The CXCR4 Antagonist AMD3100 Has Dual Effects, Initially Enhancing and Later Inhibiting Survival and Proliferation, in Myeloid Leukemia Cells in Vitro.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1721-1721
Author(s):  
Ha-Yon Kim ◽  
Ji-Young Hwang ◽  
Seong-Woo Kim ◽  
Gak-Won Yun ◽  
Young-Joon Yang ◽  
...  

Abstract Abstract 1721 Poster Board I-747 AMD3100, a small bicyclam antagonist for chemokine receptor CXCR4, induces the peripheral mobilization of hematopoietic stem cells. It also induces the segregation of leukemia cells in the bone marrow microenvironment, which should enhance the chemosensitivity of the cells. Based on these observations, AMD3100 is being considered for clinical use. However, AMD3100 activates G-protein coupled with CXCR4 and acts as a partial CXCR4 agonist. In this study, we explored whether AMD3100 affects the proliferation and survival of myeloid leukemia cells. As demonstrated previously, both AMD3100 and T140, another CXCR4 antagonist, markedly inhibited stromal cell-derived factor-1 (SDF-1)-induced chemotaxis and induced the internalization of CXCR4 in myeloid leukemia cell lines (U937, HL-60, MO7e, KG1a, and K562 cells) and CD34+ primary human acute myeloid leukemia (AML) cells. SDF-1 alone did not stimulate the proliferation of these leukemia cells, nor did it rescue the cells from apoptosis induced by serum deprivation. By contrast, AMD3100, but not T140, stimulated the proliferation of all five leukemia cell lines and primary AML cells in a dose-dependent manner in serum-free conditions for up to 5 days (∼ 2-fold increases at a concentration of 10-5M), which was abrogated by pretreating the cells with pertussis toxin. AMD3100 binds to CXCR7, another SDF-1 receptor, and all of the cells examined in this study expressed CXCR4 on the cell surface to some extent. The proliferation-enhancing effects of AMD3100 were not changed by knocking-down CXCR7 using the siRNA technique, whereas knocking-down CXCR4 significantly delayed the enhanced proliferation induced by AMD3100. Neither AMD3100 nor T140 induced the phosphorylation of Akt, Stat3, MAPK p44/p42, or MAPK p38, which are involved in SDF-1 signaling. In extended cultures of these cells for up to 14 days, AMD3100, but not T140, induced a marked decrease in the number of cells, compared to the control, after incubation for 5-7 days. Adding SDF-1 at the beginning and middle of the incubation did not affect the early increase or later decrease in the number of cells. AMD3100 reduced the apoptosis of these cells to a modest degree over the first 5-7 days and then markedly increased it. Consistent with the proliferation assay, AMD3100 increased the number of leukemia cell colonies during the early period of the assay, while it markedly decreased the number and size of the colonies in the later period of the assay. In conclusion, AMD3100 exerts dual effects, initially enhancing and subsequently inhibiting the survival and proliferation, in myeloid leukemia cells in vitro. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 244-244
Author(s):  
Yuichi Ishikawa ◽  
Manami Maeda ◽  
Min Li ◽  
Sung-Uk Lee ◽  
Julie Teruya Feldstein ◽  
...  

Abstract Abstract 244 Clathrin assembly lymphoid myeloid leukemia (CALM) protein is implicated in clathrin dependent endocytosis (CDE) and the CALM gene is the target of the t(10;11)(p13;q14-21) CALM/AF10 translocation, which is observed in multiple types of acute leukemia. Although the translocation generally dictates poor prognosis, the molecular mechanisms by which the fusion protein exerts its oncogenic activity remains elusive. To determine the role of CALM and CDE in normal hematopoiesis and leukemogenesis, we generated and characterized both conventional (Calm+/−) and conditional (CalmF/FMx1Cre+) Calm knockout (KO) mutants. Furthermore, we determined the impact of Calm loss on leukemia cell growth in vitro and in vivo employing a series of leukemia cell lines and leukemia mouse models. Hematopoietic-specific Calm knockout mice (CalmF/FMx1Cre+) exhibited a hypocromatic anemia with increased serum iron levels. We observed significant reduction in mature erythroblasts/erythrocytes (TER119+CD71-) with concomitant increase in immature erythroblasts (TER119+CD71+) in the spleen of CalmF/FMx1Cre+ mice. The frequencies of erythroblasts in S phase were lower and the proportions of apoptotic (cleaved PARP positive) erythroblasts were increased in CalmF/FMx1Cre+ mice. Surface transferrin receptor 1 (Tfr1, CD71) levels were significantly up-regulated in Calm-deficient hematopoietic progenitors, and uptake of Alexa647-conjugated transferrin was abrogated in Calm-deficient erythroblasts, revealed by immunofluorescence analysis. Freez-etch electron microscopy analysis showed a defective clathrin coated vesicle (CCV) formation in Calm-deficient erythroblasts, indicating that Calm is indispensable for iron-bound transferrin internalization by regulating CCV formation, thereby critical for erythroid differentiation and hemoglobinization. CALM was highly expressed in leukemia/lymphoma cell lines and primary acute myeloid leukemia samples, although its expression was limited to erythroblasts in normal hematopoietic lineage cells. Treatment of leukemia cell lines with Desferoxamine (DFO), an iron chelator, led to a significant increase in Calm mRNA levels, suggesting that Calm expression is regulated by intracellular iron levels. Since highly proliferative leukemia cells demand iron as a cofactor for ribonucleotide reductase (RNR), we hypothesized that Calm is required for leukemia cell proliferation by regulating iron-bound transferrin internalization. To determine the effect of Calm inactivation in leukemia cells, we transduced a series of leukemia cell lines with a lentivirus-based ShRNA vector (pLKO-GFP), which allowed shRNA-expressing cells to be traced by green fluorescent protein (GFP). Calm shRNA transduced cells, but not cells transduced with scrambled shRNA, showed a proliferative disadvantage compared to non-transduced cells. To determine the effect of Calm deletion in leukemia cells in vivo, the CALM/AF10 oncogene was retrovirally transduced into either wild type (WT) or CalmF/FMx1Cre+ bone marrow (BM) cells and the cells were subsequently transferred to lethally-irradiated recipient mice. The Calm gene was deleted in donor cells via pIpC injections one month after transplant (before leukemia development) and survival curves generated. The recipients transplanted with the BM cells from CalmF/FMx1Cre+ mice showed a significantly delayed onset of leukemia and longer survivals compared to control (p=0.001), indicating that Calm is necessary for the development of CALM/AF10-induced leukemia. We next assessed whether Calm is required for the “maintenance” of leukemia in vivo. Leukemia cells were harvested from the primary recipients transplanted with the CALM/AF10-transduced CalmF/FMx1Cre+ BM cells (in which the endogenous Calm genes were intact) and transferred to the secondary recipients. The leukemic secondary recipient mice were then injected with pIpC and survival curves generated. Calm inactivation significantly delayed leukemia progression by blocking leukemia cell proliferation. Taken together, our data indicate that Calm is essential for erythroid development and leukemia cell proliferation by regulating TFR1 internalization. Since Calm inactivation significantly blocked the leukemia cell proliferation in vitro and in vivo, our findings may provide new therapeutic strategies for acute myeloid leukemia. Disclosures: Naoe: Kyowa-Hakko Kirin.: Research Funding; Dainipponn-Sumitomo Pharma.: Research Funding; Chugai Pharma.: Research Funding; Novartis Pharma.: Honoraria, Speakers Bureau; Zenyaku-Kogyo: Research Funding; Otsuka Pharma.: Research Funding.


Blood ◽  
2009 ◽  
Vol 113 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Toshiki Ochi ◽  
Hiroshi Fujiwara ◽  
Koichiro Suemori ◽  
Taichi Azuma ◽  
Yoshihiro Yakushijin ◽  
...  

Abstract Aurora-A kinase (Aur-A) is a member of the serine/threonine kinase family that regulates the cell division process, and has recently been implicated in tumorigenesis. In this study, we identified an antigenic 9–amino-acid epitope (Aur-A207-215: YLILEYAPL) derived from Aur-A capable of generating leukemia-reactive cytotoxic T lymphocytes (CTLs) in the context of HLA-A*0201. The synthetic peptide of this epitope appeared to be capable of binding to HLA-A*2402 as well as HLA-A*0201 molecules. Leukemia cell lines and freshly isolated leukemia cells, particularly chronic myelogenous leukemia (CML) cells, appeared to express Aur-A abundantly. Aur-A–specific CTLs were able to lyse human leukemia cell lines and freshly isolated leukemia cells, but not normal cells, in an HLA-A*0201–restricted manner. Importantly, Aur-A–specific CTLs were able to lyse CD34+ CML progenitor cells but did not show any cytotoxicity against normal CD34+ hematopoietic stem cells. The tetramer assay revealed that the Aur-A207-215 epitope–specific CTL precursors are present in peripheral blood of HLA-A*0201–positive and HLA-A*2402–positive patients with leukemia, but not in healthy individuals. Our results indicate that cellular immunotherapy targeting Aur-A is a promising strategy for treatment of leukemia.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2605-2605
Author(s):  
Lars Bullinger ◽  
Konstanze Dohner ◽  
Richard F. Schlenk ◽  
Frank G. Rucker ◽  
Jonathan R. Pollack ◽  
...  

Abstract Inhibitors of histone deacetylases (HDACIs) like valproic acid (VPA) display activity in murine leukemia models, and induce tumor-selective cytoxicity against blasts from patients with acute myeloid leukemia (AML). However, despite of the existing knowledge of the potential function of HDACIs, there remain many unsolved questions especially regarding the factors that determine whether a cancer cell undergoes cell cycle arrest, differentiation, or death in response to HDACIs. Furthermore, there is still limited data on HDACIs effects in vivo, as well as HDACIs function in combination with standard induction chemotherapy, as most studies evaluated HDACIs as single agent in vitro. Thus, our first goal was to determine a VPA response signature in different myeloid leukemia cell lines in vitro, followed by an in vivo analysis of VPA effects in blasts from adult de novo AML patients entered within two randomized multicenter treatment trials of the German-Austrian AML Study Group. To define an VPA in vitro “response signature” we profiled gene expression in myeloid leukemia cell lines (HL-60, NB-4, HEL-1, CMK and K-562) following 48 hours of VPA treatment by using DNA Microarray technology. In accordance with previous studies in vitro VPA treatment of myeloid cell lines induced the expression of the cyclin-dependent kinase inhibitors CDKN1A and CDKN2D coding for p21 and p19, respectively. Supervised analyses revealed many genes known to be associated with a G1 arrest. In all cell lines except for CMK we examined an up-regulation of TNFSF10 coding for TRAIL, as well as differential regulation of other genes involved in apoptosis. Furthermore, gene set enrichment analyses showed a significant down-regulation of genes involved in DNA metabolism and DNA repair. Next, we evaluated the VPA effects on gene expression in AML samples collected within the AMLSG 07-04 trial for younger (age<60yrs) and within the AMLSG 06-04 trial for older adults (age>60yrs), in which patients are randomized to receive standard induction chemotherapy (idarubicine, cytarabine, and etoposide = ICE) with or without concomitant VPA. We profiled gene expression in diagnostic AML blasts and following 48 hours of treatment with ICE or ICE/VPA. First results from our ongoing analysis of in vivo VPA treated samples are in accordance with our cell line experiments as e.g. we also see an induction of CDKN1A expression. However, the picture observed is less homogenous as concomitant administration of ICE, as well as other factors, like e.g. VPA serum levels, might substantially influence the in vivo VPA response. Nevertheless, our data are likely to provide new insights into the VPA effect in vivo, and this study may proof to be useful to predict AML patients likely to benefit from VPA treatment. To achieve this goal, we are currently analyzing additional samples, and we are planning to correlate gene expression findings with histone acetylation status, VPA serum levels, cytogenetic, and molecular genetic data.


2021 ◽  
Author(s):  
Yifan Zeng ◽  
Xing-Hua Liang ◽  
Yong Xia ◽  
Wen-Yin He

Abstract Objective To explore the mechanism of JQ1 on leukemia cells. Methods This study takes two myeloid leukemia cell lines as a research model. Cells treated with high concentration of JQ1 were collected for quantitative real-time PCR, immunoblot and flow cytometry to verify the effects of JQ1 on myeloid leukemia tumor cells. Combined with mRNA sequencing of cell lines to identify the differences in mRNA expression of different cell lines. Results Two cell lines changed cell morphology under JQ1 treatment. The cell membrane appeared in varying degrees of wrinkled internal subsidence. K562 cell lines can maintain stable proliferation after being induced by a specific concentration of JQ1. However, JQ1 cannot induce the death of the K562 cells. Although the MYC and BCL2 gene expression decreased, JQ1 did not affect the c-Myc targeted genes to affect the cell cycle, nor did it trigger the BCL2-mediated apoptosis pathway. On the contrary, after JQ1 induced the MV-4-11 cells, the MYC-mediated cell cycle significantly slowed down and arrested at the G0/G1 phase. The death of MV-4-11 tumor cells through the apoptosis pathway regulated by BCL-2 family. Conclusion JQ1 has different pharmacological effects on two myeloid leukemia cell lines. For MV-4-11, JQ1 mainly inhibited cell cycle by regulating MYC pathway and induced BCL-2-mediated apoptosis to kill myeloid leukemia tumor cells and thus perform anti-tumor effects. K-562 cells showed drug resistance to JQ1 which confirmed that the K-562 cell line has a feedback mechanism that prevents JQ1-induced apoptosis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4244-4244
Author(s):  
Tsuyoshi Nakamaki ◽  
Norimichi Hattori ◽  
Hidetoshi Nakashima ◽  
Takashi Maeda ◽  
Hirotsugu Ariizumi ◽  
...  

Abstract Pervious in vitro studies have shown that molecular alterations of BCR-ABL-positive leukemia cells such as amplification of BCR-ABL gene and/or mutation(s) of abl kinase domain cause resistant to imatinib. However recent study showed that alterations of imatinib bioavailability might be a important factor to cause clinical resistant in BCR-ABL-positive leukemia patients, showing a differences between in vivo and in vitro sensitivity to imatinib of BCR-ABL-positive cells. To analyze mechanism(s) of clinical resistance to imatinib and to overcome the resistance, we have sequentially established and characterized two leukemia cell lines from a patient with myeloid blastic crisis of chronic myeloid leukemia (CML) who showed progressively resistant to imatinib. Case report and establishment of cell lines: a 59-years-old women developed blastic crisis preceded by four years of chronic phase of CML. Increased blasts in crisis was positive for CD13, 33 and showed double Ph-chromosome in addition to complexed chromosomal alterations such as, add(3)(p13), add(3)(q11), add(5)(q11), der(19)(3;19) (p21;q13). After repeated courses of combination chemotherapy including, 600mg of imatinib was administered orally in combination with chemotherapeutic drugs. For a brief period Imatinib showed clinical effects and slowed the increase of BCR-ABL-positive cells, however myeloblast progressively increased in peripheral blood in spite of daily administration of imatinib and she died four months treatment with imatinib. Two myeloid leukemia cell lines, NS-1 and NS-2 were established, after obtaining informed consent, from peripheral blood at day 65 and day 95 after initiation of imatinib administration, respectively. Cell surface phenotype and karyotype of these cell lines were identical to original blasts. NS-1 and NS-2 cell lines were characterized compared with BCR/ABL-positive K562 erythroleukemia cell line as a control Quantitative analysis by real-time polymerase chain reaction showed that copy number of BCR-ABL transcript were 2.2 × 105 and 1.6 × 10 5/μg RNA in NS-1 and NS-2 respectively, showing slightly lower than those (5.8 × 105) in K562 cell line. Although nucleotide sequence analysis showed that a point mutation in abl kinase domain resulted in amino acid substitution pro310ser in NS-1 cell line, no additional mutation was found in NS-2 cell line. Western blot analysis showed levels of both 210 KD BCR-ABL protein and BCR-ABL phosphorylation were similar in NS-1, NS-2 and K562 cells. Although two hours incubation with 10 mM imatinibin vitro did not show any detectable difference in levels of phosphorylation of BCR-ABL protein between NS-1 and NS-2 cell lines, sensitivity to imatinib measured by MTT assay showed that IC50 was 0.1 mM, 0.5 mM and 1.0mMin NS-1, NS-2 and K562 cell lines respectively. The measured IC50 of both NH-1 and NH-2 cell lines were much lower than reported plasma concentrations achieved by oral administration of 600 mg of imatinib (above 10 μM). The present results suggest difference between in vivo and in vitro sensitivity to imatinib indicate that alteration of bioavailability of imatinib possibly involved in clinical resistance to this drug, accumulations of BCR-ABL gene amplification and/or mutation are not necessarily a major reason of progressive clinical resistance to imatinib in BCR-ABL positive leukemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3271-3271
Author(s):  
John M. Fidler ◽  
Jinhua An ◽  
John H. Musser ◽  
Duncan H. Mak ◽  
Bing Carter ◽  
...  

Abstract Abstract 3271 Acute Myeloid Leukemia (AML) is the most common form of adult acute leukemia and the second most common childhood leukemia. AML has the lowest survival rate among leukemias, and the frequency is increasing as the population ages. Current therapies are inadequate, and a need exists for better therapeutic agents to treat AML, both as initial treatment for newly diagnosed patients and for those who have failed current therapy and relapsed. Natural products, such as taxol, have shown activities in a variety of disease states, including cancer. Triptolide is a natural product diterpenoid derived from Tripterygium wilfordii Hook f, and has shown anti-cancer activity in a broad range of solid tumors in preclinical models. It induces apoptosis in various leukemic cell lines and primary AML blasts (Carter, B et al, Blood 2006). Derivatives of triptolide with improved pharmacokinetics and bioavailability offer the opportunity to optimize the activity of triptolide for clinical application in AML. MRx102 is a triptolide derivative that is more hydrophobic than triptolide. It has potent in vitro cytotoxic activity with human tumor and leukemia cell lines, an unusual result for triptolide derivatives because they are usually much less active in vitro than the parent compound. Designed as a prodrug, MRx102 exerts cytotoxic activity with human AML cell lines and other human leukemia cell lines without pre-incubation with plasma esterases (IC50 of 51.0 and 37.1 nM with MV4-11 AML cells at 48 and 72 hours, respectively, ∼55% and ∼36% of the activity of triptolide, respectively). MRx102 decreases the viable CD34+ blasts of AML patient samples (a mean of 79.8 ± 8.8% specific apoptosis at 100 nM, n=3), and overcomes the apoptosis protection by co-cultivated stromal cells (with a similar mean of 74.1 ± 8.5%). MRx102 shows dose-dependent anti-tumor activity with the MV4-11 cell line in nude mouse human AML tumor xenografts. After 42 days of MRx102 dosing at 1.35 mg/kg/day i.p., tumor volume was inhibited by 99.7%. Tumors removed from several mice appeared to be Matrigel pellets rather than vascularized tumors, suggesting that many of the tumors were completely eliminated. In studies with the OCI-AML3 human AML cell line xenograft model, the group receiving MRx102 at 1.35 mg/kg/day i.p. showed similar high activity, with mean tumor volume reduced by as much as 99.2% on day 23 compared to the vehicle control group. Tumors of 7 of 10 mice were smaller than the day 0 volumes at the day 28 end of the study. As part of drug development, toxicology testing with MRx102 was initiated with an acute single dose rat toxicology study with no deaths and no adverse signs up to the top dose of 3.0 mg/kg MRx102 in DMSO/PBS administered i.v. The maximum tolerated dose (MTD) is greater than 3 mg/kg of MRx102, and the no observable adverse effect level (NOAEL) is at least 3 mg/kg. A 7-day subacute rat toxicology study of MRx102 showed no deaths and no adverse signs up to the top dose of 1.5 mg/kg/day MRx102 in DMSO/PBS administered daily i.v. for 7 days. The histopatholgy report shows no findings related to administration of the test article. The MRx102 MTD is greater than 1.5 mg/kg/day, and the NOAEL is at least 1.5 mg/kg/day. Previously observed NOAELs for related compounds have been less than 0.1 mg/kg/day. The current studies show potent anti-tumor activity as well as an unusually positive safety profile for MRx102 when compared to triptolide and other triptolide derivatives. Further MRx102 drug development is underway, with the intention of submitting an Investigational New Drug application to the Food and Drug Administration leading to clinical evaluation of MRx102 in AML patients. Updated results on current drug development activities will be presented at the meeting. This work is supported in part by NCI SBIR Contract HHSN261200900061C to MyeloRx LLC. Disclosures: Fidler: MyeloRx LLC: Employment, Equity Ownership, PI for an NCI Contract to MyeloRx LLC, Patents & Royalties. An:MyeloRx LLC: Employment, Equity Ownership, participant in research under an NCI SBIR Contract to MyeloRx LLC. Musser:MyeloRx LLC: Employment, Equity Ownership, Patents & Royalties, participant in research under an NCI SBIR Contract to MyeloRx LLC. Mak:MyeloRx LLC: participant in research under an NCI SBIR Contract to MyeloRx LLC. Carter:MyeloRx LLC: participant in research under an NCI SBIR Contract to MyeloRx LLC. Andreeff:MyeloRx LLC: Consultancy, participant in research under an NCI SBIR Contract to MyeloRx LLC.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2557-2557
Author(s):  
Hima Bansal ◽  
Theresea Siefert ◽  
Divya Chakravarthy ◽  
Manjeet Rao ◽  
Gail E Tomlinson ◽  
...  

Abstract Abstract 2557 INTRODUCTION: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an attractive therapeutic agent because of its selective potential to induce apoptosis in variety of tumors but not in normal cells. However, many cancers including myeloid leukemias exhibit resistance to TRAIL and the underlying mechanisms are not fully understood. Wilms' tumor 1 (WT1) protein is an aberrantly overexpressed protein that is associated with leukemia blast survival, chemoresistance and shortened disease-free survival in acute myeloid leukemia (AML). Here, we report a previously unknown protective role of WT1 against TRAIL-induced apoptosis in leukemia cells. METHODS: Various myeloid leukemia cell lines with variable WT1 expression levels were tested for TRAIL sensitivity. The effect of pharmacological or short hairpin RNA (shRNA)-mediated inhibition of WT1 on TRAIL-induced apoptosis was evaluated by AnnexinV/PI staining method. The mRNA levels of WT1 and Bcl-xL were measured by reverse transcription-PCR (RT-PCR) and the expression of apoptosis regulators were analyzed by western blotting. RESULTS: We observed a strong correlation between higher levels of WT1 and increased TRAIL resistance in myeloid leukemia cell lines. WT1 downregulation by shRNA significantly sensitized leukemia cells to TRAIL-induced apoptosis and importantly, ectopic expression of shRNA resistant WT1 (WT1SR) in WT1-knockdown cells restored the TRAIL resistance. WT1 influences apoptosis through transcriptional regulation of Bcl-2 family members such as Bcl-2 and Bak. We found for the first time, a positive correlation between WT1 and Bcl-xL expression in leukemia cell lines and primary AML samples. Furthermore, using chromatin immunoprecipitation (ChIP) analysis, we show that Bcl-xL is a bonafide WT1-target gene as WT1 transctivates Bcl-xL by binding to its promoter. We have (Bansal et al., Blood 2010) recently shown that the expression and oncogenic functions of WT1 could be abrogated by heat shock protein 90 (Hsp90) inhibitors in myeloid leukemia cells. In order to establish whether Hsp90- mediated regulation of WT1 has any functional significance in TRAIL-resistance we treated leukemia cell with the Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG). The results confirm that Hsp90 inhibition was able to overcome TRAIL resistance, by reducing levels of WT1 and Bcl-xL and by increasing the levels of the proapoptotic protein Bak. Taken together, our results reveal that increased expression of Bcl-xL, along with low Bak, confer WT1-mediated TRAIL resistance. CONCLUSION: Our data indicate that TRAIL resistance in myeloid leukemia cells is mediated by overexpression of the panleukemic marker WT1 and this can be overcome by either silencing WT1 or by pharmacologic inhibitors such as 17-AAG. of Hsp90. Our study highlights the potential therapeutic benefit of the combining TRAIL and Hsp90 inhibitors for the treatment of myeloid leukemias. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3523-3523
Author(s):  
Danielle Garshott ◽  
Nicole Melong ◽  
Tania T. Sarker ◽  
Yue Xi ◽  
Amy Brownell ◽  
...  

Abstract Background: Acute leukemias are the most common cancers in childhood. Despite multi-agent chemotherapy protocols and the introduction of novel molecularly targeted therapies which have resulted in improved survival over the last few decades, relapsed acute lymphoblastic leukemia remains the second most common pediatric cancer diagnosis. In addition, morbidities from current chemotherapy regimens are unacceptably high. Abundant evidence point to a major role for mediators of the unfolded protein response (UPR) in normal and leukemic white blood cell biology. We have demonstrated that activation of the UPR is a productive approach to inhibit the proliferation of solid tumor cell lines in vitro and to reducing xenograft burden in vivo. The UPR consists of genetically distinct mechanisms that serve to clear misfolded proteins from the endoplasmic reticulum (ER) and enhance protein folding, or induce apoptosis if the initiating stress is prolonged or robust. ML291 is a novel UPR-inducing sulfonamidebenzamide, identified through cell-based high throughput screening and iterative SAR-guided chemical synthesis, that overwhelms the adaptive capacity of the UPR and induces apoptosis in a variety of solid cancer models. Objective: To determine the ability of ML291 to activate the UPR and induce apoptosis in a panel of leukemia cell lines, and to use CHOP-null K562 cells to elucidate the relative contribution of the UPR. We hypothesized that ML291 might activate the PERK/eIF2a/CHOP (apoptotic) arm of the UPR and reduce leukemic cell burden in vitro and in vivo. Methods: MTT and luciferase-based proliferation assays, flow cytometry and RT-qPCR were used to evaluate cell growth, UPR activation and apoptosis in a panel of leukemia cell lines that included AML, ALL and CML in cells exposed to ML291. CRISPR-Cas9 genome editing was used to delete CHOP in K562 (human myeloid leukemia) cells. Deletion was validated by immunoblot analysis and these cells were subjected to the same proliferation and gene analyses described above. The in vivo response to ML291 therapy was evaluated in an established zebrafish xenograft assay (Corkery et al. BJH 2011) in which embryos were xenotransplanted with wild type or CHOP knockdown K562 cells and embryos bathed in ML291. Results: Immunoblot and RT-qPCR analysis revealed an accumulation of proteins and increased gene expression for downstream UPR genes, including CHOP, GRP78/BiP, GADD34 and XBP1 in leukemia cells following ML291 treatment, indicating the activation of the UPR. Increased expression of the apoptotic genes, NOXA, PUMA and DR5 was also observed post-treatment with ML291; and dose response proliferation assays performed after 24 hours revealed IC50 concentrations of 1 - 30µM across cell lines. CHOP deleted K562 cells were protected from cell death when cultured with increasing concentrations of ML291, and were significantly less able to translocate phosphatidylserine across the cell membrane and activate the caspase cascade. When zebrafish embryos xenotransplanted with K562-wild type or -CHOP-null cells were bathed in water containing 5mM ML291 for three days, there was a significant reduction in leukemia cell burden exclusively in theK562 wild type xenografts. Conclusion: Collectively these data indicate that intact PERK/eIF2a/CHOP signaling is required for efficient leukemic cell apoptosis in response to ML291 in vitro and in vivo, and support the hypothesis that small molecule enforcement of the UPR might be a productive therapeutic approach in leukemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4349-4349
Author(s):  
Zheng-zheng Fu ◽  
Zi-xing Chen ◽  
Zhi-min Wang2 ◽  
Jian-nong Cen ◽  
Jun He ◽  
...  

Abstract Non-homologous end joining (NHEJ) is a major mechanism by which eukaryote cells can repair the DNA double-strand break (DSB) and protect the cell from further damages. Evidences have suggested that the genomic instability caused by deficient DNA repair function may contribute to the development of solid tumor, while its role in leukemogenesis has not been adequately studied. To study the NHEJ function in myeloid leukemia, an in vitro system was developed for clinical samples by using the linear plasmid pUC18 DNA digested with EcoR I as assay system.. Nuclear protein extracted from leukemic cells and mononuclear cells (MNCs) from normal BM or PB, was incubated with linear plasmid pUC18 DNA under certain conditions. Plasmid DNA was separated by agarose gel electrophoresis and imaged by SYBR greenIstaining. End-ligation efficiency was assessed by dividing the densitometry readings for the sum of all converted plasmid products by the sum of all products. This assay was performed on 7 myeloid leukemia cell lines, 16 samples of normal BM or PB cells, 20 cases of CML cells and 19 cases of de novo AML cells. E. coli strain DH5α was electrotransformed with pUC18 DNA end-joined by nuclear proteins from normal BM or leukemia cells, and was plated on LB agar, containing X-gal and IPTG. Correct ligation of cut plasmid DNA resulted in blue colonies while faulty repair would result in white colonies. The percentage of white colonies over total colonies gave the frequency of misrepair. Primers around the EcoR I site were designed and colony PCR was performed on blue and white colonies. Sequencing of PCR products was performed. Antibodies against the nuclear repair proteins Ku70, Ku86 and DNA-PKcs were used for antibody abrogation studies. We have found that the mean repair efficiency of normal MNCs was 18.6±13.1% (0~46.6%),. The ligation efficiencies in myeloid leukemic cell lines ranged 10.6%~31.0% (mean 22.4%, P&gt;0.05). The mean ligation efficiency was significantly higher in CML cells as compared with normal MNCs (24.8±14.9% v.s 18.6%, p=0.024). The DNA repair capacity of de novo acute myeloid leukemia cells(7.2%~76.9%)was markedly increased as compared with normal MNCs (mean 41.1±15.4% v.s 18.6%, p&lt;0.0001 ). The mean frequency of misrepair from AML and CML cells were considerable higher (AML, 8.17% and CML, 2.10%) than that of normal BM cells (0.91%). Most misrepair were small deletions near EcoR I site. Large deletions (&gt;100bp) were found from assays with AML cells. Three abnormalities of sequence deletion, inversion and insertion were found in a rare misrepair white colony with AML cells. The DNA end-ligation efficiencies of AML cells could be dramatically inhibited by antibodies against proteins Ku70, Ku86 and DNA-PK. We concluded that the Cell-free NHEJ assay system can be used to examine the clinical leukemic samples. NHEJ efficiencies were slightly enhanced in most myeloid leukemia cell lines compared with normal MNCs. The end-ligation efficiency was significantly higher in primary myeloid leukemia cells. The overactive but more error-prone NHEJ function relied on the activity of Ku and DNA-PK proteins for DSB repair may contribute to genomic instability in AML cells.


Sign in / Sign up

Export Citation Format

Share Document