CREB Deficiency: A Potential Critical Factor for Selective GM-CSF Hypersensitivity in Juvenile Myelomonocytic Leukemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2604-2604
Author(s):  
Y. Lucy Liu ◽  
Priyangi A Malaviarachchi ◽  
Shelly Y. Lensing ◽  
Robert P. Castleberry ◽  
Peter Dean Emanuel

Abstract Abstract 2604 Poster Board II-580 Juvenile myelomonocytic leukemia (JMML) is a mixed myelodysplastic /myeloproliferative neoplasm (MDS/MPN) of infancy and early childhood. The pathogenesis of JMML has been linked to dysregulated signal transduction through the NF1/RAS signaling pathway and PTPN11. This dysregulation results in JMML cells demonstrating selective hypersensitivity to GM-CSF in in vitro dose-response assays. Since JMML hematopoietic progenitor cells are selectively hypersensitive to (rather than independent of) GM-CSF, it is rational to hypothesize that the function of the GM-CSF receptor in JMML patients is not constitutively over-active unless stimulated by the cytokine. We previously reported that PTEN is deficient in JMML patients. PTEN expression is up-regulated by Egr-1, which is one of the targets of the cAMP-response-element-binding protein (CREB). CREB, as a transcriptional factor, is expressed ubiquitously and bound to the cAMP-response-element (CRE) of the Egr-1 promoter. After phosphorylation at serine 133, CREB selectively activates the transcription of Egr-1 in response to GM-CSF stimulation in hematopoietic cells. We evaluated the CREB protein level in peripheral blood or bone marrow samples collected from 26 JMML patients. Mononuclear cells (MNCs) were isolated and lysed in lysis buffer at a density of 107/100μl. Protein levels of CREB were evaluated by ELISA and Western-blot. We found that 22/26 (85%) of subjects were substantially CREB deficient while they had constitutively high activity of MAP kinase (Erk-1/2). In comparison to normal controls (n=7), the median level of total CREB protein by ELISA was significantly lower in JMML subjects (0.62 vs 8.85 ng/mg BSA in normal controls; p=0.006). The mechanism that causes CREB deficiency in JMML is under further investigation and further results may be available to present at the meeting. This is the first evidence that CREB, a critical component downstream of the GM-CSF receptor, is highly deficient in the majority of JMML cases. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 45-45 ◽  
Author(s):  
Hui Huang ◽  
Daniel E. Bauer ◽  
Mignon L. Loh ◽  
Govind Bhagat ◽  
Alan B. Cantor ◽  
...  

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of young children. The only current curative treatment is bone marrow transplantation. Yet even with this aggressive therapy, ∼50% of children still die from their disease. Somatic mutations leading to constitutive activation of the tyrosine phosphatase Shp2 (also called PTPN11) or of RAS signaling occur in ∼90% cases of JMML. However, the transcription factors that act downstream of these aberrant signaling events have not been identified. We recently showed that RUNX1 is a direct interacting partner of Shp2 in megakaryocytic cells (Huang et al. 2012. Genes Dev 26: 1587-1601). Moreover, we showed that RUNX1 is normally negatively regulated by src-family kinase (SFK) mediated tyrosine phosphorylation in megakaryocytes and T-lymphocytes, and that Shp2 contributes to RUNX1 tyrosine dephosphorylation. We now show that overexpression of a mutant RUNX1 (RUNX1Y260F, Y375F, Y378F, Y379F, Y386F, “RUNX1-5F”), which is expected to mimic constitutive dephosphorylation by Shp2 in murine Lin- Sca-1+ c-kit+ (LSK) bone marrow cells is resistant to SFK-mediated tyrosine phosphorylation and leads to a dramatic expansion of CFU-M/CFU-GM and Gr1+Mac1+ cells in vitro and in vivo. In contrast, these effects are not seen when wild type RUNX1 or RUNX1Y260D, Y375D, Y378D, Y379D, Y386D (“RUNX1-5D”; mimicking constitutive RUNX1 tyrosine phosphorylation) are overexpressed. The RUNX1-5F expressing cells also have increased replating activity in serial colony forming assays, increased proliferation (BrdU incorporation), decreased apoptosis, and reduced cytokine dependence. This partially phenocopies conditional knock-in mice that express JMML associated activating Shp2 mutations. Flow sorted Gr1+Mac1+ cells from the RUNX1-5F transduced cultures expressed higher levels of the direct RUNX1 target gene PU.1, which plays a role in myelomonocytic growth, and Cyclin D1. To test whether RUNX1 is required for the myelomonocytic hyperproliferation in JMML, CD34+ peripheral blood cells from a patient with JMML and known activating Shp2 mutation (Shp2E76G) were lentivirally transduced with doxycycline-inducible RUNX1-5D or RUNX1-5F expression constructs and cultured under myeloid growth conditions. Upon doxycycline induction, the RUNX1-5D overexpressing cells (resistant to Shp2) exhibited at 32% reduction in BrdU incorporation. In contrast, the control RUNX1-5F expressing cells had no significant reduction in proliferation. These results are consistent with RUNX1 acting as an essential downstream target of activated Shp2 in JMML. As ERK mediated phosphorylation (downstream of RAS/MEK) is also known to increase RUNX1 activity, we propose that RUNX1 may be a common downstream transcriptional target of both activated Shp2 and RAS signaling in the pathogenesis of JMML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2378-2378
Author(s):  
Y. Lucy Liu ◽  
Robert P. Castleberry ◽  
Peter Dean Emanuel

Abstract Juvenile myelomonocytic leukemia (JMML) is a mixed myelodysplastic /myeloproliferative disorder (MDS/MPD) of infancy and early childhood. It is characterized by monocytosis, leukocytosis, elevated fetal hemoglobin, hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF), a low percentage of myeloblasts in the bone marrow, and absence of the Philadelphia chromosome or the BCR/ABL fusion gene. The pathogenesis of JMML has been clearly and definitively linked to dysregulated signal transduction through the RAS signaling pathway. A series of studies conducted over the last decade have shown that mutations or other abnormalities in RAS, NF1, and PTPN11, are potentially responsible for the pathogenesis of JMML in up to 75% of cases. Treatment has been very difficult. There is no effective therapy for JMML. Only allogeneic stem cell transplantation (SCT) can extend survival. However, the relapse rate from allogeneic SCT is inordinately high in JMML (28–55%), with 5-year disease-free survival rates of 25-40%. Rapamycin is a macrolide antibiotic with established clinical applications in organ transplantation. Recent studies have proved that the Mammalian Target of Rapamycin (mTOR) plays an important role in cytokine receptor signaling and induction of apoptosis. Numerous studies have suggested that mTOR functions as a nutritional checkpoint and is connected to energy sensing through AMP-dependent kinase (AMPK) which senses the AMP: ATP ratio in cells. Its function is regulated by the RAS/PI3-kinase pathway. In searching for novel mechanistically-targeted reagents to treat JMML, we conducted an in vitro pilot study with JMML cells. The CFU-GM formation assay was used to test the therapeutic sensitivity of rapamycin to JMML cells. Mononuclear cells (MNCs) from peripheral blood of 9 JMML patients were collected and plated on 0.3% agar medium with rapamycin at a concentration of 1-8nM(0.91-7.28μg/L) and carrier (DMSO). Greater than 50% inhibition of spontaneous CFU-GM growth was observed in all cultures in a dose-dependent fashion, with the exception of one patient sample which had colonies resistant to rapamycin. The effective concentrations in our cultures are equivalent to the safe and tolerable whole blood concentrations achieved in organ transplant patients in clinical settings (5-30μg/L). Our data suggests that rapamycin may be considered as a potentially safe and effective reagent to treat JMML, but that in vitro sensitivity testing might be recommended since one patient sample demonstrated complete resistance to rapamycin in vitro. Further studies are ongoing to explore the mechanism of rapamycin in inhibiting hypersensitivity of JMML cells to GM-CSF.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4353-4353
Author(s):  
Yuming Zhao ◽  
Yao Guo ◽  
Chunxiao He ◽  
Dengyang Zhang ◽  
Han Zhong Pei ◽  
...  

Abstract Protein tyrosine phosphatase SHP2 encoded by PTPN11 is a key regulator in growth factor and cytokine signaling. Overwhelming evidence suggests its vital role in hematopoietic stem cell function and hematopoiesis. As a bona fide proto-oncogene product, gain-of-function mutations of SHP2 cause hematological malignancies, most notably juvenile myelomonocytic leukemia (JMML) which bear somatic SHP2 mutations in 35% of cases. Numerous studies have utilized murine models to investigate the role of mutant SHP2 in hematopoiesis and leukemogenesis and successfully produced resembling myeloproliferative neoplasm (MPN) and even full-blown leukemia in recipient animals. However, mutant SHP2-transformed cell lines have not been generated. In the present study, we established oncogenic mutant SHP2-transformed cell lines from erythropoietin (EPO)-dependent HCD-57 erythroid leukemia cells. First, we generated recombinant retroviruses expressing SHP2-D61Y and SHP2-E76K, the two most common SHP2 mutants found in individuals with JMML, by using the pMSCV-IRES-GFP vector. We then infected HCD-57 cells with the recombinant retroviruses. Unlike the parent HCD-57 cells, the infected cells were able to grow in the absence of EPO as demonstrated by viable GFP-positive cells. We further performed semi-solid methylcellulose colony cultures and isolated single clones of EPO-independent HCD57 cells. The isolated clonal cells overexpressed mutant SHP2 and proliferate rapidly in the absence of EPO. In contrast, HCD57 cells infected with retroviruses expressing wild type SHP2 failed to survive in the absence of EPO, indicating only gain-of-function mutant forms of SHP2 have the cell-transformation capability. We also carried out parallel experiments with the pro-B Ba/F3 cell line that require interleukin 3 (IL3) for survival. Interestingly, over-expression of SHP2-D61Y and SHP2-E76K was not sufficient to give rise to IL3-indepdent Ba/F3 cells, suggesting that HCD57 cells have some unique properties making them susceptible for transformation by oncogenic SHP2 mutants. We further performed in vitro and in vivo characterization of transformed HCD57 cells. Cell signaling analyses revealed that both HCD57-SHP2-D61Y and HCD57-SHP2-E76Kcells exhibited aberrantly elevated levels of pERK and pAKT in the absence of cytokine stimulation, which was consistent with the notion that gain-of-function SHP2 mutants perturb growth control through deregulation of the Ras signaling pathway. Upon intravenous injection into immunodeficient mice, the SHP2 mutant-transformed HCD57 cells caused acute leukemia with markedly increased spleen. Finally, we screened a small molecule inhibitor library to identify compounds that may specifically target the SHP2 mutants. We found several tyrosine kinase inhibitors including dasatinib and trametinib potently inhibited HCD57-SHP2-D61Y and HCD57-SHP2-E76Kcells but not the parent HCD57 cells. At sub-micromolar concentrations, dasatinib and trametinib abolished elevated ERK and Akt activation caused by the SHP2 mutants. This study not only proves that gain-of function mutations of SHP2 are capable of fully transforming cells but also provides a unique cell system to study pathogenesis of SHP2 mutants and to identify specific inhibitors for drug development. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2558-2558
Author(s):  
Y. Lucy Liu ◽  
Yan Yan ◽  
Shelly Y. Lensing ◽  
Todd Cooper ◽  
Peter D. Emanuel

Abstract Abstract 2558 Juvenile myelomonocytic leukemia (JMML) is a rare disease of early childhood with a predilection for the monocyte/macrophage lineage. The pathogenesis of JMML is linked to dysregulated signal transduction through the NF1/RAS signaling pathway that is partially caused by genetic mutation of Ras, PTPN11, and c-CBL, or loss-of heterozygosity of Nf1. The hallmark of JMML is that JMML cells are selectively hypersensitive to GM-CSF in vitro. We previously reported that protein deficiencies of PTEN, CREB, and Egr-1 were frequently observed in JMML (67–87%). Recent research indicated that CREB was regulated by miR-34b, and Egr-1 was targeted by miR-183. We hypothesized that microRNAs may play an important role in contributing to the deficiency of these proteins. Using relative-quantitative real-time PCR, we evaluated the expression levels of miR-34b and miR-183 in mononuclear cells from 47 JMML patients. We found that the median level of miR-183 was significantly higher in JMML in comparison to normal controls (median=13.8 vs 4.2, p<0.001); but the median level of miR-34b was only slightly higher in JMML subjects, and not significantly so, compared to normal individuals (median=1.4 vs 1.0, p>0.05). This suggests that miR-34b does not play a significant role in JMML. Since extreme monocyte accumulation is one of the critical characteristics of JMML, we analyzed the correlation between the expression level of miR-183 and the monocyte percentage in the peripheral blood. Strikingly, there was a significant correlation between the expression level of miR-183 and the monocyte percentage in the peripheral blood from 34 patients who had available data (p<0.05). Based on a robust regression analysis, for every unit increase in the square root of RQ miR-183, the monocyte percentage significantly increased by 0.73% (SE=0.32%, p=0.023). This is the first evidence suggesting that microRNAs may contribute to the pathogenesis of JMML. miR-183 may also serve as an important biomarker that can be directly and quantitatively linked to significant clinical parameters in JMML. It also may ultimately provide a target for JMML therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3428-3428
Author(s):  
Y. Lucy Liu ◽  
Likang Xu ◽  
Robert P. Castleberry ◽  
Peter Dean Emanuel

Abstract Juvenile myelomonocytic leukemia (JMML) is a myelodysplastic/myeloproliferative disorder (MDS/MPD) of young children. It is characterized by monocytosis, leukocytosis, elevated fetal hemoglobin, hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF), low percentage of myeloblasts in bone marrow, and absence of the Philadelphia chromosome. The pathogenesis of JMML has been linked to dysregulated signal transduction through the NF1/RAS signaling pathway and PTPN11. This dysregulation results in JMML cells demonstrating selective hypersensitivity to GM-CSF in vitro dose-response assays. PTEN, a major negative regulator of the PI3-kinase pathway by virtue of its PIP3 phosphatase activity, was initially isolated as a tumor suppressor in a variety of malignancies. In order to evaluate the role of PTEN in the pathogenesis of JMML, we examined the status of PTEN in JMML patient samples. Peripheral blood or bone marrow was collected from 40 patients. Mononuclear cells (MNCs) were isolated and lysed in lysis buffer at a concentration of 107/ml. Total RNA was extracted from MNCs of patients and 17 normal individuals. Protein and mRNA levels of PTEN were evaluated by Western-blot and relative-quantitative real-time RT-PCR, respectively. We found that PTEN protein was decreased in 18 of 30 (60%) JMML patients, and the patients had significantly lower RNA expression of PTEN than normal controls (p=0.015). With the available samples we also evaluated AKT activity and MAP kinase (MAPK) levels. We found that MAPK levels were correlated well with the status of the PTEN in 12 of 27(44%), and AKT activity in 13 of 25 patients (52%). Our data indicates that PTEN is significantly deficient in JMML patients, and the low PTEN protein level is related to its low transcription of RNA in JMML patients. The role of PTEN in regulation of MAPK and AKT activities in JMML is under further evaluation by studying the upstream status of the RAS pathway prior to PTEN. This is the first investigation of PTEN deficiency in JMML patients, and additional investigations may help to further understand the pathogenetic mechanisms in JMML, as well as to guide the development of targeted therapeutics for JMML.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 310-310 ◽  
Author(s):  
Charlotte M Niemeyer ◽  
Michelle Kang ◽  
Ingrid Furlan ◽  
Danielle Shin ◽  
Debbie S Sakai ◽  
...  

Abstract Abstract 310 Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm (MPN) of early childhood. Up to 60% of patients harbor activating mutations in either NRAS, KRAS, or PTPN11, while another 15% of children have neurofibromatosis type 1 (NF-1) and demonstrate loss of the wildtype NF1 allele in their hematopoietic cells at diagnosis. We recently described that an additional 10–15% of children with JMML harbor missense homozygous mutations in exons 8 and 9 of CBL (Loh, Blood, 2009). Cbl is a complex protein that functions primarily as an E3 ubiquitin ligase but also serves numerous important adaptor functions. Mutations in CBL have recently been reported in adults with MPNs and the available evidence in adults indicates that these lesions are somatically acquired. We noted that a number of children with JMML and CBL mutations had neurological conditions including developmental delay and dysmorphic stigmata, although these features were not 100% penetrant. Based on these observations, we performed mutational studies in fibroblasts and buccal epithelial cells, which were available from 13 JMML patients with homozygous CBL mutations in their bone marrow at diagnosis. We now show that in all 13 patients the initial CBL mutation occurred as a heterozygous germline event (Table 1). Interestingly, a child with the 1222 T>C later developed a brain tumor with a homozygous CBL lesion. Mutational studies on parental DNA were informative in 11 cases and indicated autosomal inheritance in 6 families. Furthermore, two of these children had extensive family histories in which several young family members died of JMML. There were no known features of NF-1 in either pedigree. Subsequent analysis of these two pedigrees revealed a pattern of autosomal dominant inheritance that spanned 4 generations in 1 family and 3 generations in the other. To rule out normal genetic variation, a cohort of 240 healthy individuals were screened without detection of a CBL abnormality. One hallmark feature of JMML myeloid progenitor cells is their sensitivity to granulocyte-macrophage colony stimulating factor (GM-CSF) in colony-forming assays. Retroviral transduction of the 371 Tyr>His and 384 Cys>Arg mutations into wildtype murine fetal liver cells failed to induce a hypersensitive phenotype. However, recently published data suggest that a full oncogenic phenotype is conferred when the wildtype allele is deleted (Sanada, Nature, 2009), as occurs in the human diseases. Transduction of the most common human JMML mutations into BaF3-EpoR cells that have had murine Cbl knocked down is ongoing, as is further biochemical analysis. In summary, germline mutations in CBL cause a clinical syndrome with a predisposition to JMML, and importantly, can be inherited in an autosomal dominant fashion, thus establishing CBL as a new familial cancer predisposition gene. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4651-4651
Author(s):  
Lisa Maria Kuhn ◽  
Cyrill Schipp ◽  
Daniel Hein ◽  
Bianca Killing ◽  
Nan Qin ◽  
...  

Juvenile myelomonocytic leukemia (JMML) is a chronic, poor prognostic myeloid neoplasm of childhood that is characterized by malignant expansion of monocytic cells. Chemo- and radiotherapy are not effective in JMML, therefore allogeneic hematopoietic stem cell transplantation is the only therapy option for most affected children. Relapse is the most frequent cause of treatment failure and event-free-survival at five years is low (approximately 50%). Recent studies showed that in 90% of JMML patients the proliferation of monocytic tumor cells is driven by mutations in a confined set of genes (KRAS, NRAS, PTPN11, NF1 or CBL) that activate the RAS signalling pathway. Drugs specifically targeting this pathway are therefore attractive candidates for therapy of JMML patients. As in vitro models of JMML, we generated inducible pluripotent stem cells (iPSC) stably expressing wildtype or activating oncogenic versions of KRAS (G12D) or NRAS (G13D) as well as iPSCs with CRISPR interference mediated downregulated NF1 expression. Manipulation of KRAS, NRAS, and NF1 expression and activation of downstream signaling targets (MEK, ERK) of the Ras pathway were confirmed by RT-PCR and western blot analyses, respectively. After transduction iPSCs retained typical pluripotency markers and could be differentiated into CD34+ and CD45+ cells of the hematopoietic lineage. We then carried out a screen to test the response of these iPSC cell lines to experimental and clinical drugs targeting the Ras signaling pathway, as well as to other compounds suggested to be promising candidate drugs or drugs already in clinical trial for JMML. In our screen the model cell lines were resistant to all tested MEK-inhibitors, including Selumetinib and Trametinib. The broad receptor tyrosine kinase inhibitor Dovitinib and the DNA methyltransferase inhibitor Azacytidine elicited strong responses in all iPSC cell lines regardless of their KRAS, NRAS or NF1 state. This underlines their extensive, but non-targeted killing potential. In our screen, an experimental small molecule drug induced significantly more cell death in KRAS-G12D iPSCs (IC50 1.5 µM) than in comparable wildtype cells (IC50 3.3 µM, p<0.0001), which could be validated in independent assays. In addition to targeted cell death activation, the drug has been suggested to promote differentiation of hematopoietic cells, which could potentially increase its anti-tumor efficiency. Experimental studies analyzing the underlying mechanism of its differential effect on KRAS wildtype compared to KRAS-G12D cells are currently carried out and will be presented. Our results suggest, that iPSCs with RAS pathway activation due to stable expression of oncogenic KRAS or NRAS or downregulation of NF1 expression are valuable tools for preclinical testing and may identify promising novel lead compounds for JMML treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (16) ◽  
pp. 2487-2497 ◽  
Author(s):  
Tiffany Y. Chang ◽  
Christopher C. Dvorak ◽  
Mignon L. Loh

AbstractJuvenile myelomonocytic leukemia (JMML) is a typically aggressive myeloid neoplasm of childhood that is clinically characterized by overproduction of monocytic cells that can infiltrate organs, including the spleen, liver, gastrointestinal tract, and lung. JMML is categorized as an overlap myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) by the World Health Organization and also shares some clinical and molecular features with chronic myelomonocytic leukemia, a similar disease in adults. Although the current standard of care for patients with JMML relies on allogeneic hematopoietic stem cell transplant, relapse is the most frequent cause of treatment failure. Tremendous progress has been made in defining the genomic landscape of JMML. Insights from cancer predisposition syndromes have led to the discovery of nearly 90% of driver mutations in JMML, all of which thus far converge on the Ras signaling pathway. This has improved our ability to accurately diagnose patients, develop molecular markers to measure disease burden, and choose therapeutic agents to test in clinical trials. This review emphasizes recent advances in the field, including mapping of the genomic and epigenome landscape, insights from new and existing disease models, targeted therapeutics, and future directions.


Author(s):  
Anna Dal Molin ◽  
Mattias Hofmans ◽  
Enrico Gaffo ◽  
Alessia Buratin ◽  
Hélène Cavé ◽  
...  

Juvenile myelomonocytic leukemia (JMML), a rare myelodysplastic/myeloproliferative neoplasm of early childhood, is characterized by clonal growth of RAS signaling addicted stem cells. JMML subtypes are defined by specific RAS pathway mutations and display distinct gene, microRNA (miRNA) and long non-coding RNA expression profiles. Here we zoom in on circular RNAs (circRNAs), molecules that, when abnormally expressed, may participate in malignant deviation of cellular processes. CirComPara software was used to annotate and quantify circRNAs in RNA-seq data of a “discovery cohort” comprising 19 JMML patients and 3 healthy donors (HD). In an independent set of 12 JMML patients and 6 HD, expression of 27 circRNAs was analyzed by qRT-PCR. CircRNA-miRNA-gene networks were reconstructed using circRNA function prediction and gene expression data. We identified 119 circRNAs dysregulated in JMML and 59 genes showing an imbalance of the circular and linear products. Our data indicated also circRNA expression differences among molecular subgroups of JMML. Validation of a set of deregulated circRNAs in an independent cohort of JMML patients confirmed the down-regulation of circOXNAD1 and circATM, and a marked up-regulation of circLYN, circAFF2, and circMCTP1. A new finding in JMML links up-regulated circMCTP1 with known tumor suppressor miRNAs. This and other predicted interactions with miRNAs connect dysregulated circRNAs to regulatory networks. In conclusion, this study provides insight into the circRNAome of JMML and paves the path to elucidate new molecular disease mechanisms putting forward circMCTP1 up-regulation as a robust example.


Author(s):  
Hironobu Kitazawa ◽  
Yusuke Okuno ◽  
Hideki Muramatsu ◽  
Kosuke Aoki ◽  
Norihiro Murakami ◽  
...  

Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm that develops during infancy and early childhood. The array-based international consensus definition of DNA methylation has recently classified patients with JMML into the following three groups: high methylation (HM), intermediate methylation (IM), and low methylation (LM). To develop a simple and robust methylation clinical test, 137 patients with JMML have been analyzed using the Digital Restriction Enzyme Analysis of Methylation (DREAM), which is a next-generation sequencing based methylation analysis. Unsupervised consensus clustering of the discovery cohort (n=99) using the DREAM data has identified HM and LM subgroups (HM_DREAM, n=35; LM_DREAM; n=64). Of the 98 cases that could be compared with the international consensus classification, 90 cases of HM (n=30) and LM (n=60) had 100% concordance with the DREAM clustering results. For the remaining eight cases classified as the IM group, four cases were classified into the HM_DREAM group and four cases into the LM_DREAM group. A machine-learning classifier has been successfully constructed using a Support Vector Machine (SVM), which divided the validation cohort (n=38) into HM (HM_SVM; n=18) and LM (LM_SVM; n=20) groups. Patients with the HM_SVM profile had a significantly poorer 5-year overall survival rate than those with the LM_SVM profile. In conclusion, a robust methylation test has been developed using the DREAM analysis for patients with JMML. This simple and straightforward test can be easily incorporated in diagnosis to generate a methylation classification for patients so that they can receive risk-adapted treatment in the context of future clinical trials.


Sign in / Sign up

Export Citation Format

Share Document