusion gene in chronic eosinophilic leukemia with myelofibrosis, bearing the chromosomal abnormality ins (12;8)(p13;q11q21). The patient was refractory to both imatinib therapy and allogeneic stem cell transplantation and died of blastic transformation. We established that this novel TEL-Lyn fusion gene was expressed by the patient’s peripheral blood mononuclear cells and confirmed that the TEL and Lyn genes were fused in frame at breakpoints at 1010 bp and 638 bp, respectively. This fusion gene contains the TEL PNT domain and the Lyn PTK domain. To test whether the TEL-Lyn fusion product transforms hematopoietic cells, we introduced the gene into murine IL-3 dependent Ba/F3 cells. The 75 kDa TEL-Lyn fusion protein was detected in TEL-Lyn-transfected Ba/F3 cells and found to be constitutively tyrosine-phosphorylated. TEL-Lyn-transfected Ba/F3 cells proliferated in an IL-3-independent manner, which was not blocked by imatinib but could be by dasatinib, which targets Lyn kinase. Next, we isolated CD34-c-Kit+Sca-1+lineage marker- (CD34-KSL) hematopoietic stem cells (HSCs) from C57BL/6 (B6) mouse bone marrow (BM) by FACS sorting and introduced the TEL-Lyn fusion gene using a retroviral vector. HSCs expressing TEL-Lyn formed colonies without the exogenous growth factors SCF, IL-3, EPO and TPO, which was also suppressed by dasatinib, but not imatinib. Finally, we transplanted these transfected HSCs into irradiated hosts using B6-Ly5.2 mice as recipients of TEL-Lyn or control retroviral vector-transfected HSCs from B6-Ly5.1 mice. In the TEL-Lyn group, marked neutrophillia, splenomegaly and BM fibrosis were observed. Six of 10 mice died within 6 weeks after transplantation, while all controls remained healthy over 8 weeks. Conclusions: Introduction of the TEL-Lyn fusion gene into HSCs results in rapid development of myelofibrosis as well as myeloproliferative transformation. Lyn kinase might be constitutively activated by TEL-induced oligomerization. These data imply for the first time that rearranged or activated Lyn kinase is involved in the pathogenesis of CMPD and myelofibrosis, and provide an ideal model for the latter. Further extensive study on the role of Lyn in CMPD might result in the definition of a novel clinical CMPD entity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1285-1285
Author(s):  
Yasuo Mori ◽  
Hiromi Iwasaki ◽  
Goichi Yoshimoto ◽  
Aki Okeda ◽  
Toshihiro Miyamoto ◽  
...  

Abstract Eosinophils play an important role in the pathogenesis of allergic reactions or chronic inflammatory diseases by releasing various types of cytokines and chemical mediators. Recently, we have identified murine eosinophil-committed progenitors (mEoPs) in mouse bone marrow. The expression of receptor for IL-5, a critical cytokine for proliferation and differentiation of eosinophils, was a key marker to isolate mEoPs: mEoP was IL-5Ra+Lineage(lin)-CD34+c-Kitlow population in murine bone marrow (J Exp Med.201, 1891ndash;7, 2005). Here we report that EoPs are prospectively isolatable also in human bone marrow. We analyzed the expression of human IL-5Ra in human stem and progenitor populations, and found that a fraction of common myeloid progenitor (CMP; lin-CD34+CD38+CD45RA-IL-3Ra+) population expressed hIL-5Ra on their surface by using anti-human IL-5Ra monoclonal antibodies. IL-5Ra protein and mRNA were undetectable in hematopoietic stem cells (HSCs; lin-CD34+CD38-), common lymphoid progenitors (CLPs; lin-CD34+CD38+CD10+), megakaryocyte/erythrocyte progenitors (MEPs; lin-CD34+CD38+CD45RA-IL-3Ra-), or granulocyte/monocyte progenitors(GMPs; lin-CD34+CD38+CD45RA+IL-3Ra+) by FACS and RT-PCR, respectively. The IL-5Ra+ cells within the CMP fraction constituted only ~0.04% of steady-state bone marrow mononuclear cells, and gave rise only to pure eosinophil colonies. Thus we termed this population as human EoP (hEoP). Both HSCs and the IL-5Ra- fraction of CMPs gave rise to IL-5Ra+ hEoPs in vitro in the presence of IL-3 and GM-CSF, while MEPs or GMPs never generated hEoPs, indicating that human eosinophil pathway diverges at the CMP stage, and that the eosinophil potential was lost at the GMP or MEP stage. Accordingly, the human eosinophil pathway is different from that in murine hematopoiesis where mEoPs develop from the GMP stage. Strikingly, the number of hEoPs in the bone marrow of patients with hypereosinophilic syndrome was significantly (~4-fold) increased as compared to that in normal bone marrow, suggesting that hEoP represents a critical stage for eosinophilia in vivo. Thus, the hEoP is an attractive candidate for therapeutic target in eosinophil-related allergic and inflammatory disorders. This population might also be very useful to study the molecular mechanism of human eosinophil development.


Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 4071-4079 ◽  
Author(s):  
Yoshiyuki Yamada ◽  
Marc E. Rothenberg ◽  
Andrew W. Lee ◽  
Hiroko Saito Akei ◽  
Eric B. Brandt ◽  
...  

Dysregulated tyrosine kinase activity by the Fip1-like1 (FIP1L1)–platelet-derived growth factor receptor alpha (PDGFRA) (F/P) fusion gene has been identified as a cause of clonal hypereosinophilic syndrome (HES), called F/P-positive chronic eosinophilic leukemia (CEL) in humans. However, transplantation of F/P-transduced hematopoietic stem cells/progenitors (F/P+ HSCs/Ps) into mice results in a chronic myelogenous leukemia–like disease, which does not resemble HES. Because a subgroup of patients with HES show T-cell–dependent interleukin-5 (IL-5) overexpression, we determined if expression of the F/P fusion gene in the presence of transgenic T-cell IL-5 overexpression in mice induces HES-like disease. Mice that received a transplant of CD2-IL-5–transgenic F/P+ HSC/Ps (IL-5Tg-F/P) developed intense leukocytosis, strikingly high eosinophilia, and eosinophilic infiltration of nonhematopoietic as well as hematopoietic tissues, a phenotype resembling human HES. The disease phenotype was transferable to secondary transplant recipients of a high cell dose, suggesting involvement of a short-term repopulating stem cell or an early myeloid progenitor. Induction of significant eosinophilia was specific for F/P since expression of another fusion oncogene, p210-BCR/ABL, in the presence of IL-5 overexpression was characterized by a significantly lower eosinophilia than IL-5Tg-F/P recipients. These results suggest that F/P is not sufficient to induce a HES/CEL-like disease but requires a second event associated with IL-5 overexpression.


Author(s):  
Timo O. Odinius ◽  
Lars Buschhorn ◽  
Celina Wagner ◽  
Richard T. Hauch ◽  
Veronika Dill ◽  
...  

Abstract Purpose Hypereosinophilia represents a heterogenous group of severe medical conditions characterized by elevated numbers of eosinophil granulocytes in peripheral blood, bone marrow or tissue. Treatment options for hypereosinophilia remain limited despite recent approaches including IL-5-targeted monoclonal antibodies and tyrosine kinase inhibitors. Methods To understand aberrant survival patterns and options for pharmacologic intervention, we characterized BCL-2-regulated apoptosis signaling by testing for BCL-2 family expression levels as well as pharmacologic inhibition using primary patient samples from diverse subtypes of hypereosinophilia (hypereosinophilic syndrome n = 18, chronic eosinophilic leukemia not otherwise specified n = 9, lymphocyte-variant hypereosinophilia n = 2, myeloproliferative neoplasm with eosinophilia n = 2, eosinophilic granulomatosis with polyangiitis n = 11, reactive eosinophilia n = 3). Results Contrary to published literature, we found no difference in the levels of the lncRNA Morrbid and its target BIM. Yet, we identified a near complete loss of expression of pro-apoptotic PUMA as well as a reduction in anti-apoptotic BCL-2. Accordingly, BCL-2 inhibition using venetoclax failed to achieve cell death induction in eosinophil granulocytes and bone marrow mononuclear cells from patients with hypereosinophilia. In contrast, MCL1 inhibition using S63845 specifically decreased the viability of bone marrow progenitor cells in patients with hypereosinophilia. In patients diagnosed with Chronic Eosinophilic Leukemia (CEL-NOS) or Myeloid and Lymphatic Neoplasia with hypereosinophilia (MLN-Eo) repression of survival was specifically powerful. Conclusion Our study shows that MCL1 inhibition might be a promising therapeutic option for hypereosinophilia patients specifically for CEL-NOS and MLN-Eo.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1059
Author(s):  
Jinyeong Yu ◽  
Sanghyuk Choi ◽  
Aran Park ◽  
Jungbeom Do ◽  
Donghyun Nam ◽  
...  

Cancer cachexia is a multifactorial systemic inflammation disease caused by complex interactions between the tumor and host tissues via soluble factors. However, whether cancer cachexia affects the bone marrow, in particular the hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), remains unclear. Here, we investigated the bone marrow and bone in a cancer cachexia animal model generated by transplanting Lewis lung carcinoma cells. The number of bone marrow mononuclear cells (BM-MNCs) started to significantly decrease in the cancer cachectic animal model prior to the discernable loss of muscle and fat. This decrease in BM-MNCs was associated with myeloid skewing in the circulation and the expansion of hematopoietic progenitors in the bone marrow. Bone loss occurred in the cancer cachexia animal model and accompanied the decrease in the bone marrow MSCs that play important roles in both supporting HSCs and maintaining bone homeostasis. Glucocorticoid signaling mediated the decrease in bone marrow MSCs in the cancer cachectic environment. The cancer cachexia environment also skewed the differentiation of the bone marrow MSCs toward adipogenic fate via JAK/STAT as well as glucocorticoid signaling. Our results suggest that the bone loss induced in cancer cachexia is associated with the depletion and the impaired differentiation capacity of the bone marrow MSCs.


2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Jaromír Vašíček ◽  
Andrej Baláži ◽  
Miroslav Bauer ◽  
Andrea Svoradová ◽  
Mária Tirpáková ◽  
...  

Hematopoietic stem and progenitor cells (HSC/HPCs) of human or few animal species have been studied for over 30 years. However, there is no information about rabbit HSC/HPCs, although they might be a valuable animal model for studying human hematopoietic disorders or could serve as genetic resource for the preservation of animal biodiversity. CD34 marker is commonly used to isolate HSC/HPCs. Due to unavailability of specific anti-rabbit CD34 antibodies, a novel strategy for the isolation and enrichment of rabbit HSC/HPCs was used in this study. Briefly, rabbit bone marrow mononuclear cells (BMMCs) were sorted immunomagnetically in order to remove all mature (CD45+) cells. The cells were depleted with overall purity about 60–70% and then cultured in a special medium designed for the expansion of CD34+ cells. Quantitative Polymerase Chain Reaction (qPCR) analysis confirmed the enrichment of primitive hematopoietic cells, as the expression of CD34 and CD49f increased (p < 0.05) and CD45 decreased (p < 0.001) at the end of culture in comparison to fresh BMMCs. However, cell culture still exhibited the presence of CD45+ cells, as identified by flow cytometry. After gating on CD45− cells the MHCI+MHCII−CD38+CD49f+CD90−CD117− phenotype was observed. In conclusion, rabbit HSC/HPCs might be isolated and enriched by the presented method. However, further optimization is still required.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4580-4580
Author(s):  
Monica M Rivera Franco ◽  
Eucario Leon Rodriguez ◽  
Diana Gomez Martin ◽  
Javier Merayo Chalico ◽  
Jorge Alcocer Varela

Abstract Background Graft versus host disease (GVHD) is the major complication of allogeneic hematopoietic stem cell transplantation. It is characterized by an imbalance between the effector and regulatory arms of the immune system which results in the over production of inflammatory cytokines. Regulatory T (T regs) cells and T helper 17 (Th17) cells are two recently described lymphocyte subsets with opposing actions. Both can develop from naïve CD4+ T cell precursors under the influence of TGFβ1. Th17 lymphocytes, are key effector cells in rodent models of human diseases including GVHD. The other subset, T regs, is essential for dominant immunologic tolerance. At our institution, patients transplanted using G-CSF primed bone marrow (G-BM), have a lower incidence of acute and chronic GVHD when compared to those transplanted with peripheral blood and not primed bone marrow. Some microenvironment characteristics of this hematopoietic stem cells (HSC) source remain unknown, as well as the difference between Tregs, Th17 and cytokine levels in patients who develop GVHD and those who do not. Objective To analyze the characteristics of thirty-eight G-BM donor samples, identifying lymphocytes subsets and associated cytokines, and comparing patients who developed chronic GVHD (cGVHD) and those who did not. Materials and Methods A prospective analysis was performed in 38 G-BM samples from donors from 1999 to 2016. Mononuclear cells were defrosted, counted, and viability was evaluated. A 24 hour resting with RPMI, and posterior activation with PMA (50 ng/ml) for 48 hours was performed. Cells were harvested and cytokines were evaluated by flow cytometry (CBA assay). From each sample, one million mononuclear cells were permeabilized, fixed, and stained with CD4-FITC, IL17A-PE, IFN-γ APC, and IL-4 PECy7, for their posterior phenotipication by flow cytometry. The samples were obtained in a BD LSR Fortessa cytometry, and analyzed with the Flow-Jo software. Patients (recipients) information was analyzed using SPSS v.21. Results GVHD incidence was reported as following: Three (8%) patients developed acute GVHD (2 grade II, and 1 grade IV), 11 patients (29%) developed chronic GVHD (9% extensive, and 91% limited), and 24 patients did not present either. Mononuclear cells from G-BM from donors of patients who developed cGVHD showed a pro inflammatory response, characterized by an increased concentration of IL-17A (15.5 vs 0.71 pg/mL, p=0.013), TNF-α (80.27 vs 0.13 pg/mL, p=0.001), and IL-6 (4953.6 vs 11.75 pg/mL, p=0.025), after a mitogenic stimulation, compared to cells from donors of patients who did not developed GVHD. On the other hand, a decreased IL-10 production (2.62 vs 52.81 pg/mL, p=0.001) was documented in mononuclear cells from donors of patients who developed chronic GVHD, compared to donor cells of patients who did not. No significant difference in the production of IL-2, IL-4, and IFN-γ was observed. There was no difference in Th1 and Th2 between both groups, but mononuclear cells from donors of patients who developed chronic GVHD had a higher percentage of Th17 (1.02% vs 0.46%, p<0.001), and less Tregs (0.88% vs 1.95%, p<0.001), compared to those who did not developed GVHD. Conclusions Patients who develop cGVHD (29%) are characterized by a pro inflammatory response with an increased production of IL-17A, IL-6, and IFN-γ, and also a major percentage of Th17 cells. Also, a decreased suppressive response was documented with reduced IL-10 and Tregs levels. The low incidence of cGVHD show that G-CSF primed bone marrow is an excellent source for allogeneic HSC transplantations, and would be useful to compare these results with other HSC sources. Disclosures No relevant conflicts of interest to declare.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
J Mocco ◽  
Aqeela Afzal ◽  
Nagheme Thomas ◽  
Zuha Warraich ◽  
Jeffery Kleim

Background: Increasing levels of circulating Hematopoietic Stem Cells (HSC)/Hematopoietic Progenitor Cells (HPC), bone marrow derived mononuclear cells that promote repair in areas of injury, have been demonstrated to correlate with improved neurological function following stroke, suggesting a potentially critical role for HSC/HPC’s in limiting stroke injury and/or facilitating stroke recovery. Flavonoids, found in plants and fruit, exert anti-oxidative effects. Recent studies have demonstrated that 7,8 Dihydroxyflavone (DHF) is a potent TrkB agonist mimicking Brain Derived Neurotropic Factor, thus making it a powerful potential tool for treating neurological disorders. Stromal Derived Growth Factor 1-Alpha (SDF1-A) along with its receptor CXCR4 is a potent chemo attractant released by areas of injury. SDF1-A has been shown to mobilize HSC/HPC from the bone marrow to the blood and lead to ‘homing’ of the cells to an area of injury. We investigated the effect of DHF on HSC/HPC function following cerebral ischemia. Methods: Ischemic damage was induced in adult male Long Evans hooded rats (350-400g) with a peri-MCA injection of the vasoconstriction peptide ET-1. The rats were sacrificed at 24 hours post surgery and their bone marrow and blood HSC/HPC enriched using nanoparticles tagged with LIN negative and CD90 markers. Results: Stroked animals showed an increase in bone marrow production of HSC/HPC versus control animals (31.9±7 versus 2±0.5, p<0.05). The mobilization of the HSC/HPC from the bone marrow to the blood was also significantly higher in the stroked animals versus control animals (43±19 versus 3.6±0.3, p<0.05). Following stroke, DHF pre-treated HSC/HPC’s demonstrated significantly improved migration along an SDF-1 gradient compared to controls (129±1.0 versus 108±1.15, p<0.05), despite the fact that DHF alone provided no independent migratory stimulus. Conclusions: The results suggest that DHF may be a viable compound to facilitate HSC/HPC migration post-stroke.


Blood ◽  
1982 ◽  
Vol 59 (5) ◽  
pp. 1046-1054 ◽  
Author(s):  
H Castro-Malaspina ◽  
RE Gay ◽  
SC Jhanwar ◽  
JA Hamilton ◽  
DR Chiarieri ◽  
...  

Abstract Chronic myeloproliferative disorders (MPD) are clonal diseases of the pluripotent hematopoietic stem cell frequently associated with myelofibrosis (MF). There is only indirect evidence indicating that the increased deposition of collagen in bone marrow matrix is a secondary phenomenon. A liquid culture system for cloning and growing bone marrow fibroblasts has permitted us to approach more directly the understanding of the pathogenesis of myelofibrosis by comparing the biophysical, growth, and functional characteristics of fibroblasts from normals, MPD patients without MF, and those with MF. In patients with MF, marrow fibroblast colony (CFU-F) formation could not be studied; fibroblasts were grown from marrow explants. CFU-E from normals and MPD patients exhibited similar cell density distribution and similar cell sedimentation rates. These similarities contrasted sharply with the differences seen when the erythroid and granulocyte-macrophage progenitors were studied by the same methods. There was a marked light density shift and a rapidly sedimenting shift of MPD hematopoietic colony-forming cells. Marrow fibroblasts from MPD patients with and without MF displayed the same in vitro growth characteristics as fibroblasts from normals. Both types of fibroblasts exhibited anchorage and serum dependence, and contact inhibition of growth. Marrow fibroblasts were also characterized for the presence and distribution of fibronectin and collagen types by immunofluorescent staining using monospecific antibodies. Extracellular matrix, membrane-, and cytoplasm- associated fibronectin, type I, type III, and type V collagen showed a similar staining pattern in both normal and myelofibrotic marrow fibroblasts. Plasminogen-dependent fibrinolytic activity elicited from normal and myelofibrotic marrow fibroblasts were equivalent. Chromosomal analysis of hematopoietic cells and marrow fibroblasts from Philadelphia chromosome positive chronic myelocytic leukemia patients with and without MF showed that the Philadelphia chromosome was present only in hematopoietic cells. The results of these studies taken together demonstrate that bone marrow collagen-producing cells from MPD patients with and without MF behave in vitro as do those from normals. These findings support the hypothesis that that the marrow fibrosis observed in patients with MPD results from a reactive process rather than from a primary disorder affecting the marrow collagen-producing cells.


Sign in / Sign up

Export Citation Format

Share Document