Biomarkers In Cell Death of Imatinib-Resistant Ph-Leukemia Cells During Treatment with mTOR Inhibitor, Everolimus

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3988-3988
Author(s):  
Miho Minami ◽  
Yosuke Minami ◽  
Yachiyo Kuwatsuka ◽  
Hitoshi Kiyoi ◽  
Tomoki Naoe

Abstract Abstract 3988 Aberrant activation of mammalian target of rapamycin (mTOR) signaling pathway has been reported in hematological malignancies including leukemia initiating cells. Although rapamycin and its analogs have proven effective as anticancer agents, the mechanism of action and the solid biomarkers of response have not been fully elucidated. We investigated detailed biomarkers during the cell death of imatinib (IM)-resistant Ph-positive (Ph+) leukemia cells due to quiescence or mutations at the ABL-kinase domain after treatment with mTOR inhibitor, everolimus (Eve, RAD001). Ph+ leukemic NOD/SCID/IL2rγnull (NOG) mice cells were long co-cultured with S17 stromal cells and treated with IM and Eve. While slow-cycling (Hoechst 33342low/Pyronin Ylow) CD34+ cells were insensitive to IM in spite of BCR-ABL-dephosphorylation, combination treatment with IM and Eve induced substantial cell death including the CD34+ population. In Baf3/p210T315I cells, IM-resistant Ph+ leukemia cell line harboring T315I-mutation, Eve also induced cell death with low IC50 values in PI-exclusion assays. In murine model cutaneously injected with Baf3/p210T315I cells, in vivo-treatment with Eve decreased tumor formation. In these systems during treatment with Eve, we did not observe evident dephosphorylations of BCR-ABL, mTOR itself and 4EBP1, but rapid S6K-dephosphorylation with lower doses and decreased expression of MCL-1. Furthermore, the feedback-loop effects such as reversely increased phosphorylations of AKT (Ser473) and FOXO1/3a were also detected during the cell death. We are now investigating more efficient strategies using inhibitors screening kit and also planning to examine new generation of mTOR inhibitors to overcome the IM-resistance due to quiescence or T315I-mutation. Disclosures: Naoe: Kyowa-Kirin: Research Funding; Novartis: Research Funding; Janssen: Research Funding.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
L. I. Nagy ◽  
L. Z. Fehér ◽  
G. J. Szebeni ◽  
M. Gyuris ◽  
P. Sipos ◽  
...  

Combination therapy of bortezomib with other chemotherapeutics is an emerging treatment strategy. Since both curcumin and bortezomib inhibit NF-κB, we tested the effects of their combination on leukemia cells. To improve potency, a novel Mannich-type curcumin derivative, C-150, was synthesized. Curcumin and its analogue showed potent antiproliferative and apoptotic effects on the human leukemia cell line, HL60, with different potency but similar additive properties with bortezomib. Additive antiproliferative effects were correlated well with LPS-induced NF-κB inhibition results. Gene expression data on cell cycle and apoptosis related genes, obtained by high-throughput QPCR, showed that curcumin and its analogue act through similar signaling pathways. In correlation with in vitro results similar additive effect could be obsereved in SCID mice inoculated systemically with HL60 cells. C-150 in a liposomal formulation given intravenously in combination with bortezomib was more efficient than either of the drugs alone. As our novel curcumin analogue exerted anticancer effects in leukemic cells at submicromolar concentration in vitro and at 3 mg/kg dose in vivo, which was potentiated by bortezomib, it holds a great promise as a future therapeutic agent in the treatment of leukemia alone or in combination.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3478-3478
Author(s):  
Keisuke Miyazawa ◽  
Tomohisa Yokoyama ◽  
Munekazu Naito ◽  
Juri Toyotake ◽  
Testuzo Tauchi ◽  
...  

Abstract Vitamin K2 (menaquinone-2: VK2) is now known to be a potent inducer for apoptosis in leukemia cells in vitro. HL-60bcl-2 cells, which are derived from a stable transfectant clone of human bcl-2 gene into HL-60 leukemia cell line, show 5-fold greater expression of Bcl-2 protein compared with that in HL-60neo cells, a control clone transfected with vector alone. Although HL-60neo cells are induced apoptosis in response to VK2, HL-60bcl-2 cells are resistant against apoptosis induction but still show cell growth inhibition along with an increase of cytoplasmic vacuoles during exposure to VK2. Electron microscopy revealed autophagosomes and autolysosomes formation in HL-60bcl-2 cells after exposure to VK2. An increase of acid vesicular organelles (AVO) detected by acridine orange staining for lysosomes as well as conversion of LC3B-I into LC3B-II by immunonoblotting and an increased punctuated pattern of cytoplasmic LC3B by fluorescent immunostaining all supported enhanced autophagy induction in response to VK2 in HL-60bcl-2 cells. However, during shorter exposure to VK2, autophagosome formation was rather prominent in HL-60neo cells although nuclear chromatin condensations and nuclear fragments were also observed at the same time. These findings indicated the mixed morphologic features of apoptosis and autophagy. Inhibition of autophagy by either addition of 3-methyladenine, siRNA for Atg7, or Tet-off Atg5 system all resulted in attenuation of VK2-incuded cell death, indicating autophagy-mediated cell death in response to VK2. These data demonstrate that autophagy and apoptosis can be simultaneously induced by VK2. However, autophagy becomes prominent when the cells were protected from rapid apoptotic death by higher expression level of Bcl-2.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1015-1022 ◽  
Author(s):  
EA Machado ◽  
DA Gerard ◽  
CB Lozzio ◽  
BB Lozzio ◽  
JR Mitchell ◽  
...  

Abstract To study the influence of a biologic environment on cultured human leukemia cells, KG-1, KG-1a, and HL-60 cells were inoculated subcutaneously into newborn nude mice. The cells developed myelosarcomas at the site of inoculation and in lungs and kidneys. KG-1 and HL-60 myelosarcomas were successfully passaged through adult nude mice, whereas KG-1a tumors proliferated only after transplantation into newborn hosts. The human nature of the cells forming myelosarcomas in mice was assessed by chromosomal analyses and detection of cross- reactivity with an antibody to the human leukemia cell line K562. We undertook electron microscopic and cytochemical examinations of the cells proliferating in vitro and in the mice. The granules of KG-1 cells in vivo did not react for acid phosphatase, as observed in vitro, and the HL-60 cells proliferating in mice lost the perinuclear myeloperoxidase (MPO) demonstrated in cultured cells. Although the influence of an in vivo selection of cell subpopulations cannot be ruled out, the enzymatic changes are compatible with induced cell differentiation. Conclusive evidence of differentiation in vivo was observed in the KG-1a cell subline. The undifferentiated KG-1a blasts developed cytoplasmic granules and synthesized MPO during proliferation in vivo. These observations indicate that human leukemia cells from established cell lines proliferate in nude mice and may acquire new differentiated properties in response to the in vivo environment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4258-4258
Author(s):  
Nazmul H Khan ◽  
Kevin J Sexton ◽  
Melissa J Grimm ◽  
Brahm H Segal ◽  
Carlos E Vigil

Abstract Abstract 4258 Background: Cellular metabolism and oxidative stress are important in the biology and pathophysiology of malignancies. Both increased reactive oxygen species [ROS] levels and induction of anti-oxidative pathways have been described in several malignancies, and may be modulate tumor biology and susceptibility to chemotherapy. Limited studies point to metabolic pathways, including ROS production, influencing pathogenesis and chemo-sensitivity of leukemia. NADPH oxidase is a critical enzyme in antimicrobial host defense and its activation results in ROS generation in myeloid leukemia cells. Our prior studies show that NADPH oxidase can activate Nrf2, a transcriptional factor that induces anti-oxidant and cytoprotective pathways. However the role of NADPH oxidase in chemotherapy-mediated apoptosis induction in leukemic cells is not well-known. Hypothesis: NADPH oxidase-derived ROS will increase sensitivity of AML cells to chemotherapy, whereas Nrf2 will be associated with chemotherapy resistance Methods: We evaluated the role of NADPH oxidase and Nrf2 in regulating cytarabine-induced cell death in wild-type [WT] and engineered PLB-985 cells, a human acute myelomonocytic leukemia cell line derivative. NADPH oxidase-deficient PLB-985 cells were generated by recombination with mutant gp91phox, a necessary component of NADPH oxidase. Nrf2-deficient cells were generated by shRNA (Nrf2shRNA) and depletion (>70%) of Nrf2 mRNA was confirmed by quantitative-PCR. WT and engineered PLB-985 cells were treated with cytarabine (12.5 to 750ng/ml for 24 – 48 hours) and cell death was determined by trypan blue exclusion and Annexin V/7-AAD staining. Results: NADPH oxidase-deficient PLB-985 cells were significantly more resistant to cytarabine compared to WT cells. Cytarabine (500 ng/ml for 48h) induced apoptotic cell death in 25% of NADPH oxidase-deficient vs. 53% of WT PLB-985 cells. Additional dose-response studies confirmed a significant effect of NADPH oxidase in potentiating cytarabine-induced cell death. Nrf2shRNA PLB-985 cells had either similar or modestly increased susceptibility to cytarabine-induced cell death compared to WT PLB-985 cells with empty vectors. NADPH-deficient/Nrf2shRNA PLB-985 cells had similar susceptibility to cytarabine as NADPH-deficient cells with empty vector. Conclusions: Our results show that NADPH oxidase potentiates apoptotic cell death by cytarabine in a myelomonocytic leukemia cell line. However, we did not observe a consistent effect of Nrf2 depletion on apoptotic cell death by cytarabine. These studies suggest that modulation of redox-stress may be a potential therapeutic approach in AML that merits further study. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 96 (6) ◽  
pp. 786-796 ◽  
Author(s):  
Li Jiang ◽  
Jinghui Zhang ◽  
Naifeng Hu ◽  
Aichun Liu ◽  
Hailong Zhu ◽  
...  

Casein kinase II subunit alpha (CK2α) is highly expressed in many malignant tumor tissues, including lymphomas and leukemia. To investigate the role of CK2α in cell proliferation and apoptosis of malignant lymphomas and leukemia, 2 lymphoma cell lines and one leukemia cell line were infected with CK2α shRNA lentivirus or negative control shRNA lentivirus, and stably infected cell lines were established. Real-time PCR and Western blot results showed that the mRNA and protein levels of CK2α were significantly reduced in CK2α knockdown cells. The tetrazolium-based colorimetric (MTT) assay found that down-regulation of CK2α inhibited the proliferation of these cells. Flow cytometry analysis showed that inhibition of CK2α induced cell cycle arrest and apoptosis of lymphoma and leukemia cells. In accordance with these, down-regulation of CK2α also reduced the protein levels of proliferating cell nuclear antigen (PCNA), cyclinD1, and bcl-2, and increased the protein expression of bax, cleaved caspase-3, cleaved caspase-9, and cleaved poly(ADP ribose) polymerase (PARP). Moreover, knockdown of CK2α impeded the growth of xenograft tumors in vivo. In summary, our study revealed that CK2α may contribute to the development of malignant lymphoma and leukemia, and serve as the therapeutic target of these malignant tumors.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256708
Author(s):  
Christopher von Beek ◽  
Linnéa Alriksson ◽  
Josefine Palle ◽  
Ann-Marie Gustafson ◽  
Mirjana Grujic ◽  
...  

Current chemotherapy for treatment of pediatric acute leukemia, although generally successful, is still a matter of concern due to treatment resistance, relapses and life-long side effects for a subset of patients. Inhibition of dynamin, a GTPase involved in clathrin-mediated endocytosis and regulation of the cell cycle, has been proposed as a potential anti-cancer regimen, but the effects of dynamin inhibition on leukemia cells has not been extensively addressed. Here we adopted single cell and whole-population analysis by flow cytometry and live imaging, to assess the effect of dynamin inhibition (Dynasore, Dyngo-4a, MitMAB) on pediatric acute leukemia cell lines (CCRF-CEM and THP-1), human bone marrow biopsies from patients diagnosed with acute lymphoblastic leukemia (ALL), as well as in a model of lymphoma (EL4)-induced tumor growth in mice. All inhibitors suppressed proliferation and induced pronounced caspase-dependent apoptotic cell death in CCRF-CEM and THP-1 cell lines. However, the inhibitors showed no effect on bone marrow biopsies, and did not prevent EL4-induced tumor formation in mice. We conclude that dynamin inhibition affects highly proliferating human leukemia cells. These findings form a basis for evaluation of the potential, and constraints, of employing dynamin inhibition in treatment strategies against leukemia and other malignancies.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Reona Sakemura ◽  
Elizabeth C. Eckert ◽  
Sydney B. Crotts ◽  
Linh Pham ◽  
Elizabeth L. Siegler ◽  
...  

Although CD19-directed chimeric antigen receptor T cell (CART19) therapy is highly effective and was FDA approved for certain B-cell malignancies, most patients relapse after CART infusion within the first 1-2 years due to inadequate CART expansion in vivo. Vesicular stomatitis virus (VSV) has the ability to infect and lyse cancer cells. Clinical trials of VSV oncolytic therapy indicate that VSV efficiently infects cancer cells as well as innate immune cells. Therefore, we hypothesized that in patients who achieve suboptimal response to CART19, VSV engineered to express CD19 will augment anti-tumor activity through 1) direct lysis of cancer cells and 2) infecting cancer cells and innate immune cells with CD19 to further stimulate CART19. To test our hypothesis, human CD19 or GFP (control) was engineered between the glycoprotein and large-protein (Fig.1A) in a modified VSV backbone. A matrix inactivating mutation (M51R) rendered it incapable of suppressing anti-viral reactions of infected targets, potentially promoting its immunogenicity. First, we tested the anti-tumor activity of VSV-CD19 and VSV-GFP against the luciferase (luc)+CD19+ acute lymphoblastic leukemia cell line NALM6 and the luc+CD19- acute myeloid leukemia cell line MOLM13. VSV-CD19 and VSV-GFP successfully lysed NALM6 (Fig.1B) or MOLM13, both in vitro and in vivo (data not shown). Next, we investigated the efficiency of VSV-CD19 in infecting tumor and immune cells. 24 hours after exposure to VSV-CD19 or VSV-GFP, we analyzed the surface expression of CD19 on MOLM13 and revealed efficient CD19 delivery (Fig.1C). Next, we assessed VSV infection of peripheral blood mononuclear cells (PBMCs) from healthy donors (HDs). Freshly isolated HD PBMCs were infected with VSV-CD19 for 6 hours and subsequently assessed for CD19 expression. Consistent with findings from clinical trials, VSV-CD19 selectively infected and induced CD19 expression on monocytes while other cells were not affected (Fig.1D). To exclude potential toxicities against CART19, we co-cultured CART19 with VSV-CD19 or VSV-GFP using second-generation 4-1BB costimulated CART19. Both VSV-CD19 and VSV-GFP did not infect CART19 as evident by preservation of CART19 viability and lack of CD19 or GFP expression (Fig.1E). Having demonstrated that VSV-CD19 specifically delivered CD19 to monocytes, we next tested whether the infected monocytes stimulated CART19. VSV-CD19 infected monocytes induced potent antigen-specific proliferation of CART19 (Fig.1F) and resulted in enhanced anti-tumor activity against luc+NALM6 in vitro (Fig.1G). Next, we aimed to confirm these findings in vivo. We generated luc+CART19 to track CART19 expansion in vivo. Freshly isolated HD monocytes were infected with VSV-CD19 ex vivo. After 4 hours, VSV-CD19 was washed away and immunocompromised NSG mice were intravenously injected with VSV-CD19 infectedmonocytes. After 24 hours, 3.5x106 of luc+untransduced T cells (UTD) or luc+CART19 were injected intravenously. The T cell expansion was assessed by bioluminescence imaging (BLI). VSV-CD19 infected monocytes specifically stimulated and expanded CART19 (Fig.1H). Finally, we tested whether VSV-CD19 can stimulate and rescue suboptimal anti-tumor effects of CART19 in vivo using a NALM6 relapsed model. Here, 1x106 luc+NALM6 were injected intravenously into NSG mice on day -6. At day -1, mice were imaged and randomized according to tumor burden to receive 1x106 UTD or CART19 on day 0. Subsequently, at day 4, mice were re-imaged and randomized. At day 5, HD monocytes were injected intravenously. Three hours after administering monocytes, mice received 1x107 VSV-CD19 or VSV-GFP (Fig.1I). BLI revealed that CART19 plusVSV-CD19 showed better tumor control than CART19 monotherapy or CART19 plus VSV-GFP (Fig.1J-K). Furthermore, CART19 plus VSV-CD19 exhibited long-term survival (Fig.1L). In summary, VSV-CD19 not only demonstrated direct anti-tumor effects but also specifically delivered CD19 to monocytes and tumor cells, thereby re-stimulating and enhancing the anti-tumor activity of CART19. This work provides a rationale to study VSV-CD19 in patients who demonstrate only suboptimal response to CART19. This approach could also be applied to augment CART therapy in other tumors. Figure 1 Disclosures Sakemura: Humanigen: Patents & Royalties. Eckert:Genentech: Current Employment. Cox:Humanigen: Patents & Royalties. Parikh:Ascentage Pharma: Research Funding; GlaxoSmithKline: Honoraria; Verastem Oncology: Honoraria; MorphoSys: Research Funding; Genentech: Honoraria; Pharmacyclics: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; Merck: Research Funding; Janssen: Honoraria, Research Funding; TG Therapeutics: Research Funding; AstraZeneca: Honoraria, Research Funding. Kay:Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Agios Pharma: Membership on an entity's Board of Directors or advisory committees; Cytomx: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Research Funding; Rigel: Membership on an entity's Board of Directors or advisory committees; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta Pharma: Research Funding; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Abbvie: Research Funding; Juno Theraputics: Membership on an entity's Board of Directors or advisory committees; Sunesis: Research Funding. Peng:Imanis: Other: Equity Ownership. Russell:Imanis: Other: Equity Ownership. Kenderian:Mettaforge: Patents & Royalties; Humanigen: Consultancy, Patents & Royalties, Research Funding; Lentigen: Research Funding; Torque: Consultancy; Novartis: Patents & Royalties, Research Funding; Kite: Research Funding; Gilead: Research Funding; Juno: Research Funding; BMS: Research Funding; Tolero: Research Funding; Sunesis: Research Funding; MorphoSys: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1154-1154
Author(s):  
Tomohiko Ishibashi ◽  
Takafumi Yokota ◽  
Hirokazu Tanaka ◽  
Michiko Ichii ◽  
Takao Sudo ◽  
...  

Abstract Murine hematopoietic stem cells (HSCs) can be isolated with high efficiency as Lineage- Sca-1+ c-kitHigh (LSK) CD34-/Low CD150+ CD48- cells. In humans, however, the same method is not useful because of critical differences between murine and human HSC phenotypes. Such discrepancy has hampered the translation of findings in mice into a human preclinical or clinical context. Therefore, the identification of common HSC antigens between the two species would be a significant advance with respect to translational studies of HSC biology. We previously identified endothelial cell-selective adhesion molecule (ESAM) as a novel maker for HSCs in mice (Blood, 2009). We also found that ESAM is functionally important for murine HSCs to reconstitute hematopoiesis after 5-FU treatment (J Immunol, 2012). In the present study, we have extended our research of ESAM to human HSCs and leukemia. We first examined whether ESAM expression showed potential as a marker of human HSCs. In addition to adult BM, the majority of CD34+ CD38- cells in cord blood (CB) and G-CSF mobilized peripheral blood expressed ESAM. The addition of anti-CD90 and CD45RA antibodies divides the adult BM CD34+ CD38- fraction into three subpopulations, namely HSCs, multipotent progenitors (MPPs), and multi-lymphoid progenitors (MLPs). We found that HSCs expressed high levels of ESAM whereas MPPs expressed lower levels and many MLPs lost ESAM expression. Functional assessment for ESAM-/Low and ESAMHigh cells in the CD34+ CD38- fractionconfirmed that high ESAM expression distinguishes progenitors that are more primitive and multipotent. We also identified a subset of CD34+ CD38- cells in adult BM and CB that expressed extremely high levels of ESAM, namely ESAMBright cells. Gene expression profiles of the CD34+ CD38- ESAMHigh and CD34+ CD38- ESAMBright populations showed that the former cells expressed HSC-related genes whereas the latter showed more endothelial-related profiles. Indeed, the CD34+ CD38- ESAMBright cells produced CD31+ endothelial cells, but not CD45+ hematopoietic cells, in co-culture with MS5 stromal cells. These results suggest that the CD34+ CD38- fraction, which is conventionally considered the human HSC fraction, also contains a substantial number of non-hematopoietic progenitors. Thus, the inclusion of ESAM provides a more accurate estimation of HSC numbers. Since some of HSC-related antigens are useful for determining leukemia lineage and have utility as prognostic indicators, we determined whether ESAM might also be a valuable addition to this antigen panel. First, we examined human leukemia cell lines. Tested myeloid leukemia lines including KG-1a, HL60, THP1, U937 and Kasumi were uniformly negative for ESAM expression. Jurkat and MOLT4, lymphoid lineage lines were also negative. On the other hand, HEL, an erythroid leukemia cell line, and CMK, a megakaryocytic leukemia cell line, exhibited high expression of ESAM. Additionally, K562 cells, which originated from CML that subsequently transformed into acute erythro-leukemia, also express ESAM. We then evaluated ESAM expression on primary acute leukemia cells, which were isolated from patients upon diagnosis. Interestingly, while all of ALL cases were virtually negative for ESAM, more than half of AML cases were ESAM-positive. Notably, the ESAM expression pattern on AML cases substantially differs even in the same FAB classification. We inferred that AML cells might change their ESAM expression levels according to cell intrinsic features and/or the surrounding environment in vivo. Therefore, we inoculated ESAM- KG-1a cells into NOD/SCID mice and harvested reconstituted KG-1a (rKG-1a) cells after the inoculation. They were then cultured in vitro and inoculated again into NOD/SCID mice. FACS analyses revealed that, although parental KG-1a cells were ESAM-negative, rKG-1a cells expressed a substantial amount of ESAM. Notably, rKG-1a cells were more aggressive and killed the recipient mice in a shorter period. This observation indicates that leukemia cells change their surface phenotype according to the environment, and that ESAM expression may be related to the acquisition of a more aggressive phenotype. In conclusion, we demonstrate that ESAM is a reliable marker of HSCs in humans as well as in mice. Additionally, ESAM is expressed on some of human acute leukemia cells and might be useful for lineage determination and as prognostic indicator. Disclosures Yokota: SHIONOGI & CO., LTD.: Research Funding. Kanakura:Alexion Pharma: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3277-3277 ◽  
Author(s):  
Yosuke Minami ◽  
Miho Minami ◽  
Yachiyo Kuwatsuka ◽  
Ryohei Tanizaki ◽  
Yuka Nomura ◽  
...  

Abstract Abstract 3277 Poster Board III-1 Recent studies suggest that leukemia stem cells (LSCs) are responsible for relapse of leukemia following conventional or targeted agents and that eradication of LSCs might be necessary to cure the disease. Aberrant activation of mTOR signaling has also been reported to be involved in LSCs. In order to examine mechanisms of drug resistance in Ph-positive (Ph+) LSCs and to seek strategies to overcome the resistance, we've previously established in vivo-murine and ex vivo-culture models using murine hematopoietic pluripotent progenitors transduced with BCR-ABL (Minami, et al., Proc Natl Acad Sci USA, 2008). Furthermore, Ph+ leukemia (including T315I-, F311I-mutated CML-BC, or Y253H-mutated Ph-ALL) patient cells were serially xenotransplanted into immunodeficient NOD/SCID/IL2rγnull (NOG) mice. Engrafted bone marrow and spleen cells were almost identical to the original leukemia cells as to phenotypes including karyotypes and distribution of primitive populations. Spleen cells derived from leukemic NOG mice were co-cultured with S17 stromal cells and treated with imatinib and the mTOR inhibitor, everolimus (RAD001, Novartis Pharmaceuticals). While quiescent (Hoechst-33342low/Pyronin-Ylow) CD34+ cells were insensitive to imatinib in spite of BCR-ABL- and CrkL-dephosphorylation, substantial cell death including CD34+ population was induced with nM level of everolimus. In imatinib-resistant Ph+ leukemia cell lines harboring T315I-mutation (Baf3p210/T315I and TCC-Y/T315I), everolimus induced cell death with low IC50 values in PI-exclusion assays. We are also investigating detailed biomarkers in the cell death (such as phosphorylation of 4E-BP1 or p70 S6K) and effects of theses drugs in the leukemic NOG mice systems. These results imply that treatment with everolimus can overcome the resistance to imatinib in Ph+ LSCs or T315I-mutated cells. Disclosures: Kiyoi: Kyowa Hakko Kirin: Consultancy. Naoe:Kyowa Hakko Kirin, Wyeth and Chugai: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 244-244
Author(s):  
Yuichi Ishikawa ◽  
Manami Maeda ◽  
Min Li ◽  
Sung-Uk Lee ◽  
Julie Teruya Feldstein ◽  
...  

Abstract Abstract 244 Clathrin assembly lymphoid myeloid leukemia (CALM) protein is implicated in clathrin dependent endocytosis (CDE) and the CALM gene is the target of the t(10;11)(p13;q14-21) CALM/AF10 translocation, which is observed in multiple types of acute leukemia. Although the translocation generally dictates poor prognosis, the molecular mechanisms by which the fusion protein exerts its oncogenic activity remains elusive. To determine the role of CALM and CDE in normal hematopoiesis and leukemogenesis, we generated and characterized both conventional (Calm+/−) and conditional (CalmF/FMx1Cre+) Calm knockout (KO) mutants. Furthermore, we determined the impact of Calm loss on leukemia cell growth in vitro and in vivo employing a series of leukemia cell lines and leukemia mouse models. Hematopoietic-specific Calm knockout mice (CalmF/FMx1Cre+) exhibited a hypocromatic anemia with increased serum iron levels. We observed significant reduction in mature erythroblasts/erythrocytes (TER119+CD71-) with concomitant increase in immature erythroblasts (TER119+CD71+) in the spleen of CalmF/FMx1Cre+ mice. The frequencies of erythroblasts in S phase were lower and the proportions of apoptotic (cleaved PARP positive) erythroblasts were increased in CalmF/FMx1Cre+ mice. Surface transferrin receptor 1 (Tfr1, CD71) levels were significantly up-regulated in Calm-deficient hematopoietic progenitors, and uptake of Alexa647-conjugated transferrin was abrogated in Calm-deficient erythroblasts, revealed by immunofluorescence analysis. Freez-etch electron microscopy analysis showed a defective clathrin coated vesicle (CCV) formation in Calm-deficient erythroblasts, indicating that Calm is indispensable for iron-bound transferrin internalization by regulating CCV formation, thereby critical for erythroid differentiation and hemoglobinization. CALM was highly expressed in leukemia/lymphoma cell lines and primary acute myeloid leukemia samples, although its expression was limited to erythroblasts in normal hematopoietic lineage cells. Treatment of leukemia cell lines with Desferoxamine (DFO), an iron chelator, led to a significant increase in Calm mRNA levels, suggesting that Calm expression is regulated by intracellular iron levels. Since highly proliferative leukemia cells demand iron as a cofactor for ribonucleotide reductase (RNR), we hypothesized that Calm is required for leukemia cell proliferation by regulating iron-bound transferrin internalization. To determine the effect of Calm inactivation in leukemia cells, we transduced a series of leukemia cell lines with a lentivirus-based ShRNA vector (pLKO-GFP), which allowed shRNA-expressing cells to be traced by green fluorescent protein (GFP). Calm shRNA transduced cells, but not cells transduced with scrambled shRNA, showed a proliferative disadvantage compared to non-transduced cells. To determine the effect of Calm deletion in leukemia cells in vivo, the CALM/AF10 oncogene was retrovirally transduced into either wild type (WT) or CalmF/FMx1Cre+ bone marrow (BM) cells and the cells were subsequently transferred to lethally-irradiated recipient mice. The Calm gene was deleted in donor cells via pIpC injections one month after transplant (before leukemia development) and survival curves generated. The recipients transplanted with the BM cells from CalmF/FMx1Cre+ mice showed a significantly delayed onset of leukemia and longer survivals compared to control (p=0.001), indicating that Calm is necessary for the development of CALM/AF10-induced leukemia. We next assessed whether Calm is required for the “maintenance” of leukemia in vivo. Leukemia cells were harvested from the primary recipients transplanted with the CALM/AF10-transduced CalmF/FMx1Cre+ BM cells (in which the endogenous Calm genes were intact) and transferred to the secondary recipients. The leukemic secondary recipient mice were then injected with pIpC and survival curves generated. Calm inactivation significantly delayed leukemia progression by blocking leukemia cell proliferation. Taken together, our data indicate that Calm is essential for erythroid development and leukemia cell proliferation by regulating TFR1 internalization. Since Calm inactivation significantly blocked the leukemia cell proliferation in vitro and in vivo, our findings may provide new therapeutic strategies for acute myeloid leukemia. Disclosures: Naoe: Kyowa-Hakko Kirin.: Research Funding; Dainipponn-Sumitomo Pharma.: Research Funding; Chugai Pharma.: Research Funding; Novartis Pharma.: Honoraria, Speakers Bureau; Zenyaku-Kogyo: Research Funding; Otsuka Pharma.: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document