Factor VIIa Bound to Endothelial Cell Protein C Receptor Activates Protease Activated Receptor 1-Mediated Cell Signaling and Barrier-Protective Response In Endothelial Cells

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 346-346
Author(s):  
Prosenjit Sen ◽  
Ramakrishnan Gopalakrishnan ◽  
Hema Kothari ◽  
Curtis Clark ◽  
Usha Pendurthi ◽  
...  

Abstract Abstract 346 Endothelial cell protein C receptor (EPCR) is the cellular receptor for protein C and activated protein C (APC). In addition to controlling coagulation by modulating the protein C-mediated anticoagulant pathway, EPCR has been shown to play a critical role in supporting APC-induced cell signaling, which could be responsible for some of the non-hemostatic functions of EPCR and APC. Recent studies from our laboratory and others have shown that factor VIIa (FVIIa), a coagulation factor whose primary function is to initiate tissue factor (TF)-dependent coagulation, also binds to EPCR on endothelium. At present, the physiological significance of this interaction is unclear. APC binding to EPCR has been shown to provide cytoprotective effects via protease activated receptor (PAR) 1-mediated cell signaling. In earlier studies using exogenously expressed PAR1 and PAR2 reporter constructs in a heterologus cell model system, we were unable to find measurable n-terminal cleavage (activation) of PARs by FVIIa bound to EPCR. It is possible that transfected PAR constructs may segregate differently on the cell surface membrane than that of endogenous PARs, and thus may have decreased susceptibility for cleavage by FVIIa-EPCR. In the present study, we have investigated whether FVIIa, upon binding to EPCR on endothelial cells, activates endogenous PAR1 and induces PAR1-mediated cell signaling. To determine whether FVIIa cleaves endogenously expressed PAR1 on endothelial cells, unperturbed cultures of human umbilical vein endothelial cells (HUVEC) were exposed to varying concentrations of FVIIa (0-40 nM) and the cleavage of PAR1 at the cell surface was measured quantitatively in a cell-surface ELISA using a cleavage-specific PAR1 monoclonal antibody. The data show that FVIIa, in a dose- and time-dependent manner, cleaves PAR1 on endothelial cells. FVIIa cleavage of PAR1 on endothelial cells is dependent on FVIIa binding to EPCR, as prevention of FVIIa binding to EPCR by pretreating HUVEC with EPCR polyclonal antibody completely abolished FVIIa cleavage of PAR1. Similarly, silencing EPCR with EPCR-specific siRNA fully attenuated FVIIa cleavage of PAR1. FVIIa cleavage of PAR1 on endothelial cells is independent of TF as pretreatment of HUVEC with anti-TF antibodies or transduction of HUVEC with adenovirus encoding TF had no significant effect on FVIIa cleavage of PAR1. The efficiency of PAR1 cleavage by FVIIa appears to be comparable to that of APC, as both at 10 nM cleave PAR1 to a similar extent. FVIIa (10 nM) cleaves only a fraction of PAR1 (∼25 to 30%) on endothelial cell surface; increasing either FVIIa concentration or duration of treatment has not resulted in additional cleavage of remaining PAR1. Low expression of PAR2 in endothelial cells and lack of cleavage specific antibodies to PAR2 prevented us from determining whether FVII bound to EPCR also cleaves PAR2. FVIIa (10 nM) induced p44/42 MAPK activation in HUVEC and this activation was dependent on EPCR and PAR1 but not PAR2, as silencing EPCR or PAR1 but not PAR2 attenuated FVIIa-induced p44/42 MAPK phosphorylation. In additional studies, FVIIa (10 nM) was found to elicit protection against thrombin-induced barrier disruption in endothelial cells as analyzed in a dual-chamber system using Evans blue-labeled BSA or measurements of transendothelial electrical resistance. FVIIa-induced barrier-protective effect is EPCR-dependent. F-actin staining of HUVEC exposed to thrombin showed formation of transcellular actin stress fibers, cellular contractions and paracellular gap formation. Pretreatment of HUVEC with FVIIa maintained actin at the cell periphery, and reduced formation of central stress fibers and paracellular gaps. FVIIa-induced p44/42 MAPK activation and barrier protective effect are mediated via Rac1, as specific inhibitors against Rac1 or transduction of Rac1 dominant negative mutant abolished these FVIIa-induced effects. Consistent with in vitro findings, in vivo studies in mice showed that administration of FVIIa prior to LPS attenuated the LPS-induced vascular leakage in lung and kidney. Overall, our present data provide strong and convincing evidence that FVIIa bound to EPCR on endothelial cells activates PAR1-mediated cell signaling and provides a barrier protective effect. These findings are novel and assume a great clinical significance as FVIIa is used prophylactically for prevention of bleeding in hemophiliacs. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3199-3208 ◽  
Author(s):  
Prosenjit Sen ◽  
Ramakrishnan Gopalakrishnan ◽  
Hema Kothari ◽  
Shiva Keshava ◽  
Curtis A. Clark ◽  
...  

Abstract Recent studies have shown that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR), a cellular receptor for protein C and activated protein C, but the physiologic significance of this interaction is unclear. In the present study, we show that FVIIa, upon binding to EPCR on endothelial cells, activates endogenous protease activated receptor-1 (PAR1) and induces PAR1-mediated p44/42 mitogen-activated protein kinase (MAPK) activation. Pretreatment of endothelial cells with FVIIa protected against thrombin-induced barrier disruption. This FVIIa-induced, barrier-protective effect was EPCR dependent and did not involve PAR2. Pretreatment of confluent endothelial monolayers with FVIIa before thrombin reduced the development of thrombin-induced transcellular actin stress fibers, cellular contractions, and paracellular gap formation. FVIIa-induced p44/42 MAPK activation and the barrier-protective effect are mediated via Rac1 activation. Consistent with in vitro findings, in vivo studies using mice showed that administration of FVIIa before lipopolysaccharide (LPS) treatment attenuated LPS-induced vascular leakage in the lung and kidney. Overall, our present data provide evidence that FVIIa bound to EPCR on endothelial cells activates PAR1-mediated cell signaling and provides a barrier-protective effect. These findings are novel and of great clinical significance, because FVIIa is used clinically for the prevention of bleeding in hemophilia and other bleeding disorders.


2020 ◽  
Vol 40 (5) ◽  
pp. 1275-1288 ◽  
Author(s):  
Vijay Kondreddy ◽  
Usha R. Pendurthi ◽  
Xiao Xu ◽  
John H. Griffin ◽  
L. Vijaya Mohan Rao

Objective: Recent studies showed that FVIIa (factor VIIa), upon binding to EPCR (endothelial cell protein C receptor), elicits endothelial barrier stabilization and anti-inflammatory effects via activation of PAR (protease-activated receptor)-1–mediated signaling. It is unknown whether FVIIa induces PAR1-dependent cytoprotective signaling through cleavage of PAR1 at the canonical site or a noncanonical site, similar to that of APC (activated protein C). Approach and Results: Mouse strains carrying homozygous R41Q (canonical site) or R46Q (noncanonical site) point mutations in PAR1 (QQ41-PAR1 and QQ46-PAR1 mice) were used to investigate in vivo mechanism of PAR1-dependent pharmacological beneficial effects of FVIIa. Administration of FVIIa reduced lipopolysaccharide-induced inflammation, barrier permeability, and VEGF (vascular endothelial cell growth factor)-induced barrier disruption in wild-type (WT) and QQ46-PAR1 mice but not in QQ41-PAR1 mice. In vitro signaling studies performed with brain endothelial cells isolated from WT, QQ41-PAR1, and QQ46-PAR1 mice showed that FVIIa activation of Akt (protein kinase B) in endothelial cells required R41 cleavage site in PAR1. Our studies showed that FVIIa cleaved endogenous PAR1 in endothelial cells, and FVIIa-cleaved PAR1 was readily internalized, unlike APC-cleaved PAR1 that remained on the cell surface. Additional studies showed that pretreatment of endothelial cells with FVIIa reduced subsequent thrombin-induced signaling. This process was dependent on β-arrestin1. Conclusions: Our results indicate that in vivo pharmacological benefits of FVIIa in mice arise from PAR1-dependent biased signaling following the cleavage of PAR1 at the canonical R41 site. The mechanism of FVIIa-induced cytoprotective signaling is distinctly different from that of APC. Our data provide another layer of complexity of biased agonism of PAR1 and signaling diversity.


Blood ◽  
2009 ◽  
Vol 114 (9) ◽  
pp. 1974-1986 ◽  
Author(s):  
Ramesh C. Nayak ◽  
Prosenjit Sen ◽  
Samit Ghosh ◽  
Ramakrishnan Gopalakrishnan ◽  
Charles T. Esmon ◽  
...  

Although the binding of endothelial cell protein C receptor (EPCR) to its ligands is well characterized at the biochemical level, it remains unclear how EPCR interaction with its ligands at the cell surface impacts its cellular trafficking. We characterized the cellular localization and trafficking of EPCR in endothelial cells and a heterologous expression system. Immunofluorescence confocal microscopy studies revealed that a majority of EPCR is localized on the cell surface in membrane microdomains that are positive for caveolin-1. A small fraction of EPCR is also localized intracellularly in the recycling compartment. Factor VIIa (FVIIa) or activated protein C binding to EPCR promoted the internalization of EPCR. EPCR and EPCR-bound ligands were endocytosed rapidly via a dynamin- and caveolar-dependent pathway. The endocytosed receptor-ligand complexes were accumulated in a recycling compartment before being targeted back to the cell surface. EPCR-mediated FVIIa endocytosis/recycling also resulted in transport of FVIIa from the apical to the basal side. In vivo studies in mice showed that blockade of EPCR with EPCR-blocking antibodies impaired the early phase of FVIIa clearance. Overall, our results show that FVIIa or activated protein C binding to EPCR promotes EPCR endocytosis, and EPCR-mediated endocytosis may facilitate the transcytosis of FVIIa and its clearance from the circulation.


2003 ◽  
Vol 373 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Laurent O. MOSNIER ◽  
John H. GRIFFIN

In a model of staurosporine-induced apoptosis using EAhy926 endothelial cells, inhibition of apoptosis by activated protein C was dose-dependent and required the enzyme's active site, implicating activated protein C-mediated proteolysis. Consistent with this implication, both protease-activated receptor-1 (PAR-1) and endothelial cell protein C receptor (EPCR) were required for the anti-apoptotic effects of activated protein C.


1986 ◽  
Vol 163 (3) ◽  
pp. 740-745 ◽  
Author(s):  
P P Nawroth ◽  
D M Stern

Tumor necrosis factor/cachectin (TNF) is a mediator of the septic state, which involves diffuse abnormalities of coagulation throughout the vasculature. Since previous studies have shown that endothelial cells can play an active role in coagulation, we wished to determine whether TNF could modulate endothelial cell hemostatic properties. Incubation of purified recombinant TNF with cultured endothelial cells resulted in a time- and dose-dependent acquisition of tissue factor procoagulant activity. Concomitant with enhanced procoagulant activity, TNF also suppressed endothelial cell cofactor activity for the anticoagulant protein C pathway; both thrombin-mediated protein C activation and formation of functional activated protein C-protein S complex on the cell surface were considerably attenuated. Comparable concentrations of TNF (half-maximal affect at approximately 50 pM) and incubation times (half-maximal affect by 4 h after addition to cultures) were required for each of these changes in endothelial cell coagulant properties. This unidirectional shift in cell surface hemostatic properties favoring promotion of clot formation indicates that, in addition to leukocyte procoagulants, endothelium can potentially be instrumental in the pathogenesis of the thrombotic state associated with inflammatory and malignant disorders.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1751-1751
Author(s):  
Samit Ghosh ◽  
Mirella Ezban ◽  
Egon Persson ◽  
Ulla Hedner ◽  
Usha Pendurthi ◽  
...  

Abstract High doses of recombinant factor VIIa (FVIIa) have been found to bypass factor IX or factor VIII deficiency and ameliorate the bleeding problems associated with hemophilia patients with inhibitors. Recent studies show that FVIIa also acts as an effective hemostatic agent in other categories of patients, and thus has become a promising candidate for prevention and treatment of excessive bleeding associated with many other diseases/injuries. Although recombinant FVIIa has proven to be a very effective and safe drug in the treatment of bleeding episodes in hemophilia patients with inhibitors and other indications, a small fraction of patients may be refractory to FVIIa treatment. The reason for this is unclear at present, but it is possible that administration of very high pharmacological doses of FVIIa or use of genetically modified FVIIa molecules with increased potencies may circumvent the problem. The most dramatic effect on the activity (a 40-fold increase in proteolytic activity) of FVIIa was obtained by occupying the corresponding positions in thrombin/factor IXa for those positions 158, 296 and 298 of FVIIa (FVIIaDVQ). A FVIIa mutant in which the hydrophobic residue Met 298 was replaced with Gln (FVIIaQ) has 7-fold higher proteolytic activity. In the present study, we investigated the interactions of FVIIaQ and FVIIaDVQ with plasma inhibitors, tissue factor pathway inhibitor (TFPI) and antithrombin (AT) in solution and at the vascular endothelium. Both TFPI and AT/heparin inhibited the FVIIa variants more rapidly than the wild-type FVIIa in the absence of TF. In the presence of TF, TFPI, TFPI-Xa and AT/heparin inhibited FVIIa and FVIIa variants at similar rates. Although the wild-type FVIIa failed to generate significant amounts of factor Xa on unperturbed endothelial cells, FVIIa variants, particularly FVIIaDVQ, generated a substantial amount of factor Xa on unperturbed endothelium (1 nM of factor VIIa generated 0.3 ± 0.15 nM factor Xa/h whereas FVIIaQ and FVIIaDVQ generated 1.26 ± 0.1 nM/h and 9.48 ± 1.32 nM/h, respectively). Annexin V fully attenuated the FVIIa-mediated activation of factor X on unperturbed endothelial cells whereas anti-TF IgG had no effect. On stimulated HUVEC, FVIIa and FVIIa variants activated factor X at similar rates (30–40 nM/h). AT/heparin and TFPI-Xa inhibited the activity of FVIIa and FVIIa variants bound to endothelial cell TF in a similar fashion. AT inhibition of FVIIa bound to stimulated endothelial cells requires exogenous heparin. Interestingly, TFPI-Xa was found to inhibit the activities of both FVIIa and FVIIa analogs bound to unperturbed endothelial cells. Despite significant differences observed in factor Xa generation on native endothelium exposed to FVIIa and FVIIa analogs, no differences were found in thrombin generation when cells were exposed to FVIIa or FVIIa analogs under plasma mimicking conditions, probably due to limited availability of anionic phospholipids and/or putative factor Xa and Va binding sites on their cell surface. Over all, our present data suggest that although FVIIa variants may generate factor Xa on native endothelium, the resultant factor Xa does not lead to enhanced thrombin generation on native endothelium compared to FVIIa. These data should reduce potential concerns about whether the use of FVIIa variants triggers unwanted coagulation on native endothelium, and may facilitate the development of FVIIa analogs as effective therapeutic agents in near future for treatment of patients with bleeding disorders.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vijay Kondreddy ◽  
Shiva Keshava ◽  
Charles T. Esmon ◽  
Usha R. Pendurthi ◽  
L. Vijaya Mohan Rao

AbstractCrohn’s disease and ulcerative colitis are the two forms of disorders of the human inflammatory bowel disease with unknown etiologies. Endothelial cell protein C receptor (EPCR) is a multifunctional and multiligand receptor, which is expressed on the endothelium and other cell types, including epithelial cells. Here, we report that EPCR is expressed in the colon epithelial cells, CD11c+, and CD21+/CD35+ myeloid cells surrounding the crypts in the colon mucosa. EPCR expression was markedly decreased in the colon mucosa during colitis. The loss of EPCR appeared to associate with increased disease index of the experimental colitis in mice. EPCR−/− mice were more susceptible to dextran sulfate sodium (DSS)-induced colitis, manifested by increased weight loss, macrophage infiltration, and inflammatory cytokines in the colon tissue. DSS treatment of EPCR−/− mice resulted in increased bleeding, bodyweight loss, anemia, fibrin deposition, and loss of colon epithelial and goblet cells. Administration of coagulant factor VIIa significantly attenuated the DSS-induced colon length shortening, rectal bleeding, bodyweight loss, and disease activity index in the wild-type mice but not EPCR−/− mice. In summary, our data provide direct evidence that EPCR plays a crucial role in regulating the inflammation in the colon during colitis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 221-221 ◽  
Author(s):  
Matthias Riewald ◽  
Clemens Feistritzer ◽  
Wolfram Ruf

Abstract Thrombin initiates fibrin formation and platelet activation, and activates protein C, generating activated protein C (APC) that inhibits blood coagulation by a negative feedback loop. Thrombin has also proinflammatory effects through activation of cellular protease activated receptor-1 (PAR1). Endothelial cell protein C receptor (EPCR) can bind both protein C and APC and activation of EPCR-bound protein C is enhanced. Results from animal models and clinical trials indicate that APC has potent protective effects in systemic inflammation that are independent from its well established anticoagulant function and recombinant APC was recently approved to treat patients with severe sepsis. The molecular basis for APC’s anti-inflammatory effects is incompletely understood. We have identified PAR1 and EPCR as part of a novel APC signaling pathway in quiescent endothelial cells, raising the question how the same receptor PAR1 can mediate both pro- and anti-inflammatory effects. In an overexpression system in PAR-deficient fibroblasts, wildtype PAR2 but not a PAR2 variant with an Arg36 to Ala substitution at the P1 position was activated by APC, indicating that APC can activate PAR2 in addition to PAR1 through a canonical cleavage mechanism. Therefore, we tested whether endothelial cell PAR2 can be activated by APC under conditions where endogenous PAR2 expression is upregulated. Even when PAR2 expression was highly upregulated in inflammatory cytokine-stimulated human umbilical endothelial cells (HUVECs), signaling by APC was strictly dependent on PAR1 cleavage and signaling. Consistent with these results in HUVECs, intravenous injection of APC in wildtype, PAR1−/−, and PAR2−/− mice demonstrated that PAR1 is the major murine receptor that mediates induction of the transcript for monocyte chemoattractant protein-1 in the lung in response to APC. This indicates that indeed the same receptor PAR1 mediates signaling by APC and thrombin both in vitro and in vivo. To test the possibility that APC diminishes proinflammatory thrombin-PAR1 signaling by downregulating cellular levels of functional PAR1, we tested whether preincubation with APC can desensitize Erk1/2 phosphorylation by thrombin. Phospho-Erk1/2 was induced by APC dependent upon PAR1 cleavage, but APC-pretreated cells still responded to PAR1-dependent thrombin signaling, suggesting that only a fraction of the cellular PAR1 is subject to cleavage by APC. These results indicate that APC does not block thrombin signaling by desensitation at the receptor level. Large-scale gene expression profiling demonstrated that APC and thrombin had specific effects on gene expression in tumor necrosis factor α (TNFα )-perturbed endothelial cells that were not detected in quiescent cells. Transcripts for several proapoptotic genes including p53 and thrombospondin-1 were downregulated by APC but not by thrombin or PAR1 agonist peptides in TNFα-stimulated HUVECs. Western blotting confirmed that in TNFα-perturbed HUVECs pretreatment with APC significantly reduced the increase in cellular p53 protein levels in response to the cytotoxic doxorubicin. This APC effect was dependent on EPCR binding and PAR1 cleavage. Thrombospondin-1 protein levels were similarly downregulated by APC but upregulated by thrombin. Both down- and upregulation by APC and thrombin, respectively, were PAR1 dependent. These findings demonstrate that the same receptor on the same cell type can mediate opposite biological effects and they suggest that EPCR cosignaling may modify PAR1-dependent APC signaling in endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document