Cbl and TET2 Mutations Are Present in Refractory Ph+ Disorders Including Accelerated and Blast Crisis CML and ALL.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2173-2173
Author(s):  
Hideki Makishima ◽  
Anna M. Jankowska ◽  
Heather Cazzolli ◽  
Bartlomiej P Przychodzen ◽  
Courtney Prince ◽  
...  

Abstract Abstract 2173 Poster Board II-150 Loss of heterozygosity (LOH) due to acquired uniparental disomy (UPD) is a commonly observed chromosomal lesion in myeloproliferative neoplasms (MPN) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) including chronic myelomonocytic leukemia (CMML). Most recurrent areas of LOH point towards genes harboring mutations. For example, UPD11q23.3 and UPD4q24 were found to be associated with c-Cbl and TET2 mutations, respectively. Cbl family mutations (c-Cbl and Cbl-b) have been associated with atypical MDS/MPN including CMML and juvenile myelomonocytic leukemia (JMML) as well as more advanced forms of MDS and secondary AML (sAML). Ring finger mutants of Cbl abrogate ubiquitination and thereby tumor suppressor function related to inactivation of phosphorylated receptor tyrosine kinases, Src and other phosphoproteins. TET2 mutations are present in a similar disease spectrum. The TET family of proteins is involved in conversion of methylcytosine to methylhydroxycytosine which cannot be recognized by DNMT1. Thereby, the proteins seem to counteract maintenance hypermethylation. In our screen of MDS/MPN, we found c-Cbl and Cbl-b ring finger mutations in 5/58 (9%) of CMML and AML derived from CMML, 2/39 (5%) MDS/MPNu, 4/21 (19%) JMML and 14/148 (9%) RAEB/sAML. In the same cohort, TET2 mutations were present in 37% and 14% of patients with MDS/MPN and MDS, respectively. Of note we did not find any TET2 mutations in JMML. We and others have also noted that TET2 and c-Cbl mutations were also detected in atypical chronic myeloid leukemia. While translocations resulting in BCR/ABL fusion characterize CML, we stipulated that in analogy to other chronic myeloproliferative diseases, TET2 and c-Cbl mutations may be also present in CML and contribute to phenotypic heterogeneity within BCR/ABL associated disorders. In particular, progression of CML to accelerated phase (AP) or blast crisis (BC) could be associated with acquisition of additional lesions. When 22 patients with CML chronic phase (CP) were screened, no TET2 and c-Cbl mutations were found. However, we identified 1 c-Cbl, 2 Cbl-b (6%) and 6 TET2 (12%) mutations in 51 patients with CML-AP (N=18) and CML-BC (N=33) with myeloid and lymphoid/mix 24 and 9 phenotype, respectively. These mutations were mutually exclusive. We also noted that TET2 mutations were present in 1/9 CML in BC with lymphoid phenotype. We subsequently screened Ph+ ALL cases (N=9) and found a TET2 mutation in 1 case but no Cbl family mutations. In contrast when 9 Ph- ALL cases were screened as controls, neither TET2 or Cbl mutations were found. SNP-A analysis revealed 2 cases of LOH involving chromosome 4 (UPD4q24 and del4) in a patient with lymphoid blast crisis and Ph+ ALL, respectively. However, UPD was not found in Cbl family gene regions (11q23.3 or 3q13.11). A homozygous deletion of Cbl-b region was seen in a CP patient. Cbl family mutations were associated with a more complex karyotype than TET2 mutations (67% vs. 17% cases with abnormal phenotype). Patients with Cbl family mutations were resistant to imatinib which was effective in only 2 out of 6 patients with TET2mutations. Dasatinib was effective in 2 patients with TET2 mutation. Median over all survival of progressed CML was 47, 49 and 48 months in patients with Cbl, TET2 or no mutations, respectively. In conclusion, our results indicate that Cbl family mutations can occur as secondary lesions in myeloid type aggressive CML (AP and myeloid BC), but not in lymphoid types. TET2 mutations were identified in both lymphoid BC and Ph1+ALL, as well as myeloid BC and AP. In contrast to CMML or JMML in which a vast majority of mutations are homozygous, all Cbl family mutations were heterozygous (no LOH). Similarly, all but two TET2 mutations were heterozygous (1 hemizygous in del4 and 1 homozygous case in UPD4q), suggesting that additional cooperating lesions affecting corresponding pathways may be present. These mutations likely represent secondary lesions which contribute to more either progression (CML) or more aggressive features (Ph+ ALL) and characterize disease refractory to therapy with imatinib. Disclosures: No relevant conflicts of interest to declare.

2009 ◽  
Vol 27 (36) ◽  
pp. 6109-6116 ◽  
Author(s):  
Hideki Makishima ◽  
Heather Cazzolli ◽  
Hadrian Szpurka ◽  
Andrew Dunbar ◽  
Ramon Tiu ◽  
...  

Purpose Acquired somatic uniparental disomy (UPD) is commonly observed in myelodysplastic syndromes (MDS), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), or secondary acute myelogenous leukemia (sAML) and may point toward genes harboring mutations. Recurrent UPD11q led to identification of homozygous mutations in c-Cbl, an E3 ubiquitin ligase involved in attenuation of proliferative signals transduced by activated receptor tyrosine kinases. We examined the role and frequency of Cbl gene family mutations in MPN and related conditions. Methods We applied high-density SNP-A karyotyping to identify loss of heterozygosity of 11q in 442 patients with MDS, MDS/MPN, MPN, sAML evolved from these conditions, and primary AML. We sequenced c-Cbl, Cbl-b, and Cbl-c in patients with or without corresponding UPD or deletions and correlated mutational status with clinical features and outcomes. Results We identified c-Cbl mutations in 5% and 9% of patients with chronic myelomonocytic leukemia (CMML) and sAML, and also in CML blast crisis and juvenile myelomonocytic leukemia (JMML). Most mutations were homozygous and affected c-Cbl; mutations in Cbl-b were also found in patients with similar clinical features. Patients with Cbl family mutations showed poor prognosis, with a median survival of 5 months. Pathomorphologic features included monocytosis, monocytoid blasts, aberrant expression of phosphoSTAT5, and c-kit overexpression. Serial studies showed acquisition of c-Cbl mutations during malignant evolution. Conclusion Mutations in the Cbl family RING finger domain or linker sequence constitute important pathogenic lesions associated with not only preleukemic CMML, JMML, and other MPN, but also progression to AML, suggesting that impairment of degradation of activated tyrosine kinases constitutes an important cancer mechanism.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2744-2744
Author(s):  
Aaron D Viny ◽  
Bartlomiej Przychodzen ◽  
Christine L. O'Keefe ◽  
Hideki Makishima ◽  
Yuka Sugimoto ◽  
...  

Abstract Abstract 2744 Deletions involving chromosome 7 are frequently encountered in myeloid malignancies, mostly imparting a poor prognosis. Single nucleotide polymorphism array (SNP-A)-based cytogenetics has allowed for an improvement in the mapping of disease-related chromosomal regions through identification of microdeletion that define minimally affected areas for the search for pathogenic mutations. In addition, SNP-A facilitated the detection of somatic uniparental disomy (sUPD), which is frequently found in myeloid malignancies. Regions of sUPD are often associated with homozygous mutations present in the affected area, as shown for example for UPD9p and JAK2 or UPD11q and C-CBL mutations. Based on the precise mapping of genomic lesions on chromosome 7, we compared the outcomes of patients characterized by specific chromosomal abnormalities. Among 1163 patients with various myeloid malignancies studied by SNP-A we identified patients with somatic LOH involving chromosome 7 for whom clinical outcome data was available to assess survival. Regions fulfilling the criteria of germ line-encoded copy number variants and regions of homozygosity present in a control cohort (N=1535) were excluded. The rest of newly observed regions were in/excluded based on their absence or presence in the paired non-clonal DNA. In total, we identified 45 patients with monosomy 7, 37 patients with del(7q), and 21 with UPD7q. The CDR for del(7q) and UPD(7q) spanned nt 115221516–126602492 and nt 127,484,450–158821424, respectively. Among patients with monosomy 7, 17 were primary MDS, 22 had various bone marrow failure disorders including juvenile myelomonocytic leukemia (JMML) and clonal disease in the context of aplastic anemia (AA) and Fanconi anemia (FA), whereas UPD7q was predominantly found in MDS/MPD and MPD (N=10), sAML (N=3), and primary MDS (N=7). Patients with del(7q) included primary MDS and sAML. The most common concomitant cytogenetic abnormalities were seen in chromosome 5q and 17p, including frequent UPD17p. Chromosome 5q and 17p lesions were more common in del(7q), identified in 10 and 7 patients respectively, and were represented equivalently among monosomy 7 (N=5 for each) and UPD7q patients (N=3 and 5 respectively). In addition to the large deletions of the long arm of chromosome 7 ([del(7q)] discussed above, using SNP-A-based karyotyping, 18 patients were identified with overlapping microdeletions involving two distinct loci at 7q22.1 (N=5 and 6, respectively), and one at 7q36.1 (N=2). The first 7q22.1 loci was found in 1 patient with MDS and 5 with MPN, while the second loci was identified in 3 patients with chronic myelomonocytic leukemia (CMML), 1 with MPN, and 1 with sAML. The 7q36.1 minimally affected region was found in 2 patients, 1 each with MDS and CMML. In 15 patients non-recurrent microdeletions were found with average size of 799 kb. Clinical parameters were compared for each abnormality and Kaplan-Meier plots were generated and evaluated by log-rank test. Comparison of monosomy 7 and del(7q) did not show statistically different impact on outcome (p=0.26), whereas each was found to carry a significantly poorer prognosis (OS) than UPD7 (p=0.05 and 0.02 respectively). Deletion of 7q36.1, whose common deleted region was consistent with our previous identification of mutation within EZH2, carried an overall poor prognosis while 7q22.1 did not affect survival compared to patients without chromosome 7 abnormalities. These data confirm the known poor outcomes of patients with chromosome 7 abnormalities shared among monosomy 7 as well as del(7q). A slightly better albeit poor prognosis was seen in UPD(7q), suggesting that pattern or inheritance of chromosome 7 abnormalities into the dysplastic clone may affect ultimate leukemogenicity. UPD7q may represent a distinct pathogenesis, likely with distinct gene mutations compared to del(7q) and monosomy 7. Somatic microdeletions in chromosome 7 analysis may be nonpathogenic while those with poor prognosis, such as 7q36.1, may harbor pathogeneic genes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 115 (10) ◽  
pp. 1969-1975 ◽  
Author(s):  
Hideki Muramatsu ◽  
Hideki Makishima ◽  
Anna M. Jankowska ◽  
Heather Cazzolli ◽  
Christine O'Keefe ◽  
...  

Abstract Juvenile myelomonocytic leukemia (JMML) is a rare pediatric myeloid neoplasm characterized by excessive proliferation of myelomonocytic cells. When we investigated the presence of recurrent molecular lesions in a cohort of 49 children with JMML, neurofibromatosis phenotype (and thereby NF1 mutation) was present in 2 patients (4%), whereas previously described PTPN11, NRAS, and KRAS mutations were found in 53%, 4%, and 2% of cases, respectively. Consequently, a significant proportion of JMML patients without identifiable pathogenesis prompted our search for other molecular defects. When we applied single nucleotide polymorphism arrays to JMML patients, somatic uniparental disomy 11q was detected in 4 of 49 patients; all of these cases harbored RING finger domain c-Cbl mutations. In total, c-Cbl mutations were detected in 5 (10%) of 49 patients. No mutations were identified in Cbl-b and TET2. c-Cbl and RAS pathway mutations were mutually exclusive. Comparison of clinical phenotypes showed earlier presentation and lower hemoglobin F levels in patients with c-Cbl mutations. Our results indicate that mutations in c-Cbl may represent key molecular lesions in JMML patients without RAS/PTPN11 lesions, suggesting analogous pathogenesis to those observed in chronic myelomonocytic leukemia (CMML) patients.


Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 264-272 ◽  
Author(s):  
Mario Cazzola ◽  
Luca Malcovati ◽  
Rosangela Invernizzi

Abstract According to the World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues, myelodysplastic/myeloproliferative neoplasms are clonal myeloid neoplasms that have some clinical, laboratory, or morphologic findings that support a diagnosis of myelodysplastic syndrome, and other findings that are more consistent with myeloproliferative neoplasms. These disorders include chronic myelomonocytic leukemia, atypical chronic myeloid leukemia (BCR-ABL1 negative), juvenile myelomonocytic leukemia, and myelodysplastic/myeloproliferative neoplasms, unclassifiable. The best characterized of these latter unclassifiable conditions is the provisional entity defined as refractory anemia with ring sideroblasts associated with marked thrombocytosis. This article focuses on myelodysplastic/myeloproliferative neoplasms of adulthood, with particular emphasis on chronic myelomonocytic leukemia and refractory anemia with ring sideroblasts associated with marked thrombocytosis. Recent studies have partly clarified the molecular basis of these disorders, laying the groundwork for the development of molecular diagnostic and prognostic tools. It is hoped that these advances will soon translate into improved therapeutic approaches.


2013 ◽  
Vol 162 (6) ◽  
pp. 1285-1288.e1 ◽  
Author(s):  
Motohiro Kato ◽  
Naoko Yasui ◽  
Masafumi Seki ◽  
Hiroshi Kishimoto ◽  
Aiko Sato-Otsubo ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2038-2038
Author(s):  
Hein Than ◽  
Naoto Nakamichi ◽  
Anthony D. Pomicter ◽  
John O'Shea ◽  
Orlando Antelope ◽  
...  

Abstract Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are complex clonal hematopoietic stem cell malignancies with overlapping dysplastic and proliferative features. Genomic analyses have charted the somatic mutation spectrum of MDS/MPN and revealed a major role for epigenetic dysregulation in their pathogenesis. No disease-modifying therapies are currently available, as progress has been hampered by a lack of genetically faithful in vivo model systems suitable for the preclinical development of new strategies. Yoshimi et al (Blood. 2017;130:397-407) recently showed that patients' chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) cells transplanted into NOD/SCID-IL2Rγ-/-mice expressing human IL3, GM-CSF and SCF transgenes (NSG-3GS mice) produced xenografts that had mutations characteristic of the input cells. Since we had demonstrated a superior level of chimerism achieved from transplants of normal human CD34+cord blood cells in SirpaNOD/Rag1-/-/IL2rγc-/-/W41/41mice with c-KIT deficiency (with an otherwise mixed NOD-C57Bl/6 background - SRG-W41 mice) compared to conventional NSG or NRG hosts (Miller et al. Exp Hematol. 2017;48:41-49), it was of interest to explore their use as hosts of samples from patients with MDS/MPN: CMML, atypical chronic myeloid leukemia (aCML) and secondary acute myeloid leukemia (sAML) progressed from CMML or aCML. Heparinized blood or bone marrow samples were obtained from patients treated at Huntsman Cancer Institute after informed consent. Diagnoses included CMML (n=5), aCML (n=2), and sAML (n=2). Unseparated cells were shipped by overnight courier to Vancouver and CD34+cells isolated on the same day were injected intravenously into sub-lethally irradiated female NRG mice or SRG-W41 mice, or in some cases the same sex and strains also carrying the human 3GS transgenes (NRG-3GS or SRG-W41-3GS mice) in accordance with British Columbia Cancer Agency institutional guidelines. Occasionally when mice were not immediately available, or large numbers of cells were available, cells were viably cryopreserved and transplanted later after thawing. Mice were observed for up to 36 weeks after xenotransplantation with .05 to 1.1x106 human CD34+cells. Engraftment of human CD45+cells in xenografts was evaluated by immunophenotyping, and a median of 90% human chimerism (range: 1% - 95%) was achieved at the time of bone marrow harvest from xenografts. Variant allele frequencies (VAF) were determined in genomic DNA extracted from both the patient samples (CD34+cells) and matching fluorescence-activated cells (FACS)-sorted human CD45+cells (hCD45+cells) purified from xenografts (1-5 xenografts per patient sample). DNA samples were subjected to PCR amplification with extension primers and analyzed using a MALDI-TOF mass spectrometer (MassArray, Agena Bioscience, San Diego, CA). Each mutation call was assigned by the software based on the molecular weight of the extended primer. Analysis of hCD45+cells from eight xenograft samples so far demonstrated a strong correlation of VAF between the patient samples and hCD45+cells from xenografts, in both SRG-W41-3GS (R2=0.94, p<0.01) and NRG-3GS (R2=0.97, p<0.01) models (Figure 1). This tight correlation of VAF was illustrated in hCD45+cells from xenografts transplanted with CMML, aCML or sAML cells. The majority of mutations detected were those in epigenetic regulator genes, such as ASXL1, EZH2 and TET2. No significant difference in VAF was observed between CD34+and CD34- compartments within the hCD45+cells. Additional samples, including specimens from patients with the related myeloproliferative neoplasm, chronic neutrophilic leukemia (CNL) are being analyzed and will be presented. These findings demonstrate the utility of SRG-W41-3GS as well as NRG-3GS as receptive hosts of primary human MDS/MPN cells with genetic evidence of their growth in these mice closely recapitulating the mutational profiles of the transplanted cells. These new strains may facilitate the development of functional screening and pre-clinical testing of novel therapeutic strategies for a range of human MDS/MPN and related myeloid disorders. Disclosures Deininger: Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Blueprint: Consultancy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2604-2604
Author(s):  
Y. Lucy Liu ◽  
Priyangi A Malaviarachchi ◽  
Shelly Y. Lensing ◽  
Robert P. Castleberry ◽  
Peter Dean Emanuel

Abstract Abstract 2604 Poster Board II-580 Juvenile myelomonocytic leukemia (JMML) is a mixed myelodysplastic /myeloproliferative neoplasm (MDS/MPN) of infancy and early childhood. The pathogenesis of JMML has been linked to dysregulated signal transduction through the NF1/RAS signaling pathway and PTPN11. This dysregulation results in JMML cells demonstrating selective hypersensitivity to GM-CSF in in vitro dose-response assays. Since JMML hematopoietic progenitor cells are selectively hypersensitive to (rather than independent of) GM-CSF, it is rational to hypothesize that the function of the GM-CSF receptor in JMML patients is not constitutively over-active unless stimulated by the cytokine. We previously reported that PTEN is deficient in JMML patients. PTEN expression is up-regulated by Egr-1, which is one of the targets of the cAMP-response-element-binding protein (CREB). CREB, as a transcriptional factor, is expressed ubiquitously and bound to the cAMP-response-element (CRE) of the Egr-1 promoter. After phosphorylation at serine 133, CREB selectively activates the transcription of Egr-1 in response to GM-CSF stimulation in hematopoietic cells. We evaluated the CREB protein level in peripheral blood or bone marrow samples collected from 26 JMML patients. Mononuclear cells (MNCs) were isolated and lysed in lysis buffer at a density of 107/100μl. Protein levels of CREB were evaluated by ELISA and Western-blot. We found that 22/26 (85%) of subjects were substantially CREB deficient while they had constitutively high activity of MAP kinase (Erk-1/2). In comparison to normal controls (n=7), the median level of total CREB protein by ELISA was significantly lower in JMML subjects (0.62 vs 8.85 ng/mg BSA in normal controls; p=0.006). The mechanism that causes CREB deficiency in JMML is under further investigation and further results may be available to present at the meeting. This is the first evidence that CREB, a critical component downstream of the GM-CSF receptor, is highly deficient in the majority of JMML cases. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4712-4712
Author(s):  
Ke Zhang ◽  
Hagop M. Kantarjian ◽  
Wanlong Ma ◽  
XI Zhang ◽  
Xiuqiang Wang ◽  
...  

Abstract Abstract 4712 The ubiquitin-proteasome system (UPS) plays a major role in cell homeostasis in normal and neoplastic states. Expression and function of the UPS system vary with the specific characteristics of individual cell types, suggesting that determination of UPS “signatures” could be useful in identifying various cell populations. Since direct analysis of cancer cells is often problematic, even in hematologic diseases, we explored the potential of using UPS signatures in plasma to differentiate between various leukemias. We first analyzed plasma UPS profiles of patients with acute myeloid leukemia (AML; n=111), acute lymphoblastic leukemia (ALL; n=29), advanced myelodysplastic syndrome (MDS; n=20), chronic lymphocytic leukemia (CLL; n=118), or chronic myeloid leukemia (CML; n=128; 46 in accelerated/blast crisis [ACC/BL], 82 in chronic phase), and 85 healthy control subjects. Plasma levels of proteasome, ubiquitin (poly-ubiquitin), and the 3 proteasome enzymatic activities (chymotrypsin-like [Ch-L], caspase-like [Cas-L], trypsin-like [Tr-L]) were measured. Specific activities were calculated by normalizing each of the 3 enzyme activities to the levels of proteasome protein in plasma (Ch-L/p, Cas-L/p, and Tr-L/p). These 8 variables were used in multivariate logistic regression models to differentiate between leukemic processes. UPS signatures provided clear differentiation between patients with a leukemic process and normal controls (AUC=0.991), using 6 different variables (Tr-L/P, Ch-L, Ch-L/p, Cas-L, Cas-L/P, ubiquitin). Distinguishing between acute (AML, ALL, MDS) and chronic (CML, CLL) processes was less efficient (AUC=0.853 using Tr-L, Tr-L/P, Cas-L/P, Ch-L/P, proteasome, Ch-L), likely due to the high proportion (36%) of CML patients in ACC/BL phase. However, UPS signatures generally yielded powerful differentiation between individual leukemias (Table). MDS was not well differentiated from AML (AUC=0.791), reflecting the significant biological overlap of these diseases. These data support the potential usefulness of the UPS profile to aid in the differential diagnosis of various leukemias. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3895-3895
Author(s):  
Juliana Popa ◽  
Susanne Schnittger ◽  
Philipp Erben ◽  
Tamara Weiss ◽  
Ayalew Tefferi ◽  
...  

Abstract Abstract 3895 Poster Board III-831 A genome-wide single nucleotide polymorphism (SNP) screen led to the identification of 11q aUPD in patients diagnosed with various subtypes of myeloproliferative neoplasms (MPN), e.g. chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia (aCML) and myelofibrosis (MF) (Grand et al., Blood 2009;113:6182). Further molecular analyses revealed acquired activating point and length mutations in CBL exons 8 and 9 in 10% of CMML, 8% of aCML and 6% of MF cases. Most variants were missense substitutions in the RING or linker domains that abrogated CBL ubiquitin ligase activity and conferred a proliferative advantage to 32D cells overexpressing FLT3. In this study, 160 patients with BCR-ABL and JAK2 V617F negative MPNs were screened for CBL mutations by PCR and direct sequencing. Eighteen known (Y371H, L380P [2x], C381R, C381Y [2x], C384Y, C396Y, H398P, H398Q, W408C, P417H, F418L, R420Q [5x]) and four new (F378L, G397V, I423N, V430M) missense mutations affecting fourteen residues were identified in 20 patients. Two patients harbored two different mutations. The clinical phenotype could be characterized more precisely in 17 patients. Median age was 68 years (range 59–85) with a slight female predominance (f, n=10; m, n=7). Striking hematological features were leukocytosis (14/17; 82%; median 29,000/μl, range 4,500-141,000) with continuously left-shifted granulopoiesis (blasts, promyelocytes, myelocytes, metamyelocytes) in 85% and elevated monocytes (median 2,500/μl, range 630-10,656) >1,000/μL in 88% (15/17) of patients. Eosinophilia (>1,500/μL) was rare (3/17, 18%). Anemia (normal values: f, Hb <12g/dL; m, Hb <14g/dL) was present in all 17 patients (f, median 10g/dL, range 8.7-11.8; m, median 11.2g/dL, range 8.6-12.9). Platelets did not exceed 300,000/μL in any patient while 11/17 (65%) patients presented with thrombocytopenia (median 125,000/μL, range 18,000-271,000). Splenomegaly was present in 11/17 patients (65%) and LDH was elevated (median 304U/L, range 189-729) in 9/17 patients (52%). Bone marrow histology and immunohistochemistry were available from 12 patients. Relevant features were hypercellularity, marked granulopoiesis and microlobulated megakaryocytes without clusters in 11/12 patients (92%), respectively. Increased fibres were seen in 8/12 (67%) patients of whom one showed severe fibrosis. Clinical follow-up was available from 17 patients. Thirteen patients (76%) have died because of progression to secondary acute myeloid leukemia/blast phase (n=7), cytopenia-related complications (n=2) or for unknown reasons (n=4) after a median of 23 months (range 3-60) following diagnosis. In conclusion, point mutations of CBL exons 8 and 9 are present in approximately 6-12% of BCR-ABL and JAK2 V617F negative MPNs. They are associated with a distinct clinical and hematological phenotype presenting with myeloproliferative features allowing diagnosis of a proliferative subtype of CMML rather than aCML or MF in the majority of cases. Patients with left-shifted leukocytosis, monocytosis, anemia and lack of thrombocytosis who are negative for BCR-ABL and point or length mutations of JAK2 should be routinely screened for CBL mutations. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3076-3076
Author(s):  
Fabiola Traina ◽  
Ania Jankowska ◽  
Hideki Makishima ◽  
Fred H. Hsieh ◽  
Yingchun Han ◽  
...  

Abstract Abstract 3076 Mastocytosis is a heterogeneous hematopoietic neoplasm characterized by proliferation and organ infiltration by clonal mast cells (MC). The disease spectrum encompasses chronic indolent forms such as cutaneous mastocytosis (CM)/indolent systemic mastocytosis (ISM) to more aggressive types such as SM with associated clonal hematologic non-mast-cell disease (SM-AHNMD), the latter most closely related to myeloproliferative neoplasms (MPN) or MDS/MPN overlap syndromes. Molecular pathogenesis of mastocytosis involves acquisition of c-KIT mutations, particularly D816V, which is present in many cases and confers resistance to imatinib. TET2 mutations are often found in MPN and MDS/MPN and also in ∼20% of SM patients without noticeable impact on survival. We have hypothesized that analysis of molecular defects in mastocytosis may shed light on disease pathogenesis and possibly convey prognostic information that may help in diagnosis and selection of rational therapies. To investigate these molecular events, we have applied single nucleotide polymorphism array-based karyotyping (SNP-A) (Affymetrix 6.0) to identify recurrent areas of loss of heterozygosity and performed a broad screen for mutations which could be present in mastocytosis including c-KIT, TET2, CBL gene family (CBL, CBLB, CBLC), ASXL1, IDH1/IDH2, which have been found in hematologic disorders related to or associated with SM. Overall survival (OS) was analyzed using the Kaplan-Meier method (Log-Rank). We studied a total of 35 mastocytosis patients classified using WHO criteria (CM, N=9; ISM, N=14; SM-AHNMD, N=9; [CMML, N=6; AML, N=1; NHL, N=2], aggressive SM (ASM) N=2; MC sarcoma, N=1). Median age of the cohort was 51 yrs (13-71). SNP-A showed a total of 20 new lesions (13 gains, 3 losses and 4 uniparental disomy [UPD]) in 10 patients (CM=1, ISM=4, SM-AHNMD=4, ASM=1). The most frequently affected chromosomes were 2, 7, 12, 13, 14 and X. UPD was only found in SM-AHNMD and ASM and it involved chromosomes 2p, 4q, 7p and 13q. No OS difference were observed between patients with new SNP lesions compared to those without (47 mo vs. 38 mo; p=.84). c-KIT sequencing showed D816V in 29% of patients (ISM=29%; SM-AHNMD=44%, ASM=100%). A total of 15 additional mutations were found in 9/35 patients. TET2 mutations were found in 8/35 (23%), including 2 patients with biallelic mutations (3 frameshift, 2 nonsense and 5 missense). TET2 mutational frequencies for CM, ISM and SM-AHNMD (only CMML) were 22% (2/9), 7% (1/14) and 56% (5/9). Majority of TET2 mutations were heterozygous, except one that was homozygous. These mutations have not been previously described in mastocytosis. We have also detected ASXL1 mutations in 3/35 (9%) patients, with biallelic mutation seen in one patient (1 frameshift, 1 nonsense and 2 missense). ASXL1 mutations were seen in 1/14 ISM and 2/9 SM-AHNMD (with CMML). To our knowledge, ASXL1 mutations have not been described in mastocytosis. A heterozygous CBL mutation was found in 1/35 patients with SM-AHNMD (CMML). No mutations were found in CBLB, CBLC and IDH1/IDH2. Interestingly, 5 patients were found to have >1 mutation, c-KIT and TET2 in 2, c-KIT/TET2/ASXL1 in 2 and TET2/CBL in 1 patient. The median OS of the cohort was 18 mo (1-85). As expected, for patients with only SM (excluding CM cases), c-KIT mutants had a worse OS than wild type (WT) c-KIT patients (17 mo vs. 52 mo; p=.02). SM patients with TET2, ASXL1 or CBL mutations, independently of c-KIT, had a worse OS than those with WT genes (17 mo vs. 52; p=.01). SM patients with c-KIT mutation who carry additional mutations had a worse OS, c-KIT + any mutation [11 mo] vs. TET2/ASXL1/CBL mutant [32 mo] vs. c-KIT mutant alone [NR] vs. WT [NR]; p<.0001. Similarly, when TET2 and c-KIT mutations were analyzed independent of CBL and ASXL1, patients with mutant c-KIT and TET2 had the poorest OS in the group (c-KIT plus TET2 [10 mo] vs. TET2 alone [32 mo] vs. c-KIT alone [NR] vs. WT [NR]; p<.0001). All patients with CM were still alive at the time of analysis. In conclusion, SNP-A lesions including UPD are karyotypic changes also seen in mastocytosis. TET2 mutations are frequently found in mastocytosis, particularly in SM-AHNMD (CMML). Novel molecular mutations frequently found in MDS and MPN, as ASXL1 and CBL, are also found in mastocytosis but at lower frequencies. More importantly, these new mutations may affect prognosis, as demonstrated by poor OS in patients who carry these mutations independently of c-KIT. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document