Abrogation of Donor T Cell IL-21 Signaling Leads to Tissue-Specific Modulation of Immunity and Separation of Gvhd From GVL

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 729-729
Author(s):  
Alan M. Hanash ◽  
Lucy W. Kappel ◽  
Nury L. Yim ◽  
Rebecca A. Nejat ◽  
Gabrielle L. Goldberg ◽  
...  

Abstract Abstract 729 Allogeneic hematopoietic transplantation is frequently the only curative therapy available to patients with hematopoietic malignancies, however transplant success continues to be limited by complications including graft vs. host disease (GVHD) and disease relapse. Separation of GVHD from graft vs. leukemia/lymphoma (GVL) responses continues to be a major goal of experimental and clinical transplantation, and better understanding of T cell immunobiology may lead to novel strategies to accomplish this goal. Interleukin 21 (IL-21) is a pro-inflammatory cytokine produced by Th17 helper T cells, and abrogation of IL-21 signaling has recently been demonstrated to reduce GVHD while retaining GVL. However, the mechanisms by which IL-21 may lead to a separation of GVHD and GVL are incompletely understood. In order to characterize the effect of IL-21 on GVH and GVL T cell responses, we compared wild type and IL-21 receptor knockout (IL-21R KO) donor T cells in a C57BL/6 into BALB/c murine MHC-mismatched bone marrow transplant (BMT) model. Lethally irradiated BMT recipients of IL-21R KO T cells demonstrated decreased GVHD-related morbidity (p<.05) and mortality (p<.01), and decreased histopathologic evidence of GVHD within the small intestine (p<.05). While this reduction in IL-21R KO T cell-mediated GVHD was associated with increased donor regulatory T cells two to three weeks post-BMT (p<.001), IL-21 signaling in both donor CD4 and donor CD8 T cells was found to contribute to GVHD mortality (p<.01 for CD4, p<.05 for CD8). Analysis of IL-21R expression by wild type T cells demonstrated receptor upregulation upon polyclonal activation in vitro and upon alloactivation in vivo (p<.01). However, this IL-21R upregulation was not required for in vivo alloactivation, as IL-21R KO and wild type donor T cells demonstrated equivalently greater proliferation in allogeneic vs. syngeneic recipients (p<.001), equivalent upregulation of CD25 (p<.001), and equivalent downregulation of CD62L (p<.01 for CD8 T cells). Despite this equivalent alloactivation, IL-21R KO T cells demonstrated decreased infiltration within the small intestine (p<.05), decreased infiltration in mesenteric lymph nodes (p<.05 for CD8 T cells, p<.001 for CD4 T cells), and decreased inflammatory cytokine-producing CD4 T cells within mesenteric lymph nodes (p<.01 for IFN-g, p<.001 for TNF-a, Figure 1A). Consistent with this, transplanted IL-21R KO donor T cells demonstrated decreased expression of a4b7 integrin (LPAM, p<.05), a molecule known to be involved in homing of GVHD-mediating donor T cells to the gut. However, in contrast to the reduced inflammatory cytokine-producing CD4 T cells observed in mesenteric lymph nodes, IL-21R KO helper T cell cytokine production was maintained in spleen (Figure 1B) and peripheral lymph nodes, and IL-21R KO T cells were able to protect recipient mice from lethality due to A20 lymphoma (p<.001). In summary, abrogation of IL-21 signaling in donor T cells leads to tissue-specific modulation of immunity, such that gastrointestinal GVHD is reduced, but peripheral T cell function and GVL capacity are retained. Targeting IL-21 for therapeutic intervention is an exciting strategy to separate GVHD from GVL, and this novel approach should be considered for clinical investigation to improve transplant outcomes and prevent malignant relapse. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2005 ◽  
Vol 106 (12) ◽  
pp. 4009-4015 ◽  
Author(s):  
Suparna Dutt ◽  
Joerg Ermann ◽  
Diane Tseng ◽  
Yin Ping Liu ◽  
Tracy I. George ◽  
...  

The homing receptors L-selectin and α4β7 integrin facilitate entry of T cells into the gut-associated organized lymphoid tissues such as the mesenteric lymph nodes and Peyer patches. We studied the impact of inactivation of genes encoding these receptors on the ability of purified donor CD4+ T cells to induce acute lethal graft-versus-host disease (GVHD) associated with severe colitis in irradiated major histocompatibility complex (MHC)–mismatched mice. Whereas lack of expression of a single receptor had no significant impact on the severity of colitis and GVHD, the lack of expression of both receptors markedly ameliorated colitis and early deaths observed with wild-type (WT) T cells. The changes in colitis and GVHD were reflected in a marked reduction in the early accumulation of donor T cells in the mesenteric lymph nodes and subsequently in the colon. The purified WT donor CD4+ T cells did not accumulate early in the Peyer patches and failed to induce acute injury to the small intestine. In conclusion, the combination of CD62L and β7 integrin is required to induce acute colitis and facilitate entry of CD4+ donor T cells in the mesenteric nodes associated with lethal GVHD in allogeneic hosts.


2013 ◽  
Vol 190 (11) ◽  
pp. 5788-5798 ◽  
Author(s):  
Takeshi Kawabe ◽  
Shu-lan Sun ◽  
Tsuyoshi Fujita ◽  
Satoshi Yamaki ◽  
Atsuko Asao ◽  
...  

2013 ◽  
Vol 3 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sascha Cording ◽  
Diana Fleissner ◽  
Markus M. Heimesaat ◽  
Stefan Bereswill ◽  
Christoph Loddenkemper ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 591-591 ◽  
Author(s):  
Patricia Taylor ◽  
Angela Panoskaltsis-Mortari ◽  
Gordon Freeman ◽  
Arlene Sharpe ◽  
Randolph Noelle ◽  
...  

Abstract ICOS, a CD28/CTLA-4 family member, is expressed on activated T cells. ICOS Ligand, a B7 family member, is constitutively expressed on B cells, monocytes and some T cells. Through the use of blocking anti-ICOS mAb and ICOS deficient (−/−) mice, we found that ICOS:ICOSL interactions play an important role in GVHD and BM graft rejection. Anti-ICOS mAb (given d-1 to d28 post BMT) significantly delayed or reduced mortality at 2 different T cell doses in a full MHC-disparate GVHD model. ICOS−/− T cells led to delayed or reduced mortality at 3 different cell doses compared to wild-type T cells. ICOS−/− CD4+ or CD8+ T cells infused into class II- or class I-disparate recipients, respectively, revealed that ICOS:ICOSL interactions regulate both CD4+ and CD8+ T cell alloresponses. Anti-ICOS inhibited GVHD in a CD28-independent fashion. Anti-ICOS inhibited GVHD mediated by either stat 4−/− or stat 6−/− T cells indicating that the ICOS pathway regulates both Th2 and Th1-mediated GVHD. In contrast to blockade of the B7:CD28/CTLA-4, CD40L:CD40 or the OX40:OX40L pathway, anti-ICOS mAb inhibited GVHD even when delayed until d5 post BMT, a time when substantial T cell expansion has occurred. A TCR transgenic model of GVHD was used to further study effects of ICOS:ICOSL blockade. All CB6 F1 recipients of anti-host alloreactive 2C CD8+ and TEa CD4+ T cells succumbed to GVHD mortality by d18 after transfer of cells. In contrast, 88% of anti-ICOS-treated mice survived long-term. Evaluation of spleens early after transplant revealed that anti-ICOS mAb reduced the number of TEa CD4+ cells by 44% and 2C CD8+ cells by 83%. Green fluorescent protein (GFP) 2C CD8+ and GFP TEa CD4+ T cells were infused into irradiated CB6 F1 mice and irrelevant or anti-ICOS mAb was administered. Mice were imaged on d4, 7 and 12 after T cell transfer. By d7, pronounced infiltration of GFP+ cells was noted in the peripheral and mesenteric LN, spleen, Peyer’s patches (PP), skin, gingiva, liver, kidney, lung, ileum, and colon of GVHD control mice. In contrast, there were fewer GFP+ cells in the spleen, ileum, colon, kidney, lung, skin and gingiva of anti-ICOS-treated mice, although there was no decrease in GFP+ cells in LNs or PP. To study the role of host ICOS expression in BM graft rejection, wild-type or ICOS−/− mice were sublethally irradiated and given allogeneic BM and evaluated for donor chimerism at 6 weeks post BMT. Five of 10 wild type mice engrafted (ave − 26% donor) in contrast to all 10 of ICOS−/− mice (ave − 71% donor). Collectively, these data indicate that ICOS:ICOSL interactions play an important role in GVHD, whether mediated by CD4+ Th1 or Th2 T cells or CD8+ T cells. Importantly, blockade of ICOS:ICOSL after initiation of alloresponses inhibited GVHD, in contrast to blockade of other costimulatory pathways, suggesting that the ICOS pathway may be a novel therapeutic target in primed transplantation situations. Anti-ICOS interfered with expansion of donor T cells in the spleen early after transplant and reduced the number of effector cells in several GVHD target tissues. These data suggest this pathway may be indicated for therapeutic targeting for the inhibition of GVHD and BM graft rejection.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3210-3210
Author(s):  
Takayuki Inouye ◽  
Motoko Koyama ◽  
Ensbey Kathleen ◽  
Nicholas Greene ◽  
Luke Samson ◽  
...  

Leukemia relapse represents a failure of graft-versus-leukemia (GVL) and remains the major limitation of allogeneic stem cell/bone marrow transplantation (BMT). Graft-versus-host disease (GVHD) within the gastrointestinal (GI) tract is the principal determinant of transplant-related mortality and is initiated by a network of alloantigen presentation by professional and non-professional APC that prime donor T cells in the GI tract and related lymphoid structures. Since GVL and lethal GVHD are mediated by donor T cells at spatially distinct sites; bone marrow (BM) and the GI tract respectively, we sought tractable approaches to spatially separate alloreactive responses at these two locations. The administration of high dose steroids in the peri-transplant period is permissive of T cell replete HLA-haploidentical BMT and significant GVL effects (Ogawa H, et al. BBMT. 2006). We utilized murine haploidentical BMT models (B6D2F1 → B6C3F1, B6 → B6D2F1) with recipient background MLL/AF9 primary acute myeloid leukemia (AML), with or without dexamethasone (Dex) administration (5 mg/kg/day i.p., days -1 to +5). Dex-treatment improved transplant survival (from 25% to 68% at day 100, P=0.0012) with significant reductions in GVHD histopathology specifically in the colon (histopathology scores 8.7±1.0 vs 4.6±0.8, P< 0.05), despite excellent leukemia control. To understand this paradox, we analyzed the kinetics of donor T cell expansion after BMT. In the mesenteric lymph node (mLN), Dex treatment significantly suppressed the expansion of both CD4 and CD8 T cells (3.3±0.3 x 105 vs 1.4±0.3 x 105, P< 0.001 and 4.2±0.4 x 105 vs 2.1±0.4 x 105, P< 0.01 respectively) and the activation of CD4 T cells (CD25 MFI: 2021±146 vs 1056±102, P< 0.01). In contrast, donor effector/memory CD44+ CD8 T cells were expanded in the BM of Dex treated recipients (1.9±0.3 x 105 vs 3.1±0.4 x 105, P< 0.05) that demonstrated high per cell cytolytic activity against leukemia (specific lysis: 65±2.4 % vs 62±2.6 % in untreated vs Dex-treated, P> 0.05). Surprisingly, there was no difference in proliferation (cell tracking dye dilution: 63±5.5 % vs 57±5.5 % in untreated vs Dex-treated, P> 0.05) or apoptosis (caspase-3: 6.6±0.4 % vs 6.1±0.6 %, caspase-8: 20±1.6 % vs 17±3.3 % in untreated vs Dex-treated, respectively, P> 0.05) of CD4 T cells in the mLN between the two groups. We undertook experiments with luciferase expressing T cells and noted that Dex-treatment preferentially inhibited T cell accumulation in the GI tract, but not marrow after BMT. Thus, it appeared that Dex treatment preferentially re-distributed donor T cells from the GI tract to the bone marrow. We next determined if Dex exerted effects via direct signaling to the donor T cell. We thus transplanted glucocorticoid receptor (GR)-deficient or intact T cells (GRfl/fl lck-Cre mice). Dex-treatment reduced donor CD4 T cell expansion in the mLN independent of their expression of the GR (untreated vs Dex-treated: 2.8±0.6 x 105 vs 1.2±0.3 x 105, lckCREGRfl/fl and 2.4±0.3 x 105 vs 1.4±0.4 x 105, GRfl/fl littermates, P< 0.05 both groups). Thus steroid effects were mediated indirectly, putatively via effects on recipient alloantigen presentation. There was a marked reduction in recipient dendritic cells (DC) and macrophages expressing the Ea peptide within MHC class II in the GI tract of Dex-treated recipients (terminal Ileum YAe+ DC number 896±93 vs 356±40, P< 0.01, YAe+ macrophage number 1035±136 vs 355±97, P< 0.01). In conjunction with this, expression of the gut homing integrin a4b7 expression was reduced in CD4 T cells from Dex treated recipient mLN (25±1.6 % vs 17±1.7 %, P< 0.01), while the marrow homing integrin VLA-4 (a4b1) was increased (a4: 62±2.2 % vs 75±1.6 %, P< 0.001, b1: 52±2.5 % vs 61±1.6 %, P< 0.05) in donor CD8 T cells from Dex treated recipient BM. Finally, Dex treatment enhanced GVL against a second primary AML (BCR/ABL-NUP98/HOXA9) relative to untreated recipients and those receiving post-transplant cyclophosphamide (PT-Cy) (relapse rate: 0% vs 40% vs 100% at day 35 in Dex vs untreated vs PT-Cy, PT-Cy vs Dex-treated, P< 0.0001; untreated vs Dex-treated, P=0.029). These data suggest a potential therapeutic strategy to modulate antigen presentation in the GI tract and consequent integrin imprinting that minimizes GVHD lethality whilst enhancing GVL within BM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3746-3746
Author(s):  
Carina A Bäuerlein ◽  
Simone S Riedel ◽  
Brede Christian ◽  
Ana-Laura Jordán Garrote ◽  
Agnes Birner ◽  
...  

Abstract Abstract 3746 Acute graft-versus-host disease (aGvHD) is an immune syndrome after allogeneic hematopoietic cell transplantation (allo-HCT) caused by alloreactive donor T cells that attack the gastrointestinal tract, liver and skin. Thus, early T cell migration patterns to these organs could provide first cues for the onset of aGvHD. Hence, a unique surface marker profile of donor T cells at early time points after allo-HCT may be an indicator for patients at risk of aGVHD. Therefore, we analyzed the course of donor T cell activation, proliferation and homing in a clinical relevant murine MHC minor mismatch (miHAg) allo-HCT model to define critical time points and marker profiles for the detection of alloreactive T cells. Luciferase-labeled C57Bl/6 (H-2b) T cells plus bone marrow cells were transplanted into conditioned (8 Gy) MHC major mismatched Balb/c (H-2d) or miHAg Balb/b (H-2b) recipients. Donor T cell migration was visualized by in vivo bioluminescence imaging (BLI) and cells were characterized by multiparameter flow cytometry for 30 consecutive days after allo-HCT. GVHD scoring was performed by histopathology. Donor T cells proliferated exclusively in secondary lymphoid organs until day+3 (initiation phase) before migrating via the peripheral blood into target organs (effector phase). This occured in both models, MHC major mismatch and miHAg allo-HCT, which resulted in hyper-acute (starting at day+6) or acute GVHD (starting at day+21), respectively. In the hyper-acute scenario one wave of T cell migration starting at day+4 sufficed to cause lethal aGVHD. We detected a 4000-fold increase in CD4 and a 1500-fold increase in CD8 donor T cell numbers in the peripheral blood between day+3 and day+6 in this model. In contrast, in the more clinical relevant miHAg allo-HCT model we found 3 waves of T cell migration with peaks at days +6, +11 and +15 after allo-HCT. In the peripheral blood CD4 T cells increased 20-fold, CD8 T cells 50-fold between day+3 and day+6, but more than 40-fold (CD4) and 400-fold (CD8) between day+3 and day+11. After the third peak on day+15 a period followed when we could only detect very few migrating donor T cells in the peripheral blood before aGvHD became clinically apparent on day+21. Next, we asked whether we could identify alloreactive T cells by testing a large panel of surface markers at the defined migration peaks. Indeed, allogeneic T cells upregulated certain homing receptors at these peaks (e.g. at day+11: α4β7 integrin: 27% of CD4 T cells, 3.4×104/ml, 60% of CD8 T cells, 1.6×105/ml; P-selectin ligand: 28% of CD4 T cells, 3.5×104/ml, 35% of CD8 T cells, 9.1×104/ml). In contrast, syngeneic transplanted mice only showed a constant low expression level of those receptors (e.g. at day+11: α4β7 integrin: 20% of CD4 T cells, 9.6×103/ml, 5% of CD8 T cells, 3.1×103/ml; P-selectin ligand: 17% of CD4 T cells, 8.5×103/ml, 10% of CD8 T cells, 6.6×103/ml). However, other markers such as CD44 could be found on more than 80% of all donor T cells in allogeneic or syngeneic recipients. Our results in this clinical relevant mouse model show accelerating waves of T cell migration consistent with an enhancing feedback loop model of aGvHD pathogenesis. The homing receptor expression profile of donor T cells correlated with critical migration waves and clearly differed between mice with or without aGvHD. The assessment of critical time points frame a diagnostic window for a potential predictive test based on the dynamic change of the T cell homing receptor profile after allo-HCT. This preclinical study now awaits to be evaluated in patients undergoing allo-HCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Barbara Du Rocher ◽  
Odette M Smith ◽  
Andrew M. Intlekofer ◽  
Jarrod A Dudakov ◽  
Emily Levy ◽  
...  

Abstract Despite increasing insights into its immunobiology, graft vs host disease (GVHD) remains a major obstacle for successful allogeneic hematopoietic stem/progenitor cell transplantation (allo-HCT). Separation of GVHD from graft vs. leukemia/lymphoma (GVL) responses also remains an elusive goal for allo-HSCT. Efforts to delineate the transcriptional networks regulating T cell differentiation post-HCT have suggested that multiple transcription factors may be involved in the regulation of alloreactive helper T (Th) cells and GVHD. However, conflicting data have emerged regarding the role of Th1 and Th17 pathways, and it remains unclear which transcription factors mediate the early activation of alloreactive T cells necessary for subsequent GVHD development. The T-box transcription factor eomesodermin (Eomes) cooperates with T-bet to regulate CD8 T cell cytotoxic function, IFNy production, and memory cell formation. Recently, a role for Eomes in CD4 Th cell polarization has been described as well. In order to evaluate the role of Eomes in T cell function in the context of allo-HCT, we used a MHC-disparate mouse model (C57BL/6 into BALB/c) with T cell depleted donor bone marrow (TCD-BM) and wild-type (WT) or Eomes knock out (KO) donor T cells. Recipients were conditioned with lethal total body irradiation. Eomes deficiency in donor T cells led to a significant reduction in GVHD mortality (Fig 1, p<.001), morbidity (p<.001), and intestinal pathology (p<.05, colon). Notably, Eomes KO T cells exerted significantly less GVHD mortality than T-bet KO T cells (Fig 1, p<.001). Given the reduced gastrointestinal (GI) GVHD observed with Eomes KO T cells, we next analyzed the expression of homing molecules important for T cell migration to the GI tract. Consistent with reduced GI GVHD, we detected reduced expression of α4β7 integrin on Eomes KO donor CD8 T cells one week post-HCT. We also observed an increase in the proportion and absolute numbers of Foxp3+ regulatory T cells, as well as a decrease in expression of T-bet in mesenteric lymph nodes (MLNs). Moreover, we found decreased production of IFNy by Eomes KO donor CD4 T cells two weeks (spleen and MLN, p<.001) and three weeks (spleen, p<.01) post-HCT without a comcomitant increase in IL-17. We also found increased IL-4 production by Eomes KO CD4 T cells two weeks post-HCT (MLN, p<.05), indicating a shift from Th1 to Th2 polarization in the absence of Eomes. Strikingly, one of the greatest differences we observed between WT and Eomes KO donor T cells was impaired early activation of CD4 T cells; Eomes deficiency was associated with reduced proliferation (p<.001), reduced expression of CD25 (p<.001, spleen; p<.001, MLN), and increased expression of CD62L (p<.01, spleen; p<.001, MLN) in CD4 T cells within the first 72 hours post-HCT (Fig 2). In order to determine if Eomes was important for T cell-mediated GVL responses, we performed allo-HCT in the presence of A20 lymphoma cells. Despite the reduction in GVHD mortality as described above, A20 tumor challenge led to increased mortality in recipients of Eomes KO T cells, indicating that Eomes was also critical for effective GVL function. Given the importance of Eomes in early alloactivation of CD4 T cells, we evaluated if the impaired GVL function was due to an intrinsic CD8 defect or lack of CD4 help. B6 TCD-BM was transplanted into BALB/c recipients along with either WT or Eomes KO CD4 or CD8 T cells. Eomes deficiency in both CD4 and CD8 T cells again led to significant mortality, but HCT with Eomes KO CD4 T cells and WT CD8 T cells led to the greatest survival due to less GVHD and intact GVL (Fig 3), suggesting that Eomes is essential for intrinsic CD8 function during GVL, but not for CD4 help. In summary, we identified distinct requirements for Eomes in CD4 versus CD8 T cells in the context of allo-HCT. Eomes regulated multiple aspects of CD4 T cell function following allo-HCT, including early activation, cytokine production, and gut trafficking. The multifacted functions of Eomes in CD4 T cells likely explain its requirement for GVHD. In contrast, Eomes deficiency in CD8 T cells led to impaired GVL, consistent with its established importance for cytotoxic CD8 T cell differentiation. To our knowledge, this is one of the first descriptions of a transcription factor necessary for effective GVL capacity. Our results suggest that selective manipulation of Eomes function in T cell subsets may be useful for both limiting GVHD and enhancing GVL. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document