A Drug Screen in Zebrafish Identifies a New Therapeutic Agent Active in Acute Lymphoblastic Leukemia

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2129-2129
Author(s):  
Nikolaus Trede ◽  
Suzanne Ridges ◽  
Deepa Joshi ◽  
Jon Beck ◽  
Hossein Soffla ◽  
...  

Abstract Abstract 2129 Objectives: T cell lineage is an independent high risk factor in acute lymphoblastic leukemia (ALL). T-ALL requires high dose multi-agent chemotherapy, conferring many toxic side effects. T-ALL treatment therefore needs new, targeted agents that preserve or improve current treatment efficacy, yet cause fewer side effects than existing chemotherapeutic regimens. To identify such drugs, we pioneered an in vivo screen using transgenic zebrafish with T cell-specific green fluorescent protein (GFP) expression. We reasoned that immature T cells in 5-day-old zebrafish larvae are developmentally analogous to T-ALL lymphoblasts, and likely rely upon similar signaling pathways. Hence, compounds that specifically eliminate T cells in zebrafish larvae might likewise selectively target T-ALL cells. An added benefit of our in vivo screen is that drugs added to the water housing fish larvae must cross an epithelial barrier, can be metabolized by the liver, and can be renally cleared, characteristics not assessed in in vitro-based screening strategies. In addition, by using early larvae as our subjects, drugs lacking T cell specificity will likely impair normal development and/or survival, which we postulate is a predictor of unwanted toxicities. In these ways, our screen mimicked the scenario encountered in patients. Our use of the transgenic p56lck::EGFP zebrafish line facilitated rapid visual assessment of efficacy of a large number of compounds in 96-well format. Materials and Results: In a proof-of-principle experiment, we identified several known anti-T-ALL drugs, most prominently glucocorticoids, from the “Spectrum” library (MicroSource Discovery Systems, Inc., Gaylordsville, CT) of well-characterized compounds. We then screened 39,200 small molecules from the “ChemBridge DIVERSet” combinatorial chemistry library (ChemBridge Corp., San Diego, CA) for those active against zebrafish larval T cells. Of 20 novel “hits” identified, one compound, dubbed Lenaldekar (“LDK”), met additional prioritization criteria. LDK does not impair the cell cycle of developing zebrafish, is well tolerated and orally bioavailable with favorable pharmacokinetic properties in mice. In addition, pilot studies with LDK indicate it is efficacious in treating T-ALL in juvenile and adult fish from an established transgenic rag2::ER-human cMyc T-ALL model. LDK kills all of several murine T-lymphocytic malignancies, induces apoptosis in all human T-ALL lines tested, and shows some activity in human B-ALL lines. However, glioblastoma, colon carcinoma, melanoma, or immortalized human embryonic kidney cell lines are not affected by LDK, even at high concentration (up to 25μM). Using the recently established “phosflow” technique we measured phosphorylation status of key signaling proteins in permeabilized T- and B-ALL lines. Regardless of PTEN status, PDK1, AKT and mTOR downstream targets p4EBP1 and p70S6kinase were dephosphorylated by LDK treatment, as was the p65 subunit of NFκB on serine 529. Results were corroborated by conventional Western blots. However, phosphorylation of STAT3, STAT5, pERK1-2, and p38 were not affected by LDK. LDK's action is distinguished from other AKT/mTOR inhibitors by its lack of activity against AKT-dependent glioblastoma and melanoma cell lines, and its lack of effect on cell size. Finally, LDK decreased tumor burden of human T-ALL in murine xenografts. Conclusions: In view of its apparent lymphocyte selectivity, we posit that LDK modulates a pathway relatively unique to ALL (and immature lymphoblast) cells. This suggests that LDK can serve as a novel molecular tool for studies of normal and malignant lymphocyte biology. Moreover, with its favorable pharmacokinetics, apparent lack of toxicity, and in vivo efficacy in two vertebrate ALL models, LDK is an attractive molecule for development into a targeted treatment for ALL and perhaps other lymphocytic malignancies. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3156-3156
Author(s):  
James D. Phelan ◽  
Cyrus Khandanpour ◽  
Shane Horman ◽  
Marie-Claude Gaudreau ◽  
Jinfang Zhu ◽  
...  

Abstract Abstract 3156 T cell acute lymphoblastic leukemia (T-ALL) is one of the most common childhood cancers associated with mutations in NOTCH1. The Growth factor independent-1 (Gfi1) transcriptional repressor gene was originally discovered as a common target of Moloney murine leukemia virus (MMLV) proviral insertion in murine T-ALL. In fact, the Gfi1 locus is the most frequently activated gene in MMLV-induced T cell leukemia. Therefore, we investigated whether the most commonly activated gene in MMLV-induced murine T-ALL, Gfi1, could collaborate with the most commonly activated gene in human T-ALL, NOTCH1. Here, we show that GFI1 expression is associated with Notch signaling in human T-ALL (p'0.0003). Functionally, Gfi1 collaborates with Notch-induced murine T-ALL by accelerating an already rapid disease model (p=0.03) without altering the lymphoblastic nature of the disease. Furthermore, inducible deletion of Gfi1 is counter-selected in both Notch-driven retroviral and transgenic mouse models of T-ALL; whereas, constitutive absence of Gfi1 completely prevents transgenic Notch-induced T-ALL (p≤0.04). However, T-ALL tumors can form in Gfi1-/- animals using either ENU-mutagenesis or MMLV-infection, yet tumor formation is delayed (p≤0.02, p≤0.03 respectively). This suggests that Gfi1 deletion does not prevent the formation of the T-ALL initiating cell and that Gfi1 might be absolutely required for Notch-induced T-ALL. Most striking is that Gfi1 is required for T-ALL maintenance in vitro and in vivo. Using three separate Tal1-initiated murine T-ALL cell lines, the overexpression of the Gfi1 dominant-negative, Gfi1N382S, was quickly and completely counter-selected. As Gfi1 has previously been found to regulate pro-apoptotic genes in T cells, we attempted to rescue the above loss of function phenotype by overexpressing the anti-apoptotic factor Bcl2. Notably, counter-selection of Gfi1N382 is not observed or is significantly delayed in all three cell lines. In vivo, inducible deletion of Gfi1 leads to both mutagen- or Notch-induced tumor regression as measured by ultrasound. In fact, levels of Gfi1 expression directly correlate to tumor regression and disease free survival of T-ALL. Finally, targeting Gfi1 enhances the efficacy of radiation therapy and bone marrow transplantation. Deletion of Gfi1 sensitizes T-ALL tumors and T cells to p53-dependent apoptosis after exposure to DNA-damaging agents such as radiation, Etoposide or Daunorubicin by de-repression of the pro-apoptotic Gfi1 target gene Bax. These data extend the role of Gfi1 to human T-ALL and suggest that T-ALL is dependent upon Gfi1 to repress pro-apoptotic genes for tumor survival, ultimately highlighting a new therapeutic target in the fight against lymphoid malignancies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 133 (21) ◽  
pp. 2291-2304 ◽  
Author(s):  
Diego Sánchez-Martínez ◽  
Matteo L. Baroni ◽  
Francisco Gutierrez-Agüera ◽  
Heleia Roca-Ho ◽  
Oscar Blanch-Lombarte ◽  
...  

Abstract Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient–derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2418-2418
Author(s):  
Lori A. Ehrlich ◽  
Katherine S. Yang-Iott ◽  
Amy DeMicco ◽  
Craig H. Bassing

Abstract Abstract 2418 Acute lymphoblastic leukemia (ALL) is diagnosed in approximately 2500 children per year. Although high cure rates have been achieved for ALL, these cancers account for the highest number of non-brain tumor cancer-related deaths in children. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature TCRβ−CD4+/CD8+ T-cells that represents ∼15% of pediatric ALL diagnoses, comprises most of the therapy-resistant ALL tumors, and exhibits a high frequency of relapse. The Ataxia Telangiectasia mutated (ATM) protein kinase activates the cellular response to DNA double strand breaks (DSBs) to coordinate DNA repair with cell survival, proliferation, and differentiation. Somatic inactivating ATM mutations occur in 10–20% of T-ALL and T cell lymphoblastic lymphoma (T-LL) tumors and are associated with resistance to genotoxic chemotherapy drugs and therapy relapse, likely driven by increased genomic instability in cells lacking functional ATM. The impaired DSB response of ATM-deficient cells can be exploited to design combinations of genotoxic drugs that specifically kill these cells in vitro. However, the in vivo potential of such drug combinations to treat T-ALL have not been reported. We sought to develop a pre-clinical mouse model that could be used to test effectiveness of such drug combinations to treat T-ALLs and T-LLs with somatic ATM inactivation. Although germline ATM-deficient (Atm−/−) mice succumb by six months of age to immature CD4+/CD8+ T-cell lymphomas containing genomic instability analogous to human T-ALL tumors, we sought a more physiologic model that would avoid potential complications due to ATM-deficiency in thymic epithelial cells. Thus, we generated and characterized VavCre:Atmflox/flox mice with conditional Atm inactivation restricted to hematopoietic cell lineages. These mice contain reduced numbers of TCRβ−CD4+/CD8+, TCRβ+CD4+/CD8−, and TCRβ+CD4−/CD8+ thymocytes and of TCRβ+CD4+ and TCRb+CD8+ splenic T-cells, mirroring the phenotype of Atm−/− mice. We have found that VavCre:Atmflox/flox mice succumb at an average of 95 days (range 53–183 days) to clonal TCRβ−CD4+/CD8+ or TCRβ+CD4−/CD8+ thymic lymphomas. Evaluation of the bone marrow in a subset of these mice indicates that the lymphoma has disseminated and are classified as leukemia. Our initial cytogenetic analyses of these tumors indicate that they contain both clonal translocations involving chromosome 12 and/or chromosome 14 and deletion of one allelic copy of the haploinsufficient Bcl11b tumor suppressor gene. Hemizygous BCL11B inactivation occurs in ∼20% of human T-ALL tumors, indicating the clinical relevance of VavCre:Atmflox/flox mice as a model for human T-ALL. Our ongoing studies include complete cytogenetic and molecular characterization of VavCre:Atmflox/flox tumors and in vivo testing of chemotherapeutics targeting the Atm pathway in this mouse model of T-ALL/T-LL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 303-303
Author(s):  
Bart A. Nijmeijer ◽  
Marianke L.J. Van Schie ◽  
Roel Willemze ◽  
J.H. Frederik Falkenburg

Abstract Allogeneic cellular immunotherapy is generally ineffective in acute lymphoblastic leukemia (ALL). In vitro studies have suggested that this inefficacy may be the result of a lack of costimulatory molecule expression by ALL cells, resulting in the induction of T cell anergy. Activation of T cells by ALL cells that are transformed into adequate antigen-presenting cells (ALL-APC) may prevent the induction of T cell anergy and result in the generation of competent leukemia-reactive T cell responses for adoptive immunotherapy. However, in vitro modification of ALL cells was hampered by the fact that ALL cells from adult patients could not be cultured in vitro for prolonged periods of time. We have developed a novel serum-free culturing system for B-lineage ALL in which proliferation is initiated and sustained by ALL-cell derived growth factors. Long-term (>2 yrs) proliferation was induced in 12 out of 26 randomly selected primary samples from patients with ALL. The cell cultures ( Leiden cell lines) proliferated with a mean doubling time of 3.0 days (range 2.7–3.6 days). All Leiden cell lines presented the chromosomal abberations observed in the primary cells. The Leiden cell lines displayed an immune phenotype similar to the primary cells, exept for loss of CD34 expression. In vivo characteristics of Leiden cells were evaluated in NOD/scid mice. After intravenous inoculation, Leiden cell lines and primary cells showed identical homing patterns initially involving spleen and bone marrow, followed by the development of overt and progressive leukemia. A comparison of in vivo progression kinetics was performed for one of the Leiden cell lines and the corresponding primary cells. Weekly determination of leukemic cell counts in the blood of engrafted animals revealed that the cell line and the primary cells displayed similar doubling times in vivo of 6.3 and 7.7 days, respectively. To generate cells with improved antigen presentation function, Leiden cell lines were exposed to various activating agents. Stimulation with CpG containing oligonucleotides resulted in induction of CD40 in 9 out of 10 lines. Subsequent ligation of CD40 by culturing CpG-activated Leiden cells on fibroblasts expressing human CD40 ligand resulted in the induction of CD80 or CD86 in 7 of these 10 cell lines. To study the immune stimulatory properties of these Leiden ALL-APC, allogeneic HLA-identical T cells were first activated in vitro by coculturing these cells with either unmodified Leiden cells or with the corresponding Leiden ALL-APC for 3 days, and subsequently infused into groups of 6 leukemic NOD/scid mice. While T cells cocultured with unmodified Leiden cells did not expand in vivo, T cells cocultured with Leiden ALL-APC expanded after infusion in 5 out of 6 animals. This expansion coincided with a 20–75% decrease in leukemic cell numbers in the blood. In conclusion, the novel serum-free culturing system enables long-term culture and manipulation of a significant fraction of primary human ALL. These Leiden cell lines can be modified into ALL-APC that display adequate antigen presenting function, preventing the induction of T cell anergy as demonstrated in vivo in the NOD/scid mouse model.


Blood ◽  
2015 ◽  
Vol 125 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Joni Van der Meulen ◽  
Viraj Sanghvi ◽  
Konstantinos Mavrakis ◽  
Kaat Durinck ◽  
Fang Fang ◽  
...  

Key Points The H3K27me3 demethylase UTX is recurrently mutated in male T-ALL and escapes X-inactivation in female T-ALL blasts and normal T cells. The loss of Utx contributes to T-ALL formation in vivo and UTX inactivation confers sensitivity to H3K27me3 inhibition.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1136-1136
Author(s):  
André De Almeida ◽  
Tim Pieters ◽  
Sara T'Sas ◽  
Steven Goossens ◽  
Pieter Van Vlierberghe

Abstract Background: T-lineage acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy that accounts for 10%-15% of pediatric and 25% of adult ALL cases. Although the prognosis of T-ALL has been improving over time, the outcome of T- ALL patients with primary resistant or relapsed leukemia remains poor. Thus, further advances in the treatment of T-ALL require the identification of new targets for the development of highly specific molecularly targeted drugs. SRY-related HMG-box 11 (SOX11) is a member of the SOXC family, which also includes SOX4 and SOX12. SOX11 is single-exon gene that encodes a transcription factor, but its molecular properties and functions remain incompletely understood. Expression of SOX11 is strongly associated with neurogenic activity, and it is confined to the central nervous system. Aberrant SOX11 upregulation has been observed in several cancer types, such as medulloblastoma, glioma, and B- and T-cell lymphomas. Under physiological conditions, SOX11 is absent in the T-cell lineage. However, SOX11 expression is consistently found in a subset of TAL/LMO T-ALL cases characterized by an abundancy of PTEN mutations and an underrepresentation of NOTCH mutations. Since the expression of SOX11 is restricted to a malignant context, we postulate that SOX11 might act as an oncogene in T-ALL. Aims: We want to assess SOX11's potential to promote a (pre)leukemic state, and to identify the role of SOX11 during oncogenic transformation in vivo. Methods: We generated a R26-SOX11 knock-in mouse model that allows conditional SOX11 expression in thymocytes, by using Lck-Cre (SL). Using this model, we analyzed the (immuno)phenotype and transcriptome of T-cell populations in 8- to 12-weeks old mice. In the future, we will also perform a syngeneic transplantation of SL thymocytes into sublethally irradiated mice to assess their colonizing potential. Additionally, we have set up an aging cohort of SL mice to investigate whether expression of SOX11 suffices to induce malignant transformation. Since the expression of SOX11 is associated with the TAL/LMO subgroup, we also crossed SL mice with a well-established murine T-ALL model, CD2-Lmo2, to give rise to mice that express both transgenes in their thymocytes (SCL). An aging cohort of this T-ALL model was followed, and we generated a survival curve and collected biological samples. These tumor samples are being analyzed, and their transcriptomic profile will be compared with that of mice overexpressing Lmo2 only. Lastly, we will lentivirally transduce human T-ALL cell lines from the TAL/LMO subgroup using a vector for SOX11 expression. These cell-lines will be used to study the consequences of expressing this transcription factor in a pre-established malignant setting. Results: In order to determine the effects of SOX11 expression in T-cells, we collected and analyzed blood, spleen, and thymus of 12-weeks old SL mice and their Cre-negative littermates (WT). To validate this model, we performed real-time PCR and immunoblotting to confirm the overexpression of SOX11 in T-cells. Interestingly, we observed a significant reduction in the number of lymphocytes in the peripheral blood and in the spleen of SL mice. Furthermore, significant changes were found in the proportions of all thymic populations, featuring an increase in double negative (DN) T-cells (Fig. 1A), particularly the DN3 subpopulation (Fig. 1B), and a decreased double positive CD4/CD8 fraction (DP). Based on that finding, we decided to sort out DN3 and DP cells from WT and SL thymi, and performed RNA-sequencing to further characterize the effect of SOX11 in these cells. In addition, we are following a cohort of SL mice, but so far no tumor formation was observed (average age of the cohort=300-days old). On the other hand, simultaneous overexpression of SOX11 and Lmo2 greatly accelerated the development of T-cell malignancies in SCL mice when compared with CD2-Lmo2 mice (Fig. 1C; median survival of 177 days versus 307; p<0.0001), revealing a synergistic effect upon combination of both genetic events. Not surprisingly, most tumors were composed of immature T-cells, mainly DN cells, and no noteworthy differences were found between the composition and location of SCL and CD2-Lmo2 tumors. Conclusion: We showed that SOX11 skews the normal development of thymocytes in vivo. Additionally, we developed a murine SOX11 T-ALL model, thus confirming an oncogenic role for SOX11. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1887-1887
Author(s):  
Gregor S.D. Reid ◽  
Kristin Wynne ◽  
Kevin She ◽  
Darko Curman ◽  
Kristy Garbutt ◽  
...  

Abstract Pediatric pre-B acute lymphoblastic leukemia is the most common childhood cancer. Although current therapies achieve a high rate of remission, relapse of pre-B ALL remains a significant clinical challenge and new forms of therapy are needed. The graft-vs-leukemia (GVL) effect after bone marrow transplantation has shown that the immune system is capable of producing an effective anti-tumor response, which suggests that immune-mediated therapies may provide a complementary treatment strategy. Toll-like receptors (TLR), found on many immune cells, including B cells, have been shown to be important molecules in both innate and adaptive immune responses. Ligation of TLRs with their respective ligands results in an increase in the immunogenicity of antigen presenting cells (APC), through upregulation of MHC antigens and costimulatory molecules and production of cytokines and chemokines. We have previously reported that stimulation of pre-B ALL cells with the TLR9 ligand, CpG DNA, enhances the induction of Th1 immune responses by allogeneic T cells. In this study we examined the expression profile of TLRs 1-8 in precursor-B ALL cells and the effects of TLR ligation on the immune stimulatory capacity of precursor-B ALL cell lines. Eight precursor-B ALL cell lines were used in this study (Nalm6, REH, Sup-B15, KOPN-57bi, 380, 697, OP-1 and RS4:11). Standard RT-PCR analysis was used to examine the expression of TLRs 1-8 by the cell lines. The cell lines were stimulated with ligands for TLR2 (peptidoglycan), TLR3 (poly I:C) and TLR4 (LPS) and evaluated for changes in costimulatory molecule expression and allogeneic T cell stimulation. Non-quantatative PCR detected each TLR, with the exception of TLR8, in the majority of the cell lines. TLR8 was only detected, at low level, in RS4:11 cells. Despite the broad expression profile of the TLRs, significant differences in the effect of TLR ligation were observed between cell lines. In general, only modest increases in CD40 and CD86 expression were observed on responsive cell lines, with the majority of the lines showing no significant changes in response to TLR2, 3 or 4 ligation, despite receptor detection by PCR. Changes in allogeneic T cell proliferation in response to TLR stimulated ALL cell lines were observed, with the largest increases occurring with peptidoglycan and LPS. As was the case with costimulatory molecule expression, no T cell proliferative response change was common to all cell lines. However, analysis of cytokine production by T cells revealed a consistent increase in IFN-gamma and reduction in IL-5 levels in response to peptidoglycan stimulated ALL cells. The results reported in this study indicate that precursor-B ALL cell lines express several TLR molecules and that TLR ligation alters the immunogenicity of the majority of these lines. Interestingly, ligation of TLR2 with peptidoglycan induced a profound shift towards Th1 cytokine production. These observatios suggest that TLR ligation, most notably TLR2 ligation, may provide a strategy to influence anti-ALL immune responses and enhance immune mediated control of this disease.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-21
Author(s):  
Gisele Olinto Libanio Rodrigues ◽  
Julie Hixon ◽  
Hila Winer ◽  
Erica Matich ◽  
Caroline Andrews ◽  
...  

Mutations of the IL-7Rα chain occur in approximately 10% of pediatric T-cell acute lymphoblastic leukemia cases. While we have shown that mutant IL7Ra is sufficient to transform an immortalized thymocyte cell line, mutation of IL7Ra alone was insufficient to cause transformation of primary T cells, suggesting that additional genetic lesions may be present contributing to initiate leukemia. Studies addressing the combinations of mutant IL7Ra plus TLX3 overexpression indicates in vitro growth advantage, suggesting this gene as potential collaborative candidate. Furthermore, patients with mutated IL7R were more likely to have TLX3 or HOXA subgroup leukemia. We sought to determine whether combination of mutant hIL7Ra plus TLX3 overexpression is sufficient to generate T-cell leukemia in vivo. Double negative thymocytes were isolated from C57BL/6J mice and transduced with retroviral vectors containing mutant hIL7R plus hTLX3, or the genes alone. The combination mutant hIL7R wild type and hTLX3 was also tested. Transduced thymocytes were cultured on the OP9-DL4 bone marrow stromal cell line for 5-13 days and accessed for expression of transduced constructs and then injected into sublethally irradiated Rag-/- mice. Mice were euthanized at onset of clinical signs, and cells were immunophenotyped by flow cytometry. Thymocytes transduced with muthIL-7R-hTLX3 transformed to cytokine-independent growth and expanded over 30 days in the absence of all cytokines. Mice injected with muthIL7R-hTLX3 cells, but not the controls (wthIL7R-hTLX3or mutIL7R alone) developed leukemia approximately 3 weeks post injection, characterized by GFP expressing T-cells in blood, spleen, liver, lymph nodes and bone marrow. Furthermore, leukemic mice had increased white blood cell counts and presented with splenomegaly. Phenotypic analysis revealed a higher CD4-CD8- T cell population in the blood, bone marrow, liver and spleen compared in the mutant hIL7R + hTLX3 mice compared with mice injected with mutant IL7R alone indicating that the resulting leukemia from the combination mutant hIL7R plus hTLX3 shows early arrest in T-cell development. Taken together, these data show that oncogenic IL7R activation is sufficient for cooperation with hTLX3 in ex vivo thymocyte cell transformation, and that cells expressing the combination muthIL7R-hTLX3 is sufficient to trigger T-cell leukemia in vivo. Figure Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2826-2834
Author(s):  
PM Anderson ◽  
W Crist ◽  
D Hasz ◽  
AJ Carroll ◽  
DE Myers ◽  
...  

A highly purified, 300-Kd bispecific monoclonal antibody (MoAb) heteroconjugate was prepared by covalently linking the anti-CD3 MoAb, G19.4, to the anti-CD19 MoAb, B43. Dual-color staining techniques and multiparameter flow cytometry confirmed that this alpha CD3 x alpha CD19 heteroconjugate was able to bind to both CD3+ T cells and CD19+ t(4;11) acute lymphoblastic leukemia (ALL) cells. T-cell-mediated lysis of freshly isolated primary bone marrow blasts from nine newly diagnosed ALL patients with a t(4;11)(q21;q23) chromosomal translocation were studied with 51Cr-release assays. Picomolar concentrations of alpha CD3 x alpha CD19 MoAb heteroconjugate effectively triggered lysis of CD19+ t(4;11) ALL cells by interleukin-2- activated CD3+ peripheral blood T-cell (PBTC) effectors but did not augment the cytolytic activity of the same effectors against CD19- T- ALL cells. In contrast to the alpha CD3 x alpha CD19 heteroconjugate, neither the alpha CD3 x alpha CD3 homoconjugate control nor the alpha CD19 x alpha CD72 heteroconjugate control facilitated the cytolysis of t(4;11) ALL blasts. Occupation of the target CD19 binding sites on t(4;11) ALL blasts by preincubation with excess unconjugated alpha CD19 MoAb abrogated the potentiating effects of the alpha CD3 x alpha CD19 heteroconjugate on PBTC-mediated cytolysis. Thus, the cell type- specific cytolysis of t(4;11) ALL blasts by PBTC effectors is dependent on both the alpha CD19 and alpha CD3 moieties of the alpha CD3 x alpha CD19 heteroconjugate. To our knowledge, this is the first description of an effective bispecific antibody that facilitates the T-cell- mediated lysis of t(4;11) ALL blasts.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A613-A613
Author(s):  
Todd Triplett ◽  
Joshua Rios ◽  
Alexander Somma ◽  
Sarah Church ◽  
Khrystyna North ◽  
...  

BackgroundT cell Acute Lymphoblastic Leukemia (T-ALL) is a devastating malignancy found primarily in pediatric populations. Unfortunately, standard of care for T-ALL has not progressed from highly toxic, intensive regimens of chemotherapy, which fails to cure all patients. Immunotherapies designed to activate patients‘ leukemia-specific T cells may provide a new therapeutic avenue to increase complete response rates, reduce toxicity without the need to engineer (e.g. CAR) cells. However, it is unknown whether T-ALL is capable of being recognized by T cells due given its relatively low mutation-rate. These studies therefore sought to investigate whether signs of leukemia-specific T cell responses are generated by T-ALL. Because T-ALL results in systemic disease and infiltrates multiple lymphoid and non-lymphoid tissues, these studies also determined how the divergent immune contextures of these TMEs impacts T cell responses to T-ALL. From this, we aim to identify immunotherapeutic targets capable of activating T cells across tissues to eradicate leukemia systemically.MethodsPrimary leukemia cells isolated from a spontaneous murine model (LN3 mice) into immune-competent, congenic (CD45.1) recipient mice. Tissues were harvested at distinct stages of disease for analysis by flow cytometry or utilizing NanoString Technologies’ GeoMX Digital Spatial Profiling (DSP) platform.ResultsFlow cytometric analysis of T cells revealed extensive changes in response to T-ALL that included multiple features of exhaustion typically associated with anti-tumor responses as determined by upregulation of co-inhibitory receptors and TOX. This included a surprisingly high-frequency of PD1+ T cells, which was accompanied by PDL1- and PDL2-expressing myeloid cells that likely are restraining these subsets. Importantly, combination immunotherapy with OX40 agonists while inhibiting PD1 resulted in drastically reduced tumor burden and concomitant expansion of proliferating granzyme-expressing CD8 T cells. To gain better insight into T cell responses within distinct organs, we analyzed tissue sections using DSP. This technique enabled us to evaluate T cells in direct contact with leukemia infiltrates compared to T cells in regions without T-ALL, which further revealed an enrichment of activated subsets. Importantly, these studies have provided critical insight needed to better understand how T cells responding to T-ALL diverge between distinct types of tissues.ConclusionsThe results from these studies collectively suggest that T cells are activated by T-ALL and that they can be therapeutically harnessed despite relatively low mutation-rates. Future studies will continue analysis of individual organs and use these results to rationally design combinations of immunotherapies by tailoring to activate T cells in all tissue types.AcknowledgementsSpecial thanks to all the support and analysis from everyone at NanoString, along with financial support provided by a SITC-NanoString DSP Fellowship awarded to Dr. Todd Triplett used for DSP analysis of all frozen tissues in these studies. Salary support for Dr. Triplett and pilot funding was provided by departmental funds via a Cancer Prevention and Research Institute of Texas (CPRIT) Scholar Award (Grant #RR160093; awarded to Dr. Gail Eckhardt).


Sign in / Sign up

Export Citation Format

Share Document