Evidence for Ongoing DNA Damage in Multiple Myeloma as Revealed by Constitutive Phosphorylation of H2AX.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2817-2817
Author(s):  
Denise K. Walters ◽  
Renee C. Tschumper ◽  
Xiaosheng Wu ◽  
Kimberly J. Henderson ◽  
Angela Dispenzieri ◽  
...  

Abstract Abstract 2817 Poster Board II-793 Abnormal plasma cells (PC) present in patients with multiple myeloma (MM) and its precursor condition, monoclonal gammopathy of undetermined significance (MGUS), characteristically possess multiple chromosomal abnormalities. Moreover, both stages of disease exhibit considerable intratumor heterogeneity, which often becomes even more complex during disease progression. The precise mechanism(s) underlying this process remains unknown. However, we hypothesize that DNA double-strand breaks (DSBs) and compromised repair of these deleterious lesions may underlie intratumor heterogeneity and clonal evolution in the monoclonal gammopathies. In this regard, H2AX, a member of the H2A family of histones, plays a particularly important role in the DSB response and prevention of cancer. Immediately following DSB formation, one or more of the PI3K-like kinases become activated and rapidly phosphorylate H2AX on a conserved serine residue. Phosphorylated H2AX (γH2AX) is then rapidly recruited to the DSB site and is readily detectable as DNA damage foci by immunohistochemistry. The precise function of γH2AX has yet to be determined, however, it is hypothesized that γH2AX may recruit DNA repair proteins to the DSB site and may aid in keeping severed DNA ends in place in order to avoid erroneous end joining. Despite the functional uncertainty of γH2AX, the presence of γH2AX nuclear foci serves as an excellent indicator of DSBs. Therefore, the goal of our study was to assess MM cells for evidence of DSBs. We began our studies using a panel of 8 human MM cell lines. Of note, the number of foci was found to vary among the MM cell lines and to vary from cell to cell with the number of γH2AX foci per cell ranging from 0 to 28. The presence of γH2AX in these cells was also confirmed via flow cytometry and western blotting. We also wished to determine if primary MM and MGUS PCs displayed evidence of DSBs. Among primary patient samples, freshly isolated PCs from 13/18 MM patients and 1/3 MGUS patients exhibited evidence of γH2AX foci. Taken together with the MM cell line data, the number of γH2AX foci was found to increase across the disease spectrum of MGUS to MM patient sample to MM cell line. Endogenous γH2AX foci have previously been detected in a variety of tumor cell lines. Although these foci have been hypothesized to derive from multiple factors, the extent of phosphorylation has been shown to be associated with the number of chromosomal aberrations as well as the phase of the cell cycle. In general, S and G2/M phase cells tend to demonstrate higher levels of H2AX phosphorylation, which is most likely due to doubling of histone content during the cell cycle and the fact that chromatin condensation during DNA replication can also trigger H2AX phosphorylation. Thus, it remained possible that the γH2AX displayed by the cell lines simply reflected cells in the S phase of the cell cycle. To address this possibility, we labeled cells with BrdU and then measured levels of γH2AX in cells in the G1, S and G2/M phases of the cell cycle. However, we observed nearly equal levels of γH2AX in G1 and S phase cells suggesting some level of γH2AX foci was independent of DNA replication. These results were also consistent with our observation that there is no correlation between the plasma cell labeling index and the number of γH2AX foci in CD138+ plasma cells isolated from 18 MM patients. Thus, endogenous γH2AX in MM cells does not appear to be primarily attributed to cycling cells and may be indeed reflective of DSBs. Finally, to further demonstrate that the γH2AX foci genuinely reflected sites of DSBs, we performed double staining for γH2AX foci and 53BP1, a protein that is known to be recruited to DSB sites following DNA damage. Results revealed clear colocalization of γH2AX and 53BP1 in both MM cell lines and MM patient samples. Given that DSBs can lead to genomic instability and tumor progression, our observations that primary MGUS and MM PCs display evidence of DSBs at isolation are intriguing and suggest a mechanism whereby clonal evolution occurs in the monoclonal gammopathies. The presence of a higher frequency of γH2AX foci in MM cell lines is consistent with their derivation from MM patients with aggressive disease. Collectively, these studies suggest MGUS/MM PCs may display an impaired ability to repair DNA damage and studies designed to examine this possibility are underway. Disclosures: Dispenzieri: Celgene: Research Funding.

2020 ◽  
Vol 295 (50) ◽  
pp. 17169-17186
Author(s):  
Mysore S. Veena ◽  
Santanu Raychaudhuri ◽  
Saroj K. Basak ◽  
Natarajan Venkatesan ◽  
Parameet Kumar ◽  
...  

We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3′ terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Patricia Maiso ◽  
AbdelKareem Azab ◽  
Yang Liu ◽  
Yong Zhang ◽  
Feda Azab ◽  
...  

Abstract Abstract 133 Introduction: Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment such as cytokines and growth factors, nutrients and stresses to regulate multiple cellular processes, including translation, autophagy, metabolism, growth, motility and survival. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 and TORC2. Activation of TORC1 leads to the phosphorylation of p70S6 kinase and 4E-BP1, while activation of TORC2 regulates phosphorylation of Akt and other AGC kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin analogues such as RAD001 and CCI-779 have been tested in clinical trials in MM. Their efficacy as single agents is modest, but when used in combination, they show higher responses. However, total inhibition of Akt and 4E-BP1 signaling requires inactivation of both complexes TORC1 and TORC2. Consequently, there is a need for novel inhibitors that can target mTOR in both signaling complexes. In this study we have evaluated the role of TORC1 and TORC2 in MM and the activity and mechanism of action of INK128, a novel, potent, selective and orally active small molecule TORC1/2 kinase inhibitor. Methods: Nine different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: To examine activation of the mTOR pathway in MM, we performed kinase activity assays and protein analyses of mTOR complexes and its downstream targets in nine MM cell lines. We found mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all cell lines tested independently of the status of Deptor, PTEN, and PI3K. All cell lines expressed either Raptor, Rictor or both; excepting H929 and U266LR7 which were negative for both of them. Moreover, primary plasma cells from several MM patients highly expressed pS6R while normal cells were negative for this protein. We found that INK128 and rapamycin effectively suppressed phosphorylation of p6SR, but only INK128 was able to decrease phosphorylation of 4E-BP1. We observed that INK128 fully suppressed cell viability in a dose and time dependent manner, but rapamycin reached a plateau in efficacy at ± 60%. The IC50 of INK128 was in the range of 7.5–30 nM in the eight cell lines tested. Similar results were observed in freshly isolated plasma cells from MM patients. Besides the induction of apoptosis and cell cycle arrest, INK128 was more potent than rapamycin to induce autophagy, and only INK128 was able to induce PARP and Caspases 3, 8 and 9 cleavage. In the bone marrow microenvironment context, INK128 inhibited the proliferation of MM cells and decreased the p4E-BP1 induction. Importantly, treatment with rapamycin under such conditions did not affect cell proliferation. INK128 also showed a significantly greater effect inhibiting cell adhesion to fibronectin OPM2 MM1S, BMSCs and HUVECs compared to rapamycin. These results were confirmed in vivo. Oral daily treatment of NK128 (1.0 mg/kg) decreased tumor growth and improved survival of mice implanted with MM1S. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 789-789
Author(s):  
Paola Neri ◽  
Li Ren ◽  
Kathy Gratton ◽  
Erin Stebner ◽  
Carolyn J Owen ◽  
...  

Abstract Abstract 789 Background: Poly-ADP-ribose-polymerase (PARP) inhibitors are cytotoxic to tumor cells with impaired DNA damage repair machinery (DRR), in particular those with a deficient homology directed repair (HR) of DNA double stranded breaks (DSB). Multiple Myeloma (MM) cells are characterized by a highly unstable genome and while the exact mechanisms for this karyotypic instability is largely unknown, their DDR machinery is thought to be highly stressed. The ubiquitin-proteasome system (UPS) is involved in the regulation of several cellular functions including DDR and in particular HR. In addition proteasome inhibitors are reported to induce an unfolded protein response (UPR) in MM cells resulting in their apoptotic death. We have postulated that inhibition of the 26S proteasome also alters the DNA-DSB repair machinery leading to a BRCAness state in MM cells, sensitizing them to PARP inhibitors. Methods and results: In order to biochemically inhibit PARP in MM cells, we used a novel selective inhibitor of PARP1 and PARP2, 2-(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide or ABT-888. We first demonstrated inhibition of PARP activity as measured by a reduction in poly-ADP-ribose (PAR) polymer levels (western blotting) in human MM cell lines (MM1S, U266, H929, RPMI8226, KMS-11, OPM2, INA-6) treated with ABT-888 (5 μM). PARP inhibition and the reduction of PAR levels resulted in DNA damage as evidenced by ATM phosphorylation and induced DNA-DSBs with increased γH2AX (phospho-Ser139-H2AX) levels within 6–12 hours of MM cells treatment with ABT-888. Increased γH2AX foci formation was also detected by immunofluorescent staining within 6–12 hours of ABT-888 treatment and nearly fully resolved by 24 hours, consistent with repair of resultant DNA-DSBs. As expected treatment with ABT-888 alone had no effect on the viability of MM cells consistent with their ability to repair DNA-DSBs resulting from PARP inhibition. We then examined the effect of bortezomib on HR-mediated repair of DNA-DSBs, in particular on the BRCA/FA pathway. A significant reduction of MM cells' FANCD2, BRCA1, BRCA2 and RAD51 mRNA levels (qRT-PCR) was observed within 6–12 hours of bortezomib treatment (10 nM). Similar results were observed at the protein level indicating that bortezomib impedes homology-directed DNA-DSBs repair and results in an operational BRCAness state in MM cells. Therefore, we next tested whether this bortezomib-induced BRCAness was sufficient to sensitize MM cells to PARP inhibition with ABT-888. Consistent with our hypothesis, we observed that co-treatment of MM cell lines with bortezomib and ABT-888 lead to persistent and increased γH2AX foci at 24 hours compared to treatment with ABT-888 alone. Co-treatment also significantly potentiated cell death (Annexin V/PI staining) compared to treatment with bortezomib alone. Similar results were observed in CD138+ primary MM cells (n=8) with strong synergistic effect (CI < 1) between bortezomib and ABT-888. Importantly, no impaired viability (Annexin/PI staining) or function (colony forming unit assay) was noted for CD138− cells or CD34+ peripheral blood stem cells after bortezomib and ABT-888 co-treatment. Mechanistic studies have also shown that apoptotic events (caspase 3, caspase 8 and PARP cleavage) are markedly enhanced by this combination. Based on our in vitro data, we evaluated in vivo the activity of ABT-888 in combination with bortezomib in a Scid murine xenograft model of human MM. Significant inhibition of tumour growth (p<0.005) was noted in mice treated with the combination of bortezomib and ABT-888 compared to bortezomib alone or control-treated mice. This tumour growth inhibition also resulted in a significant increase in survival (p<0.05) of the animals. No toxicity (e.g. weight loss, ruffled coats, paralysis, etc.) was observed in mice treated with the combination. Induction of DNA-DSBs was also confirmed in vivo as shown by an increase in 53BP1 and γH2AX foci formation in tumors of mice treated with the combination compared to bortezomib alone. Conclusion: Our studies indicate that bortezomib induces a BRCAness state in MM cells by impairing HR-mediated repair of DNA-DSBs and results in a contextual synthetic lethality when combined with the PARP inhibitor ABT-888. These data provide the scientific basis for the future clinical testing of PARP inhibitors in combination with proteasome inhibitors for the treatment of MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 723-723
Author(s):  
Michele Cea ◽  
Antonia Cagnetta ◽  
Aditya Munshi ◽  
Yu-Tzu Tai ◽  
Teru Hideshima ◽  
...  

Abstract Abstract 723 Background: Multiple myeloma (MM) is a clonal malignancy of plasma cells with hallmark genetic instability resulting in large-scale changes at diagnosis, as well as further evolution contributing to disease progression. Inhibition of DNA repair mechanisms leads to significant reduction in acquisition of new genetic changes and associated progression of MM. Mammalian sirtuins are class III NAD+-dependent deacetylases emerging as innovative proteins involved in multiple pathways, including genome maintenance. Methods: A panel of 18 MM cell lines, both sensitive and resistant to conventional and novel anti-MM therapies, was used in the study. The antitumor effect of a pan-sirtuins inhibitor, Nicotinamide (Nam), alone and combined with DNA-damaging agents, was investigated by CTG assay and Annexin-V/propidium iodide staining. Mechanistic studies were performed with thymidine incorporation, Western-blotting, lentivirus-mediated shRNAs and immunofluorescence assay. Analysis of DNA DSB repair was done using chromosomally integrated reporter constructs, followed by cytometer analysis. Results: We analyzed an Affymetrix GeneChip (GSE6477) array of patient MM cells (n=162) compared with normal plasma cells, and found that transcript levels of two nuclear sirtuins (SIRT6 and SIRT7) were significantly higher in monoclonal gammopathy of undetermined significance (MGUS), smoldering MM, active MM, and relapsed MM compared with normal plasma cells. Importantly, protein analysis confirmed increased nuclear levels of these deacetylases in MM cell lines, including those resistant to DNA-damaging agents (MM.1R, LR-5, Dox40), as well as in patient CD138+ MM cells compared to PBMCs from healthy donors. Next we evaluated the functional role of these Sirtuins in MM cells by using loss of function approaches with RNAi. SIRT6 and SIRT7 silencing by knockdown reduced MM cell proliferation compared with control scrambled cells, with only a modest induction of cytotoxicity. We also examined the effects of Nam on DNA-damage response signaling triggered by conventional anti-MM agents melphalan and doxorubicin. Nam treatment did not appreciably affect MM cell viability; however, pretreatment with Nam impaired DNA double-strand breaks (DSBs) repair as well as DNA repair mechanisms triggered by conventional DNA damaging agents, evidenced by γH2AX and RPA phosphorylation, respectively. Consistent with these findings, Nam-pretreated MM cells formed fewer RAD51 foci in response to Doxorubicin and Melphalan, thereby conferring sensitivity to these agents. Importantly, this sensitizing effect was also observed in MM cells resistant to doxorubicin (RPMI-Doxo40) or melphalan (LR5), indicating that Nam increases chemosensitivity in both drug-sensitive and –resistant MM cells. Similarly, lentivirus-mediated shRNA knockdown of SIRT-6 and −7 sensitized MM cells to melphalan and doxorubicin. Finally, both chemical and genetic approaches improved the efficiency of DNA DSB repair mechanisms (Homologous and non-Homologous end-joining Recombination) in MM cell lines containing chromosomally integrated green fluorescent protein-based reporter constructs. Ongoing in vivo experiments are assessing how the chemical susceptibility of SIRT6 and/or 7-deficient cells can be exploited therapeutically. Conclusion: Our study demonstrates a link between nuclear sirtuins and DNA instability in MM cells, providing the basis for incorporation of inhibitors of these SIRTs into innovative anti-MM therapeutic approaches. Disclosures: Munshi: Celgene: Consultancy; Millenium: Consultancy; Merck: Consultancy; Onyx: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5624-5624
Author(s):  
Dhyani Anamika ◽  
Patricia Favaro ◽  
Sara Teresinha Olalla Saad

Abstract Ankyrin repeat and KH domain-containing protein 1, ANKHD1, is highly expressed in myeloma cells and plays an important role in multiple myeloma (MM) progression and growth. ANKHD1 is found to be overexpressed in S phase of cell cycle in MM cells and silencing of ANKHD1 expression leads to accumulation of cells in S phase, suggesting a role in S phase progression (1). Earlier studies by our group reported that ANKHD1 silencing downregulates all replication dependent histones and that this downregulation may be associated with replication stress and DNA damage (2). We observed increased expression of γH2AX protein (phosphorylated histone H2A variant, H2AX, at Serine 139), a marker for DNA double strand breaks (DSBs) and an early sign of DNA damage induced by replication stress, in ANKHD1 silenced MM cells. In the present study we further sought to investigate the mechanisms underlying the induction of DNA damage on ANKHD1 silencing. We first confirmed the increased expression of γH2AX by flow cytometry analysis and observed that both the mean fluorescence intensity as well as percentage of γH2AX positive cells were higher in ANKHD1 silenced MM cells as compared to control cells. Phosphorylation of histone 2AX requires activation of the phosphatidylinositol-3-OH-kinase-like family of protein kinases, DNA-PKcs (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated)andATR (ATM-Rad3-related) that serves as central components of the signaling cascade initiated by DSBs. Hence, we checked for the expression of these kinases and observed increased phosphorylation of both ATM and ATR kinases in ANKHD1 silenced MM cells. There was no difference in the expressions of DNA-PKcs in control and ANKHD1 silenced cells by western blot. We next checked for the expression of CHK1 (checkpoint kinase 1) and CHK2 (checkpoint kinase 2), essential serine threonine kinases downstream of ATM and ATR. We observed a decrease in pCHK2 (phosphorylated CHK2 at Thr 68), with no change in expression of pCHK1 (phosphorylated CHK1 at Ser 345) total CHK1 or total CHK2. We also checked for expression of CDC25a (a member of the CDC25 family of dual-specificity phosphatases), that is specifically degraded in response to DNA damage (DSBs) and delays S phase progression via activation of ATM /ATR-CHK2 signaling pathway. Expression of CDC25a was significantly decreased in ANKHD1 silencing cells, confirming the induction of DSBs, and probably accounting for S phase delay on ANKHD1 silencing. Since there was decrease in active CHK2 (pCHK2) and no change in CHK1 required for degradation of CDC25a, we assume that decrease in CDC25a in ANKHD1 silenced MM cells may be via activation of ATM/ ATR pathway independent of CHK2/CHK1. Expression of several other downstream factors of DSBs induced DNA damage response and repair such as BRCA1, PTEN, DNMT1, SP1, HDAC2 were also found to be modulated in ANKHD1 silenced MM cells. In conclusion, ANKHD1 silencing in MM cells leads to DNA damage and modulates expression of several genes implicated in DNA damage and repair. DNA damage induced after ANKHD1 silencing in MM cells activates ATM/ ATR-CDC25a pathway which may lead to the activation of S phase checkpoint in MM cells. Results however are preliminary and further studies are required to understand the role of ANKHD1 in intra S phase check point. References: 1) ANKHD1 regulates cell cycle progression and proliferation in multiple myeloma cells. Dhyani et al. FEBS letters 2012; 586: 4311-18. 2) ANKHD1 is essential for repair of DNA double strand breaks in multiple myeloma. Dhyani et al. ASH Abstract, Blood 2015; 126:1762. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 508-508
Author(s):  
Carolina D. Schinke ◽  
Pingping Qu ◽  
Shmuel Yaccoby ◽  
Valeriy V Lyzogubov ◽  
Veronica MacLeod ◽  
...  

Introduction - Multiple Myeloma (MM) is a hematologic malignancy characterized by clonal growth of differentiated plasma cells (PCs). Despite improvement in MM therapy, the disease remains mostly incurable and is characterized by recurrent relapses with development of resistant clones that eventually lead to patient death. The pathways that lead to resistant and aggressive MM are not fully understood highlighting the need to improve our understanding of MM biology to identify potential new pathways and therapeutical targets. PHD Finger Protein 19 (PHF19) is a regulator of Polycomb Repressive Complex 2 (PRC2), the sole methyltransferase complex capable of catalyzing H3K27me3 to induce and enforce gene repression. PRC2 employs enhancer of zeste homolog 1 and 2 (EZH1/EZH2) as enzymatic subunits to hypermethylate H3K27. While overexpression and gain of function mutations of EZH1/2 have been observed in many cancers the role of this particular pathway in MM remains poorly understood. In the present study, we report on PHF19 as a new candidate gene to play a potential crucial role in MM oncogenesis. Methods- Gene expression profiling (GEP; Affymetrix U133 Plus 2.0) was performed on 739 MM patients (from total therapy trials [TT] 3-5; low risk MM n=636, high risk MM n=103), 42 patients with monoclonal gammopathy of undetermined significance (MGUS), 73 smoldering MM patients, 42 patients with primary plasma cell leukemia and 34 healthy donors. Myeloma risk was determined by the GEP 70 signature as previously defined. To test the implications of functional PHF19 knock down (KD) we used TRIPZ inducible PHF19 shRNA vs. scrambled control (Dharmacon) in two MM cell lines (JJN3 and ARP1). Real time PCR as well as western blotting was used to confirm PHF19 KD as well as to elucidate the effect on H3K27me3 (Cell Signaling). Functional in vitro studies included proliferation (Promega), clonogenic assays (StemCell), cell cycle and apoptosis assays (both Invitrogen). In vivo studies were performed using SCID mice that were subjected to tail vain injection with PHF19 KD JJN3 cells (n=10) or scrambled shRNA control (n=10). Weekly ELISA (Bethyl) and in vivo imaging (Xenogen) were performed and survival was recorded. Results- GEP of the previously mentioned patient populations and healthy controls identified PHF19 (chr9q33.2) as a candidate gene that was consistently dysregulated in MM patients. Mean expression levels at different MM stages correlated with disease aggressiveness (ANOVA, p&lt;0.0001), Figure 1. High expression of PHF19 (log2&gt;10.46) at diagnosis correlated significantly with adverse clinical parameters, including ISS III, anemia and elevated LDH, as well as worse overall survival (5 yr OS = 29% for patients with high PHF19 expression vs 77% for patients with low PHF19 expression [log2&lt;10.46], p&lt; 0.0001). These results led us to test the implications of functional PHF19 KD using TRIPZ inducible PHF19 shRNA vs. scrambled control in the JJN3 and ARP1 MM cell lines. PHF19 KD led to a drastic reduction of H3K27me3 thereby resulting in significantly reduced proliferation via cell cycle arrest, while apoptosis was not substantially altered. Clonogenic assays showed a significant reduction in colony numbers and size of MM cells with PHF19 KD compared to the control (&gt;75% reduction in both cell lines, p&lt;0.05). Xenograft studies showed consistently less tumor burden in the mice injected with PHF19 KD cells compared to scrambled control, evident through ELISA testing for IgG Kappa (Median =180 mg/ml for scrambled control vs 80 mg/ml for PHF19 KD at week 8, p=0.07) and bioimaging (Median bioilumisence 2.1x108 p/s for scrambled control vs. 0.8x108 p/s for PHF19 KD at week 8, non-significant). Median OS in mice injected with PHF19 KD cell was substantially longer (66 days) compared to mice subjected to scrambled control cells (54 days), p=0.052. Conclusion- In summary we show that PHF19 is upregulated in malignant plasma cells of MM patients and that PHF19 expression levels increase with advanced MM stages. High PHF19 expression was a marker of adverse prognosis in our total therapy (TT 3-5) cohort. Most importantly, in-vitro and in-vivo functional studies showed that PHF19 has important biological functions in MM. These results suggest that epigenetic regulation through histone methylation, in particular, H3K27 trimethylation, plays a crucial role in MM and the affected downstream pathways should be further elucidated. Disclosures Boyle: Janssen: Honoraria, Other: Travel; Abbvie: Honoraria; Amgen: Honoraria, Other: travel; Takeda: Honoraria, Other: travel; Celgene Corporation: Honoraria, Other: Travel. van Rhee:Kite Pharma: Consultancy; Adicet Bio: Consultancy; Karyopharm Therapeutics: Consultancy; Takeda: Consultancy; Sanofi Genzyme: Consultancy; Castleman Disease Collaborative Network: Consultancy; EUSA: Consultancy. Walker:Celgene: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1762-1762
Author(s):  
Anamika Dhyani ◽  
Patricia Favaro ◽  
Sara T. Olalla Saad

Abstract ANKHD1, Ankyrin repeat and KH domain-containing protein is highly expressed and plays an important role in the proliferation and cell cycle progression of multiple myeloma (MM) cells. Inhibition of ANKHD1 expression upregulates p21 (CDKN1A, Cyclin Dependent Kinase Inhibitor), a potent cell cycle regulator, and its expression represses p21 promoter. Upregulation of p21 was found to be irrespective of the TP53 mutational status of MM cell lines. A study by our group has shown that ANKHD1 is highly expressed in S phase and that the inhibition of ANKHD1 expression downregulates replication dependent histones suggesting that it might be required for histone transcription (1). Assuming that ANKHD1 might be involved in the transcripitional activation of histones, we studied the effect of ANKHD1 silencing on nuclear protein of the ataxia telangiectasia mutated locus (NPAT), a component of the cell-cycle-dependent histone gene transcription machinery. NPAT associates with histone gene promoters in S phase and suppression of NPAT expression impedes expression of all histone subtypes. In present study, there was a decreased expression of NPAT in ANKHD1 silenced MM cells. Despite the fact that both ANKHD1 and NPAT were localized in the nucleus of MM cells, they did not appear to associate, as observed by confocal microscopy, suggesting at present that ANKHD1 does not modulate histones via NPAT. Since DNA replication is coupled with histone synthesis and downregulation of histones is associated with replication stress and DNA damage, we checked for expression of PCNA (Proliferating Cell Nuclear Antigen), protein involved in DNA replication and repair. PCNA expression was found to be significantly decreased in ANKHD1 inhibited MM cells, suggesting its role in PCNA mediated DNA replication and repair (Fig. 1). To confirm this, we studied the effect of ANKHD1 silencing on some of the components of DNA damage repair (DDR) pathway. We observed increased expression of gamma- H2AX (γ-H2AX i.e Phosphorylated Histone H2AX), marker for DNA double-strand breaks (DSBs) and an early sign of DNA damage induced by replication stress (Fig. 1). We also observed a decrease in phosphorylated CHK2 (Check Point Kinase 2), an essential serine threonine kinase involved in DDR. Accumulation of γ-H2AX on ANKHD1 silencing confirms DNA damage and suggests the possible mechanism of ANKHD1 mediated histones downregulation. In summary, ANKHD1 silencing in MM cells leads to DNA damage (DSBs), suggesting that ANKHD1 is essential for DNA replication and repair. Furthermore, as ANKHD1 negatively regulates p21, and p21 controls DNA replication and repair by interacting with PCNA, we hypothesize that ANKHD1 might be playing role in DNA repair via modulation of the p21-PCNA pathway. Results of the role of ANKHD1 in DNA repair are however preliminary and need to be explored. References: 1) ANKHD1 Is Required for S Phase Progression and Histone Gene Transcription in Multiple Myeloma. Dhyani et al. ASH Abstract; Blood 2014. Figure 1. Western blot analysis of proteins: a) PCNA and b) γ-H2AX, in control and ANKHD1 silenced U266 MM cell line. Tubulin and GAPDH were used as endogenous controls. Figure 1. Western blot analysis of proteins: a) PCNA and b) γ-H2AX, in control and ANKHD1 silenced U266 MM cell line. Tubulin and GAPDH were used as endogenous controls. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3374-3374
Author(s):  
Mu Hao ◽  
Yu Qin ◽  
Meirong Zang ◽  
Yan Xu ◽  
Gang An ◽  
...  

Abstract Background: More recently, multiple myeloma (MM) cells evade apoptosis despite pervasive DNA damage was demonstrated. However, the relevance of ongoing DNA damage and the mechanisms by which apoptosis is suppressed remain to be fully elucidated. p53 deletion and mutations do not appear to be a pivotal event in the evolution from pre-malignancy toward malignancy in MM. The protooncogene ABL1 was an alternative pathway to p53 down stream of ATM/ATR, which is commonly translocated in Chronic Myelogenous Leukemia (CML). ABL1 forms a complex with the tumor suppressor gene TP73, which belongs to the p53 family. P73 is expressed as multiple isoforms due to the usage of two different promoters, P1 promoter of TAp73 inducing apoptosis and P2 promoter of Δ Np73 promoting survival. In this study, we explored the role of ABL1/p73 axis in MM cells evading ongoing DNA damage induced apoptosis. Materials and methods: Real-time-PCR was used to detect the ABL1 and miR-203a expression in MM primary samples and MM cell lines. Immunofluency staining was performed to detect the ɣ-H2A.X level in MM cells. Flow cytometry was performed to detect the apoptosis in MM cells. Bisulfite Pyrosequencing and Methylation Specific-PCR were used to detect the p73 promoter methylation. Results: Our results revealed that ABL1 level was up-regulated both in primary MM samples and MM cell lines (-1.25±0.28 vs. 0.06±0.24, p=0.02). MiR-203 which suppresses ABL1 expression was down-regulated (0.01±0.01 vs. 0.97±0.08, p=0.01). MM cell lines and primary cells showed high ɣ-H2A.X staining. Immunofluency staining showed that ABL1 relocalized in the nucleus of MM cells after treated with doxorubicin. The apoptosis of MM cells was significantly up-regulated (7.8±2.1)% vs. (25.4±4.5)%, p<0.05. Doxorubicin treatment combined with ABL1 inhibitor (STI571) suppressed the apoptosis significantly, (25.4±4.5)% vs. (12.2±3.4)%, p=0.03. Bisulfite Pyrosequencing and MS-PCR of 42 newly diagnosed MM patient sample revealed that the P1 promoter of p73 was hypermethylated compared with normal plasma cells (86% ±7% vs. 58%±4%, p=0.032). RT-qPCR and western blotting showed that Δ Np73 levels were significantly higher than TAp73 (148.6±19.3 vs. 6.8±2.4, p=0.021) in plasma cells of those patients and MM cell lines. Conclusion: Hypermethylation of p73 promoter suppresses TAp73 expression. The deregulated of ABL1-p73 pathway in MM cells resulted in marked reduction of apoptosis induced by ongoing DNA damage. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4364-4364
Author(s):  
Masanobu Sunaga ◽  
Tsukasa Oda ◽  
Eiko Yamane ◽  
Rei Ishihara ◽  
Yuki Murakami ◽  
...  

Background: DNA polymerases (DNA pols) are essential enzymes for DNA replication. In mammalian cells, DNA pols are divided into four families: A (Pol θ, Pol γ, and Pol ν), B (Pol α, Pol δ, Pol ε, and Pol ζ), X (Pol β, Pol λ, Pol μ, and TDT), and Y (Pol η, Pol ι, Pol κ, and REV1). These DNA pols are required for both genome duplication and protecting cells from DNA damage induced by endogenous and exogenous agents, such as ROS, UV, and chemotherapeutic drugs. For example, Pol β, Pol λ, and Pol ι participate in base excision repair. Contrastingly, Pol ζ, REV1, Pol η, Pol ι, and Pol κ can replicate over various DNA lesions to prevent DNA replication stalling, known as translesion synthesis. Although some DNA pols are highly expressed in cancer cells, indicating chemotherapeutic resistance and poor outcome, their exact roles and expression mechanisms have not been fully elucidated. Multiple myeloma (MM) is a hematological malignancy of terminally differentiated plasma cells, with multistep progression from pre-cancer stage namely. In this study we attempted to elucidate the involvement of DNA pols in multistep oncogenesis of MM. Methods: A total of 63 MM and 29 MGUS patients, 15 controls, and 9 MM cell lines were included in the study. RNA was extracted from purified CD138+ plasma cells. DNA pol expressions were determined by RQ-PCR. Their expression levels were normalized against ACTB levels and calculated with 2-ΔΔCt value. Doxycycline-inducible p53 system (Tet-on p53) and nutlin-3 were used for analyzing the role of p53 in DNA pol expressions in MM cell lines. Melphalan, doxorubicin, and bortezomib were used to examine DNA pol expressions in damaged cells in vitro. JQ1 and CPI203 were used to evaluate the role of bromodomain in DNA pol expressions. Results: Pol α and Pol ε expressions were significantly higher in MM than in control (p=0.007 and p=0.004, respectively), but Pol ε and Pol ζ levels were not significantly different (p=0.631, p=0.0826, respectively). Pol η, REV1, Pol ι, and Pol κ expressions were significantly higher in MM than control (p<0.001, p=0.002, p<0.001, and p<0.001, respectively). Pol θ and Pol γ were expressed at a higher level in MM than in control (p<0.001 and p<0.001, respectively). Pol β and Pol λ expressions were higher in MM than in control (p=0.0088 and p=0.013, respectively). Although the expressions of many DNA pols were higher in MM plasma cells, we focused on Pol η and Pol θ, because Pol λ, Pol μ, Pol ν, and Pol ι were expressed at very low levels, and Pol ε, Pol ζ, Pol γ, Pol κ, and REV1 were expressed in PBMNCs of healthy volunteers at high level. Pol η and Pol θ expressions did not differ due to known risk factors, such as cytogenetic abnormalities and ISS. Pol η expressions were positively correlated with p53 and myc expressions (r=0.718, p<0.001, r=0.528, p<0.001 respectively). p53 overexpression by Tet-on vector or nutlin-3 treatment enhanced Pol η expression, indicating that Pol η expression is regulated by p53. Melphalan or doxorubicin increased Pol η expression, but bortezomib or lenalidomide did not, suggesting that Pol η is upregulated by DNA damage via p53 pathway. Overall survival of the patients with high Pol η expression tended to be worse than with low Pol η expression (24 months survival: 69.6% vs. 57.9%, p=0.29). Pol θ expression was weakly correlated with p53. Melphalan induced Pol θ expression but doxorubicin did not. JQ1 significantly reduced Pol θ expression suggesting that Pol θ was regulated by bromodomain. Conclusion: We found that Pol θ and Pol η are highly expressed in MM, and upregulated by DNA damage. These DNA pols are involved in drug resistance and genomic instability leading to poor prognosis. Thus, DNA pols can be used as novel therapeutic targets and prognostic markers. Disclosures Handa: Ono: Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2489-2489
Author(s):  
Travis J. Henry ◽  
Wee Joo Chng ◽  
John Carpten ◽  
P. Leif Bergsagel ◽  
Rafael Fonseca

Abstract The retinoblastoma 1 (RB1) gene is a frequent target of mutation or inactivation in neoplastic diseases. However, the current model for RB1-mediated malignancy requires inactivation of both alleles for tumor progression. Single–copy loss of RB1 has been shown to correlate with an approximate 50% reduction in RB1 mRNA expression in patients diagnosed with multiple myeloma and survival in this cohort of patients is significantly reduced. Using siRNA to reduce Rb protein levels to 50% and Rb-expressing adenovirus to restore RB1, variations in proliferation and cell cycle were observed. The KMS–11 adherent cell line with normal Rb protein expression was labeled with carboxyfluorescein succinimidyl ester (CFSE) for tracking of cellular division and RB1 siRNA added to silence 50% of protein expression. Transfection efficiency for siRNA was measured at 95% or greater. Flow cytometric analysis was performed at 72 hours to identify changes in proliferation between controls and Rb knock–down. Using CFSE proliferation analysis software, reduction of Rb protein levels by 50% caused an average increase in the proliferation index from 2.05 to 2.50. Additionally, reduction of Rb protein levels caused an increase in the percentage of cells in S–phase, from 24 to 29%. CFSE and cell cycle experiments were performed in triplicate. Conversely, addition of Rb–expressing adenovirus to MM.1R and U266 cell lines, with mono-allelic and bi-allelic loss of RB1 respectively, resulted in a decrease in proliferation assayed by CFSE and an average decrease in the percentage of cells in S-phase from 29 to 23% compared to controls. No changes in proliferation or cell cycle compared to untreated controls were observed following null adenovirus infection. Western blot and quantitative RT–PCR (qPCR) were used to confirm reduction or addition of RB1 to cell lines. Further, qPCR was used to identify potential activation of the interferon response following addition of siRNA and adenovirus. No changes in annexin V expression were observed following reduction or replacement of Rb as compared to controls. These results suggest the addition of proliferation advantages to tumors with single copy loss of RB1. For malignancies such as multiple myeloma characterized by deletion of 13q14 coupled with an extended period of development, the proliferation advantage associated with RB1 haploinsufficiency may contribute to decreased survival in the deletion 13 cohort.


Sign in / Sign up

Export Citation Format

Share Document