Ex Vivo Evaluation of VLA-4 Expression in Primary Human Multiple Myeloma Bone Marrow Samples and In Vivo Mobilization of Murine Multiple Myeloma Cells with Small Molecule VLA-4 Inhibitors

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2056-2056 ◽  
Author(s):  
Chantiya Chanswangphuwana ◽  
Michael P. Rettig ◽  
Walter Akers ◽  
Deep Hathi ◽  
Matthew Holt ◽  
...  

Abstract Background: The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) affects disease progression and provides resistance to therapeutic agents. Very-late-antigen 4 (VLA-4, α4β1 integrin, CD49d/CD29) is a noncovalent, heterodimeric transmembrane receptor that is strongly implicated in the pathogenesis of MM via altering cell trafficking, proliferation and drug resistance. LLP2A is a high-affinity peptidomimetic ligand for activated VLA-4. We recently reported (Soodgupta et al. J. Nucl. Med 2016) the sensitive and specific molecular imaging of activated VLA-4 in mouse MM tumors using 64Cu-LLP2A and LLP2A-Cy5. Here we extended these studies by further characterizing VLA-4 expression in primary human MM samples and malignant plasma cells in mouse models of MM. Methods: We evaluated VLA-4 expression in 5 human MM cell lines (U266, OPM2, H929, RPMI-8226 and MM1.S), one mouse MM cell line (5TGM1) and seventeen primary human MM bone marrow samples by flow cytometry using LLP2A-Cy5, soluble VCAM-1/Fc recombinant protein and CD49d (α4) and CD29 (β1) antibodies. The relative mean fluorescence intensity (RMFI) of LLP2A-Cy5 binding was calculated by dividing the MFI of LLP2A-Cy5 binding in the absence of BIO5192 (small molecule VLA-4 inhibitor) by the MFI of LLP2A-Cy5 binding in the presence of excess BIO5192. The 5TGM1/KaLwRij immunocompetent mouse model of MM was used for in vivo study. Results: The expression of activated VLA-4 on MM cell lines as measured by LLP2A-Cy5+ mean fluorescent intensity (MFI) varied 10-fold as follows (LLP2A-Cy5 MFI in parentheses): 5TGM1 (23.7) > U266 (16.1) > OPM2 (4.6) > H929 (3.4) > RPMI-8226 (3.2) > MM1.S (2.1). We observed similar variable expression of LLP2A-Cy5 binding to primary human CD138+CD38+ MM plasma cells (PCs), with 76.47% (13/17) of MM patients exhibiting greater than 20% LLP2A-Cy5+ PCs. expressing VLA-4 on CD138+CD38+ cells. Overall, the mean percentage of positive cells and LLP2A-Cy5 relative MFI (RMFI) on malignant CD138+ PCs from these 13 patients were 78.2% (43.8-98.3%) and 4.3 (1.7-10.8), respectively. Other hematopoietic cells within the BM samples expressed less VLA-4 in descending order as follows; monocytes (58.2%, RMFI 3.0), T-lymphocytes (34.4%, RMFI 2.1) and B-lymphocytes (21.6%, RMFI 1.6). These levels of VLA-4 expression on normal cell subsets within MM patients were comparable to normal blood donors. In general, there was good correlation between LLP2A-Cy5 binding and expression of CD49d and CD29 on CD138+ PCs in MM patients. To our surprise, the four MM patients with <20% LLP2A-Cy5 binding demonstrated high expression of CD49d (92.1%) but very low percentages of CD29 positive cells (17.3%). Using BIO5192 (VLA-4 inhibitor), we found that the LLP2A-Cy5 reagent allowed more accurate detection of activated VLA-4 than the soluble VCAM-1 binding assay as determined by the magnitude of inhibition of binding in the presence of inhibitor. We next evaluated targeting VLA-4 molecule in murine MM model. Preliminary mouse mobilization studies demonstrated that VLA-4 inhibitors effectively and rapidly mobilized murine 5TGM1 MM cells from the bone marrow to the blood (2.49-fold increase in circulating GFP+CD138+ cells) within 1 hour of injection. Summary:This study is the first demonstration that activated VLA4 can be detected on primary human MM cells using LLP2A. These data support the continued development of LLP2A as a molecular diagnostic imaging reagent for MM and as a potential therapeutic target of VLA-4 in MM. Ongoing studies are testing whether small molecule VLA-4 inhibitors can sensitize MM cells to cytotoxic therapy in vivo. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Patricia Maiso ◽  
AbdelKareem Azab ◽  
Yang Liu ◽  
Yong Zhang ◽  
Feda Azab ◽  
...  

Abstract Abstract 133 Introduction: Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment such as cytokines and growth factors, nutrients and stresses to regulate multiple cellular processes, including translation, autophagy, metabolism, growth, motility and survival. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 and TORC2. Activation of TORC1 leads to the phosphorylation of p70S6 kinase and 4E-BP1, while activation of TORC2 regulates phosphorylation of Akt and other AGC kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin analogues such as RAD001 and CCI-779 have been tested in clinical trials in MM. Their efficacy as single agents is modest, but when used in combination, they show higher responses. However, total inhibition of Akt and 4E-BP1 signaling requires inactivation of both complexes TORC1 and TORC2. Consequently, there is a need for novel inhibitors that can target mTOR in both signaling complexes. In this study we have evaluated the role of TORC1 and TORC2 in MM and the activity and mechanism of action of INK128, a novel, potent, selective and orally active small molecule TORC1/2 kinase inhibitor. Methods: Nine different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: To examine activation of the mTOR pathway in MM, we performed kinase activity assays and protein analyses of mTOR complexes and its downstream targets in nine MM cell lines. We found mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all cell lines tested independently of the status of Deptor, PTEN, and PI3K. All cell lines expressed either Raptor, Rictor or both; excepting H929 and U266LR7 which were negative for both of them. Moreover, primary plasma cells from several MM patients highly expressed pS6R while normal cells were negative for this protein. We found that INK128 and rapamycin effectively suppressed phosphorylation of p6SR, but only INK128 was able to decrease phosphorylation of 4E-BP1. We observed that INK128 fully suppressed cell viability in a dose and time dependent manner, but rapamycin reached a plateau in efficacy at ± 60%. The IC50 of INK128 was in the range of 7.5–30 nM in the eight cell lines tested. Similar results were observed in freshly isolated plasma cells from MM patients. Besides the induction of apoptosis and cell cycle arrest, INK128 was more potent than rapamycin to induce autophagy, and only INK128 was able to induce PARP and Caspases 3, 8 and 9 cleavage. In the bone marrow microenvironment context, INK128 inhibited the proliferation of MM cells and decreased the p4E-BP1 induction. Importantly, treatment with rapamycin under such conditions did not affect cell proliferation. INK128 also showed a significantly greater effect inhibiting cell adhesion to fibronectin OPM2 MM1S, BMSCs and HUVECs compared to rapamycin. These results were confirmed in vivo. Oral daily treatment of NK128 (1.0 mg/kg) decreased tumor growth and improved survival of mice implanted with MM1S. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 889-889
Author(s):  
Francesca Cottini ◽  
Jose Rodriguez ◽  
Maxwell Birmingham ◽  
Tiffany Hughes ◽  
Nidhi Sharma ◽  
...  

Abstract Multiple myeloma (MM) is a disease derived from genetically abnormal clonal plasma cells. MM cells aberrantly express several surface antigens compared with normal plasma cells. Among others, CD56/NCAM1 is present at variable levels in approximately 70% of MM patients. Very little is known about its role in MM; however, CD56 positivity in MM correlates with greater osteolytic burden and lower frequency of good prognostic features, such as the presence of t(11;14). We first analyzed 569 patients with MM diagnosed between 1/1/2005 and 12/31/2014 at the Ohio State University Wexner Medical Center, stratifying them based on the percentage of CD56-expressing clonal MM cells. The mean percentage of CD56-expressing clonal MM was 26.5%, with range from 0 to 100%; the Mean Fluorescent Intensity values varied, with a quarter of patients expressing CD56 at high intensity. We then evaluated patient outcomes based on the percentage of CD56-expressing clonal MM cells. We noticed that MM patients with more than 30 or 50 percent of CD56-expressing MM clonal cells have inferior clinical outcomes than patients with less than 30 or 50 percent of CD56-expressing MM clonal cells, with median overall survival of 9.61 versus 7.64 years (log-rank p-value: 0.004) or 9.30 versus 6.47 years (log-rank p-value: 0.0009), respectively. We then demonstrated by conventional and real-time PCR analyses that the predominately expressed CD56 isoform in MM has signaling potential with a transmembrane portion and cytosolic tail. Therefore, we evaluated the functional role of CD56 in MM. By gain-of function studies in U266 and MM.1S MM cell lines, we showed that overexpression of CD56 promotes MM growth and viability; the opposite effect occurred with CD56 silencing in H929, OPM-2, and RPMI-8226 MM cell lines, which leads to reduced MM growth and increased apoptotic cell death. Overexpression of CD56 resulted in the phosphorylation and hence activation of ribosomal protein S6 kinase A3 (RSK2) and of the transcription factor, cAMP responsive element binding protein 1 (CREB1). This induced CREB1 binding to DNA consensus CRE elements, and promoted transcription of CREB1 targets, the anti-apoptotic genes BCL2 and MCL1. CD56 silencing in H929 and OPM-2 MM cell lines had opposite effects, with reduction of phospho-RSK2, phospho-CREB1, MCL1, and BCL2 levels. We then used shRNAs targeting RSK2 and CREB1 or specific inhibitors (BI-D1870 that is a RSK2 inhibitor, and 666-15 that is a CREB1 inhibitor) at 0.1-1 microM concentration. We evaluated viability by MTT assay or Zombie dye staining on CD138 positive MM cells and apoptosis by Annexin V-PI staining. We demonstrated that CD56 positive MM cell lines (H929, OPM-2, and RPMI-8226) or patients with high CD56 expression (&gt;30% of CD56-expressing clonal MM cells) are more sensitive to RSK2/CREB1 inhibition compared with CD56 negative MM cell lines (U266, L363, and MM.1S) or patients with low CD56 expression (&lt;30% of CD56-expressing clonal MM cells). Using similar strategies, we also proved that CREB1 is essential to CD56-protumoral phenotype, since CREB1 inhibition reduces cellular growth and viability in CD56 overexpressing U266 cells. RSK2 and CREB1 inhibition mimic CD56 silencing with decrease of BCL2 and MCL1 mRNA and protein levels. Furthermore, we observed that CD56 signaling by CREB1 activation decreases CRBN expression, reducing responses to lenalidomide. Conversely, CREB1/RSK2 blockade rescued CRBN levels in CD56 positive MM cells and increased lenalidomide response. These results support the hypothesis that targeting CREB1 is hence a so far unexplored but potentially effective synthetic lethal strategy for CD56-expressing MM patients. In conclusion, our study defines an effective threshold for therapeutic intervention in CD56-expressing MM patients. Moreover, our data pioneer the use of CREB1/RSK2 inhibition in CD56-expressing MM cells, either as single agents or in combination with lenalidomide, suggesting that CD56 can be a prognostic and predictive factor of response in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1008-1008
Author(s):  
Tyler Moser-Katz ◽  
Catherine M. Gavile ◽  
Benjamin G Barwick ◽  
Sagar Lonial ◽  
Lawrence H. Boise

Abstract Multiple myeloma is the second most common hematological malignancy in the U.S. with an estimated 30,700 new diagnoses in 2018. It is a clonal disease of plasma cells that, despite recent therapeutic advances, remains incurable. Myeloma cells retain numerous characteristics of normal plasma cells including reliance on survival signals in the bone marrow for long term viability. However, malignant transformation of plasma cells imparts the ability to proliferate, causing harmful bone lesions in patients, and in advanced stages independence of the bone-marrow microenvironment. Therefore, we are investigating the molecular mechanisms of myeloma cell survival that allow them to become extramedullary. We identified syntenin-1 (SDCBP) as a protein involved in myeloma cell survival and a potential therapeutic target. Syntenin-1 is an adapter protein that has been shown to regulate surface expression of several transmembrane proteins by binding with membrane phospholipids and mediating vesicular trafficking of proteins throughout the cell. Syntenin-1 regulates the surface expression of CD138, a plasma/myeloma cell marker. Syntenin-1 has been shown to regulate apoptosis in numerous cancer cell lines including breast cancer, glioma, and pancreatic cancer but its role in multiple myeloma survival has not been studied. To determine if syntenin-1 expression has an effect on myeloma cell survival, we utilized the CoMMpass dataset (IA12), a longitudinal study of myeloma patients that includes transcriptomic analysis throughout treatment. We found that patients with the highest expression of syntenin-1 mRNA (top quartile) had significantly worse overall survival, progression-free survival, and a shorter response duration than those in the bottom quartile of expression. To determine if syntenin-1 has a role in myeloma cell survival, we used short hairpin RNA to knock down syntenin-1 (shsyn) in RPMI 8226 and MM1.s myeloma cell lines. We then determined the amount of cell death using Annexin-V staining flow cytometry four days following lentiviral infection. We found increased cell death in syntenin-1-silenced cells compared to our empty vector control in both RPMI 8226 (control=42.17%, shsyn=71.53%, p=0.04) and MM1.s cell lines (control=8.57%, shsyn=29.9%, p=0.04) suggesting that syntenin-1 is important for myeloma cell survival. Syntenin-1 contains two PDZ domains that allow it to bind to receptor proteins via their corresponding PDZ-binding motifs. We therefore wanted to look at correlation of syntenin-1 expression with CD138 and CD86, two PDZ-binding domain containing proteins expressed on the surface of myeloma cells. Using the CoMMpass dataset, we found patients with high expression of syntenin-1 had a median expression of CD86 that was twice as high as the total population (P<0.0001) while syntenin-1-low patients expressed CD86 at levels that were half as much as the population (P<0.0001). In contrast, there was no clear relationship between syntenin-1 and CD138 mRNA expression. Indeed if one takes into account all patients, there is a positive correlation between CD86 and syntenin-1 expression (r=0.228, P<0.0001) while there is a negative correlation between CD138 and syntenin-1 (r=-0.1923, P<0.0001). The correlation with CD86 but not CD138 suggests a previously undescribed role for syntenin-1 in myeloma cells. Our lab has previously shown that expression of CD86 is necessary for myeloma cell survival, and signals via its cytoplasmic domain to confer drug resistance. Silencing syntenin-1 results in a decrease in CD86 surface expression. However, there is no change in CD86 transcript or total cellular CD86 protein levels in our shsyn treated cells. Moreover, knockdown of CD86 resulted in increased protein expression and transcript levels of syntenin-1. Taken together, these data suggest that syntenin-1 may regulate CD86 expression on the cell surface. Our data supports a novel role for syntenin-1 in myeloma cell viability and as a potential regulator of CD86 surface expression. The role of syntenin-1 has not previously been explored in multiple myeloma and determining its molecular function is warranted as it may be an attractive target for therapeutic treatment of the disease. Disclosures Lonial: Amgen: Research Funding. Boise:AstraZeneca: Honoraria; Abbvie: Consultancy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1419-1419
Author(s):  
Soraya Wuilleme-Toumi ◽  
Nelly Robillard ◽  
Patricia Gomez-Bougie ◽  
Philippe Moreau ◽  
Steven Le Gouill ◽  
...  

Abstract Multiple Myeloma (MM) is a fatal malignancy of B-cell origin characterized by the accumulation of plasma cells within the bone marrow. The expression of the pro-survival members of the Bcl-2 family has been shown to be a key process in the survival of myeloma cells. More particularly, Mcl-1 expression turned out to be critical for their survival. Indeed, knockdown of Mcl-1 by antisenses induces apoptosis in myeloma cells. Finally, Mcl-1 was found to be the only anti-apoptotic Bcl-2 family member which level of expression was modified by cytokine treatment of myeloma cells. For these reasons, we have evaluated the expression of Mcl-1 in vivo in normal, reactive and malignant plasma cells (PC) i.e., myeloma cells from 55 patients with MM and 20 human myeloma cell lines using flow cytometry. We show that Mcl-1 is overexpressed in MM in comparison with normal bone marrow PC. Forty-seven percent of patients with MM at diagnosis (p=.017) and 80% at relapse (p=.014 for comparison with diagnosis) overexpress Mcl-1. Of note, only myeloma cell lines but not reactive plasmocytoses have abnormal Mcl-1 expression, although both plasmocyte expansion entities share similar high proliferation rates (&gt;20%). Of interest, Bcl-2 as opposed to Mcl-1, does not discriminate malignant from normal PC. This shows that the overexpression of Mcl-1 is clearly related to malignancy rather than to proliferation. It will be important to know whether the overexpression of Mcl-1 is related to an abnormal response to cytokines like Interleukin-6 or to mutations of the promoter of the Mcl-1 gene as already described in B chronic lymphocytic leukemia. Finally, level of Mcl-1 expression is related to disease severity, the highest values being correlated with the shortest event-free survival (p=.01). In conclusion, Mcl-1 which has been shown to be essential for the survival of human myeloma cells in vitro is overexpressed in vivo in MM and correlates with disease severity. Mcl-1 represents a major therapeutical target in MM.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 300-300 ◽  
Author(s):  
Marc S Raab ◽  
Iris Breitkreutz ◽  
Blanka Rebacz ◽  
Thomas O Larsen ◽  
Ludmila Wagner ◽  
...  

Abstract Abstract 300 The lack of tumor-specific targets that would allow for the selective eradication of malignant cells without affecting healthy tissues is a major challenge in the development of novel therapies for multiple myeloma (MM). In contrast to normal cells, malignant plasma cells frequently contain multiple centrosomes, associated with the transient formation of multipolar mitotic spindles that lead to segregation defects and chromosomal instability. As in most tumor types, mitotic stability in these cells is maintained by coalescence of multiple centrosomes into two functional spindle poles, termed “centrosomal clustering”. As we have recently shown, this mechanism is an attractive therapeutic target with specificity for tumor cells. To identify potent and selective inhibitors of centrosomal clustering, we performed a phenotype-based small molecule screen in order to force tumor cells with supernumerary centrosomes to undergo multipolar mitoses resulting in apoptotic cell death. We here describe the characterization of a novel small molecule GF-15, a derivative of griseofulvin, as a potent inhibitor of centrosomal clustering, thereby inducing multipolar spindles followed by apoptosis in MM cells. We tested a wide array of MM cell lines, including those resistant to conventional chemotherapeutic agents, and primary patient cells. We found mean inhibitory concentrations (IC50) of proliferation and survival in the range of 1-5 mM, associated with annexin V conversion and activation of caspases 8, 9, and 3. Importantly, GF-15 also overcomes the tumor cell growth advantage conferred by both bone marrow stromal cell-MM, and endothelial cell-MM, co-culture systems. Moreover, non-malignant cells without supernumerary centrosomes like activated PBMCs, immortalized hepatocytes, and bone marrow stromal cells did not reach their IC50 at doses of up to 50 mM. To further demonstrate the specificity of GF-15, we generated resistant MM cell lines by long-term culture with sub-IC50 doses of GF-15. In resistant cell lines, therapeutic doses of GF-15 no longer induce multipolar spindles, consistent with a significant loss of centrosomal aberrations in these cells, as observed by immunoflourescence microscopy. Mechanistically, cell cycle analysis of synchronized MM cells showed marked G2/M arrest within 12-16h followed by a dramatic increase of the sub-G1 fraction after treatment with GF-15. In addition, short term treatment with GF-15 was associated with inhibition of VEGF- and IGF1-triggered MM cell migration. Co-treatment assays to assess potential partners for therapeutic combinations revealed at least additive effects for GF-15 together with bortezomib and marked synergism with paclitaxel at very low doses (1-5 nM), while the combination with melphalan resulted in antagonistic effects due to the S-phase arrest of tumor cells induced by melphalan. Finally and most importantly, i.p. as well as oral treatment of murine xenograft models of human MM resulted in tumor growth inhibition and significantly prolonged survival in vivo. Growth inhibition of xenograft tumor samples was associated with a dramatic increase of mitotic aberrations and multipolarity, as assessed by immunohistochemistry. In vivo biodistribution studies are ongoing. Taken together, our results demonstrate the in vitro and in vivo anti-tumor efficacy of a prototype small molecule inhibitor of centrosomal clustering with specificity for tumor cells, and therefore strongly support its further evaluation and development as a lead compound of a new class of therapeutics for human malignancies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 307-307 ◽  
Author(s):  
Antonio Solimando ◽  
Andreas Brandl ◽  
Mattenheimer Katharina ◽  
Carolin Graf ◽  
Miriram Ritz ◽  
...  

Abstract Cell adhesion in the multiple myeloma (MM) microenvironment is a mechanism by which MM plasma cells escape the effects of therapy and survive. To improve clinical strategies and overcome drug resistance, approaches directed to both MMPCs and bone marrow microenvironment are under investigation. Here, we examined the cell membrane protein Junctional adhesion molecule-A (JAM-A) as a clinical biomarker and novel therapeutic target for MM. We evaluated JAM-A expression by real time PCR (RT-PCR), flow cytometry and immunofluorescence microscopy in 132 MM patients at different stages and various MM cell lines. Next, we measured the concentrations of soluble JAM-A from MM and healthy subjects sera by enzyme linked immune assay (ELISA). We investigated JAM-A functionally in vitro and in vivo by transient gene silencing (siRNA) and with blocking antibodies. Patient-derived plasma cells (MMPCs) expressed increased JAM-A expression levels when compared to control PC from healthy individuals. Elevated JAM-A expression correlated with poor prognosis (Figure 1A,B). Furthermore, soluble JAM-A was significantly increased in MM patient sera when compared to healthy subjects. Additionally, MM cell lines showed high expression of both membrane and cytoplasmic JAM-A. Consequently, inhibition of JAM-A using specific siRNA treatment resulted in diminished tumorigenic potential, including decreased colony formation, chemotaxis and migration. Importantly, treatment of luciferase+RPMI-8226 MM bearing NSG with a JAM-A blocking monoclonal antibody reduced significantly MM progression and dissemination in vivo when compared to MM bearing mice that received an non-specific isotype control antibody (Figure 1C). Conclusively, our data suggest that JAM-A can serve as a biomarker of malignancy in MM patients. Soluble plasma JAM-A could contribute to serum-based clinical stratification. Furthermore, therapeutic targeting of JAM-A appears attractive for clinical translation. Figure 1 Figure 1. Disclosures Einsele: Celgene: Consultancy, Honoraria, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; Amgen: Consultancy, Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3478-3478
Author(s):  
Dale Wright ◽  
Shannon L. Winski ◽  
Deborah Anderson ◽  
Patrice Lee ◽  
Mark Munson ◽  
...  

Abstract Multiple myeloma (MM) is characterized by the expansion of malignant plasma cells within the bone marrow. Their growth, survival, and migration are mediated in part via cytokines. Interleukin 6 (IL-6) is necessary for sustaining the in vitro growth of many MM cell lines and enhancing the proliferation of explanted human myeloma cells. The mitogen-activated protein kinase family member, p38, is activated by cytokines and growth factors and plays a significant role in inflammatory diseases. However, its role in the pathogenesis of multiple myeloma is poorly understood. Specific p38 inhibitors inhibit paracrine MM cell growth which is associated with IL-6 and VEGF secretion from bone marrow stromal cells (BMSCs). Furthermore, p38 inhibition blocks TNF-alpha-induced IL-6 secretion in BMSCs, thereby further inhibiting MM cell growth and survival. Although these data suggest an important role for p38 in MM, the direct effects of p38 inhibiton on MM has not been extensively explored. Therefore, we investigated the effects of p38 inhibition on in vitro and in vivo IL-6 production and MM cell growth in vivo after lipopolysaccaride (LPS) stimulation. LPS has been shown to induce various cytokines, including TNF-alpha and IL-6, via the p38 pathway. ARRY-797, an orally bioavailable, small molecule inhibitor of p38 directly inhibited LPS-induced IL-6 production from RPMI-8226 (IC50 = 100 pM) in vitro. In SCID-beige mice, LPS (3 μg/kg) induced IL-6 (7897 ± 827 pg/mL) and TNF-alpha (1922 ± 282 pg/mL) after 2 hours and these cytokines were inhibited by oral administration of ARRY-797 (30 mg/kg) by 91% and 95%, respectively. In MM xenograft models, ARRY-797 (30 mg/kg, BID, PO) inhibited RPMI 8226 tumor growth by 72% as a single agent and by 56% when LPS was administered to stimulate growth in vivo. In addition, ARRY-797 inhibited LPS-induced phosphorylation of p38 in RPMI-8226 xenografts. Together, these data support a role for p38 in IL-6-mediated growth of multiple myelomas. To our knowledge, ARRY-797 is the first small molecule p38 inhibitor to demonstrate single agent activity in a MM xenograft model and it has been advanced into preclinical development.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2522-2522
Author(s):  
Yutaka Okawa ◽  
Teru Hideshima ◽  
Hiroshi Ikeda ◽  
Sonia Vallet ◽  
Tanyel Kiziltepe ◽  
...  

Abstract Heat-shock protein 90 (hsp90) is a important molecular chaperone required for protein folding, assembly, and maintenance of conformational integrity of several client proteins regulating cell survival, proliferation, and apoptosis. In this study, we investigate whether targeting hsp90 induces cytotoxicity of multiple myeloma (MM) cells in the bone marrow (BM) microenvironment using the small molecule hsp90 inhibitor SNX-2112. SNX-2112 induces growth inhibition in both MM cell lines and patient MM cells resistant to conventional therapeutic agents, with IC50 of 0.019-7.339 uM. Interestingly, SNX-2112 is more potent against all MM cell lines than 17-allylamino-17-demethoxy-geldanamycin (17-AAG) and orally bioavailable. These data suggest its potential utility to overcome conventional drug resistance in MM. MM cell apoptosis triggered by SNX-2112 is mediated via caspase-8,-9,-3 and PARP cleavage. In addition, SNX-2112 significantly inhibits Akt and extracellular signal-related kinase (ERK) signaling pathways induced by interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1), which mediate cell proliferation and survival in MM cells, both known client proteins of hsp90. Moreover, SNX-2112 overcomes the survival and growth advantages conferred by IL-6, IGF-1 and bone marrow stromal cells (BMSC). Importantly, SNX-2112 inhibits in vitro capillary-like tube formation by human umbilical vein endothelial cells (HUVEC) via abrogation of endothelial nitric oxide (eNOS)/Akt pathway which is essential cascade in angiogenesis. It also markedly inhibits osteoclast formation associated with downregulation of ERK/c-fos, p38MAPK, and PU.1 pathways, which mediate osteoclastogenesis. Furthermore SNX-5422, a prodrug of SNX-2112, significantly inhibits MM tumor growth and prolongs survival in vivo in a xenograft murine model. We also confirm that SNX-5422 triggers MM cell apoptosis in vivo by TUNEL assay, associated with an inhibitory effect on microvessel density (MVD), evidenced by immunohistochemical analysis for CD34 expression. Therefore, targeting hsp90 by novel small molecule inhibitor SNX-2112 not only inhibits MM cell growth, but also acts in the BM microenvironment to block angiogenesis and osteoclast formation associated with downregulation of Akt and ERK signaling. Taken together, our data provide the preclinical rationale for clinical evaluation of SNX-2112 to improve patient outcome in MM.


Leukemia ◽  
2016 ◽  
Vol 31 (8) ◽  
pp. 1743-1751 ◽  
Author(s):  
S Hipp ◽  
Y-T Tai ◽  
D Blanset ◽  
P Deegen ◽  
J Wahl ◽  
...  

Abstract B-cell maturation antigen (BCMA) is a highly plasma cell-selective protein that is expressed on malignant plasma cells of multiple myeloma (MM) patients and therefore is an ideal target for T-cell redirecting therapies. We developed a bispecific T-cell engager (BiTE) targeting BCMA and CD3ɛ (BI 836909) and studied its therapeutic impacts on MM. BI 836909 induced selective lysis of BCMA-positive MM cells, activation of T cells, release of cytokines and T-cell proliferation; whereas BCMA-negative cells were not affected. Activity of BI 836909 was not influenced by the presence of bone marrow stromal cells, soluble BCMA or a proliferation-inducing ligand (APRIL). In ex vivo assays, BI 836909 induced potent autologous MM cell lysis in both, newly diagnosed and relapsed/refractory patient samples. In mouse xenograft studies, BI 836909 induced tumor cell depletion in a subcutaneous NCI-H929 xenograft model and prolonged survival in an orthotopic L-363 xenograft model. In a cynomolgus monkey study, administration of BI 836909 led to depletion of BCMA-positive plasma cells in the bone marrow. Taken together, these results show that BI 836909 is a highly potent and efficacious approach to selectively deplete BCMA-positive MM cells and represents a novel immunotherapeutic for the treatment of MM.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1589-1589
Author(s):  
Michael Kline ◽  
Terry Kimlinger ◽  
Michael Timm ◽  
Jessica Haug ◽  
John A. Lust ◽  
...  

Abstract Background: Multiple myeloma (MM) is a plasma cell proliferative disorder that is incurable with the currently available therapeutics. New therapies based on better understanding of the disease biology are urgently needed. MM is characterized by accumulation of malignant plasma cells predominantly in the bone marrow. These plasma cells exhibit a relatively low proliferative rate as well as a low rate of apoptosis. Elevated expression of the anti-apoptotic Bcl-2 family members has been reported in MM cell lines as well as in primary patient samples and may be correlated with disease stage as well as resistance to therapy. ABT-737 (Abbott Laboratories, Abbott Park, IL) is a small-molecule inhibitor designed to specifically inhibit anti-apoptotic proteins of the Bcl-2 family and binds with high affinity to Bcl-XL, Bcl-2, and Bcl-w. ABT-737 exhibits toxicity in human tumor cell lines, malignant primary cells, and mouse tumor models. We have examined the in vitro activity of this compound in the context of MM to develop a rationale for future clinical evaluation. Methods: MM cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum supplemented with L-Glutamine, penicillin, and streptomycin. The KAS-6/1 cell line was also supplemented with 1 ng/ml IL-6. Cytotoxicity of ABT-737 was measured using the MTT viability assay. Apoptosis was measured using flow cytometry upon cell staining with Annexin V-FITC and propidium iodide (PI). Flow cytometry was also used to measure BAX: Bcl-2 ratios after ABT-737 treatment and cell permeabilization with FIX & PERM (Caltag Laboratories, Burlingame, CA) Results: ABT-737 exhibited cytotoxicity in several MM cell lines including RPMI 8226, KAS-6/1, OPM-1, OPM-2, and U266 with an LC50 of 5-10μM. The drug also had significant activity against MM cell lines resistant to conventional agents such as melphalan (LR5) and dexamethasone (MM1.R) with similar LC50 (5-10 μM), as well as against doxorubicin resistant cells (Dox40), albeit at higher doses. Furthermore, ABT-737 retained activity in culture conditions reflective of the permissive tumor microenvironment, namely in the presence of VEGF, IL-6, or in co-culture with marrow-derived stromal cells. ABT-737 was also cytotoxic to freshly isolated primary patient MM cells. Time and dose dependent induction of apoptosis was confirmed using Annexin V/PI staining of the MM cell line RPMI 8226. Flow cytometry analysis of cells treated with ABT-737 demonstrated a time and dose dependent increase in pro-apoptotic BAX protein expression without significant change in the Bcl-XL or Bcl-2 expression. Ongoing studies are examining the parameters and mechanisms of ABT-737 cytotoxicity to MM cells in more detail. Conclusion: ABT-737 has significant activity against MM cell lines and patient derived primary MM cells in vitro. It is able to overcome resistance to conventional anti-myeloma agents suggesting a different mechanism of toxicity that may replace or supplement these therapies. Additionally, it appears to be able to overcome resistance offered by elements of the tumor microenvironment. The results of these studies will form the framework for future clinical evaluation of this agent in the clinical setting.


Sign in / Sign up

Export Citation Format

Share Document