Development of a Transgenic Mouse Model to Study the Role of ZAP-70 in the Development and Progression of Chronic Lymphocytic Leukemia

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2830-2830
Author(s):  
Stefania Gobessi ◽  
Sara Bennardo ◽  
Pablo G Longo ◽  
Brendan Doe ◽  
Dimitar G Efremov

Abstract Abstract 2830 The protein tyrosine kinase ZAP-70 is an important prognostic factor in chronic lymphocytic leukemia (CLL). Patients that are considered ZAP-70-positive typically express 30–100% of the levels of ZAP-70 in T-cells, whereas in the remaining patients ZAP-70 is either not expressed or is expressed at lower levels. ZAP-70-positive patients have more aggressive disease and shorter survival than patients with low or absent ZAP-70. In vitro experiments with human lymphoma cell lines and primary CLL B-cells have shown that ZAP-70 is involved in B cell receptor (BCR) signaling, indicating that overexpression of ZAP-70 could affect the capacity of the leukemic cells to respond to antigen stimulation. Despite the strong association between ZAP-70 expression and prognosis, it is still not clear whether ZAP-70 directly contributes to the aggressiveness of the disease or is just a marker of more aggressive CLL. To further address this issue, we generated transgenic (tg) mice that express different levels of ZAP-70 in B cells. In these mice expression of the murine ZAP-70 transgene is targeted to the B cell compartment by a VH or a CD19 promoter (VH-ZAP70 and CD19-ZAP70 tg mice, respectively). B cells in CD19-ZAP70 tg mice express the same levels of ZAP-70 as normal murine T cells, whereas the levels of ZAP-70 in B cells of VH-ZAP70 tg mice are approximately 10 times lower. Immunophenotyping analysis of spleen and peritoneal cavity samples from wild type, VH-ZAP70 and CD19-ZAP70 tg mice did not reveal significant differences in the percentage of follicular (FO), marginal zone (MZ) and B1 B cells, indicating that ectopic expression of ZAP-70 does not affect normal B cell development and maturation. In terms of BCR signal transduction, no abnormalities were detected in VH-ZAP70 tg mice, suggesting that low levels of ZAP-70 do not affect BCR signaling. In contrast, B cells from CD19-ZAP70 tg mice showed altered phosphorylation of several molecules downstream of the BCR, such as Syk and BLNK, whereas phosphorylation of Cbl was not affected. To investigate the impact of ZAP-70 expression on leukemia development and progression, we crossed VH-ZAP70 and CD19-ZAP70 tg mice with Eμ-TCL1 tg mice. The latter mice develop leukemias that are considered a mouse model of human CLL. These leukemias are CD5+, express unmutated IGHV genes and stereotyped polyreactive BCRs, but are always ZAP-70-negative. VH-ZAP70/Eμ-TCL1 tg mice (n=11) have been followed for over a year and did not show any differences with respect to their Eμ-TCL1 littermates (n=10). Both groups, starting from the age of 7–8 months, developed leukemias with a similar rate of progression and impact on survival, suggesting that low levels of ZAP-70 do not affect the behavior of the disease. The cohort of CD19-ZAP70/Eμ-TCL1 tg mice was more recently established. These animals are currently 4 months old and still do not show signs of leukemia development. Data from the extended follow-up of these mice will be presented at the meeting. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 178-178
Author(s):  
Stefania Gobessi ◽  
Aleksandar Petlickovski ◽  
Luca Laurenti ◽  
Dimitar G. Efremov

Abstract The protein tyrosine kinase ZAP-70 is expressed at high levels in leukemic B-cells from chronic lymphocytic leukemia (CLL) patients with progressive disease and short survival. ZAP-70 is a key component of the proximal T-cell receptor signaling pathway and is highly homologous to Syk, an important B-cell receptor signaling (BCR) molecule. Recent studies indicate that ZAP-70 may participate in BCR signaling as well, but the mechanism of action is still not well understood. In T-cells, upon TCR stimulation ZAP-70 becomes phosphorylated on Tyr319 by the Src-like kinase Lck, which results in the release of the ZAP-70 kinase domain from an autoinhibited state to a fully active conformation. The Tyr319 site in ZAP-70 corresponds to the Tyr352 site in Syk, which is phosphorylated in B-cells following BCR stimulation. We therefore investigated the activation status of ZAP-70 and Syk in BCR stimulated CLL B-cells, using phosphorylation of Tyr319 and Tyr352 as markers of their activation. Analysis of 10 ZAP-70-positive CLL samples by immunoblotting with the phospho-ZAP70Tyr319/SykTyr352 antibody revealed that ZAP-70 is not phosphorylated at this site either before or after BCR stimulation, although in control experiments with Jurkat T-cells ZAP-70 became phosphorylated on Tyr319 upon TCR stimulation. Moreover, the Tyr352 site in Syk was phosphorylated following BCR stimulation in 6 of the 10 CLL B-cell samples. To further investigate the reasons for the unexpected lack of ZAP-70 activation in CLL B-cells, we produced stable transfectants of the BJAB lymphoma B-cell line that expressed ZAP-70 at levels similar to those found in CLL cases with progressive disease. In agreement with the CLL B-cell experiments, the Tyr319 site in ZAP-70 was not phosphorylated either before or after BCR stimulation. Since phosphorylation of Tyr319 is Lck-dependent in T-cells, and this kinase is expressed also in CLL B-cells, we ectopically expressed Lck in the ZAP-70-positive BJAB clones. Again, the Tyr319 site was not phosphorylated, indicating that ZAP-70 does not undergo activation of the kinase domain also in this cellular system. In contrast, BCR crosslinking in BJAB cells induced significant phosphorylation of Tyr352 in Syk, which was further enhanced in the clones that coexpressed ZAP-70. Furthermore, analysis of downstream signaling pathways following BCR stimulation showed stronger and prolonged activation of ERK and to a lesser extent Akt in the ZAP-70 positive clones, whereas no difference was observed in terms of activation of PLC-γ 2, JNK and degradation of the NF-kB inhibitor IkB. These data indicate that ZAP-70 does not undergo full activation in B-cells, but can still enhance activation of certain downstream BCR signaling pathways, possibly by affecting the activity of the related PTK Syk.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 925-925
Author(s):  
Stefania Gobessi ◽  
Francesca Belfiore ◽  
Sara Bennardo ◽  
Brendan Doe ◽  
Luca Laurenti ◽  
...  

Abstract Abstract 925 One of the most relevant prognostic factors in chronic lymphocytic leukemia (CLL) is expression of the protein tyrosine kinase ZAP-70. Typically, patients whose leukemic cells express ZAP-70 at 30–100% of the levels in normal T cells have aggressive disease, whereas patients whose leukemic cells do not express ZAP-70 or express only low levels of this protein have indolent disease. Previously, we and others demonstrated that ZAP-70 modulates B-cell receptor signaling and thus affects the capacity of the leukemic cells to respond to antigen stimulation. However, a direct link between an altered antigen response and CLL pathogenesis has still not been established and, more importantly, the question whether ZAP-70 directly contributes to the aggressiveness of the disease or is just a marker of aggressive CLL still remains to be answered. We have now addressed these issues by analyzing in vivo the impact of forced expression of ZAP-70 on the development and behavior of leukemias that arise in the Eμ-TCL1 transgenic (tg) mouse model of CLL. This model is characterized by the development of antigen-driven leukemias that resemble human CLL in many aspects but are always ZAP-70-negative. To force the expression of ZAP-70 in TCL1 leukemias, we generated two tg lines with targeted expression of ZAP-70 in the B cell compartment (ZAP70high and ZAP70low) and crossed them with Eμ-TCL1 tg mice. B cells in ZAP70high tg mice express similar levels of ZAP-70 as normal mouse T cells, whereas the levels of ZAP-70 in B cells of ZAP70lowtg mice are approximately 10 times lower. Both cohorts of Eμ-TCL1/ZAP70 double tg mice developed characteristic TCL1 leukemias. Eμ-TCL1/ZAP70low tg mice developed leukemias with onset and rate of progression similar to their ZAP-70-negative littermates, indicating that low levels of ZAP-70 do not alter the development and behavior of the disease. Surprisingly, Eμ-TCL1/ZAP70high tg mice developed leukemias with an approximately 2 month delay compared to their ZAP-70-negative Eμ-TCL1 tg littermates, which was contrary to the expectation that high ZAP-70 expression will accelerate leukemia development. The delay in leukemia development was especially evident at 6 months of age, when leukemic cells could be detected in the PB of 77% (10/13) of Eμ-TCL1 tg mice and only 24% (4/17) of Eμ-TCL1/ZAP70hightg mice (P=0.011). Since ZAP-70 expression can affect the migratory and adhesion capacity of human CLL cells in vitro, we first investigated if the delayed appearance of leukemic cells in the PB of Eμ-TCL1/ZAP70high tg mice could be due to increased retention of the leukemic cells in the lymphoid tissues. Assessment of tumor burden in the spleen, peritoneal cavity (PC), bone marrow and PB of 7 months old mice showed that the number of tumor cells in each compartment was significantly lower in Eμ-TCL1/ZAP70hightg mice than their Eμ-TCL1 littermates, suggesting that the delay in leukemia appearance is not caused by increased tissue retention but rather by reduced tumor growth. To investigate if ZAP-70 impairs tumor growth by affecting proliferation, we performed in vivo BrdU incorporation analysis of leukemic cells from spleen and PC of Eμ-TCL1 and Eμ-TCL1/ZAP70high tg mice. Spleen and PC samples were analyzed because they are the major sites of leukemia proliferation in Eμ-TCL1 tg mice. Interestingly, while the percentage of proliferating leukemic cells in the spleens of Eμ-TCL1 and Eμ-TCL1/ZAP70high tg mice was similar (mean % of BrdU+ cells ±SD: 6.81 ±1.67 and 6.15 ±2.92, respectively; P=n.s.), the percentage of proliferating leukemic cells in the PC of Eμ-TCL1/ZAP70high tg mice was significantly lower (mean % of BrdU+cells ±SD: 1.74 ±1.05 and 0.56 ±0.39, respectively; P=0.024). In summary, this study shows that ZAP-70 expression, per se, is unable to accelerate leukemia development and progression in an established in vivo model of CLL and suggests that ZAP-70 is not directly responsible for the greater disease severity in the poor prognosis subset of CLL. In addition, this study reveals that ZAP-70 in certain tissue environments can function as a negative regulator of leukemic cell proliferation, contrary to the widespread perception of ZAP-70 as a positive regulator of leukemic cell responses. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1470-1474 ◽  
Author(s):  
DE Hammerschmidt ◽  
C Jeanneret ◽  
M Husak ◽  
M Lobell ◽  
HS Jacob

Abstract A nonanemic chronic lymphocytic leukemia patient with nearly 500,000 lymphocytes/microL underwent leukapheresis when she presented with CNS symptoms and retinal vascular engorgement. Respiratory distress developed during the cell separator run, which led us to ask whether the procedure could have changed the adhesive properties of her cells. C5a desarginine, N-f-Met-Leu-Phe, adenosine diphosphate, and collagen all failed to aggregate her lymphocytes in vitro, but arachidonic acid, excess free calcium, and 4 mumol/L epinephrine did aggregate the cells. Arachidonate-induced aggregation appeared to be a toxic phenomenon: the ED50 for aggregation was statistically indistinguishable from that for cytotoxicity, and aspirin only mildly blunted the response. In contrast, epinephrine-induced aggregation was not associated with lactic dehydrogenase release or the loss of trypan blue exclusion and was blunted by propranolol; radiopindolol-binding studies confirmed the presence of a beta-adrenergic receptor. There were approximately 3,000 receptors/cell, with no statistically significant difference between normal and chronic lymphocytic leukemia B cells or between B cells and T cells (separated by rosetting techniques). The Kd for the B cells' receptor, however, was less than that for T cells by a factor of ten (P less than .01). We conclude that B cells may aggregate when stimulated and that they--like T cells--have beta-adrenergic receptors. Adrenergically mediated changes in B cell adhesiveness may play a role in regulating lymphocyte traffic; in the rare patient with truly enormous B cell counts, we postulate that they may be an occasional cause of morbidity.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3859-3859
Author(s):  
Marek Mraz ◽  
Laura Z. Rassenti ◽  
Emanuela M. Ghia ◽  
Liguang Chen ◽  
Jessie-Farah Fecteau ◽  
...  

Abstract Abstract 3859 Chronic lymphocytic leukemia (CLL) is the first disease in which miRNAs (hsa-miR-15a-16–1) were directly linked to cancer pathogenesis (Calin et al. PNAS, 2002). We and others have also shown that expression of certain miRNAs associates with disease activity in patients with CLL (Calin et al. NEJM, 2005; Mraz et al. Blood, 2012; Mraz et al. Leukemia, 2009). Moreover, patients with more aggressive disease have CLL cells that generally express unmutated IGHV and/or ZAP-70 and have a miRNA expression profile that differs from that of CLL cells from patients with indolent disease (Calin et al. NEJM, 2005). However, we still have very limited understanding of how miRNAs affect CLL cell-biology and expression of genes that play a critical role in either promoting or arresting the disease. We used pooled samples from 10 CLL patients to screen (TaqMan miRNA Cards-ABI, 750 miRNAs) for abundantly expressed miRNAs that could hypothetically influence CLL B cell biology. We identified miR-150 as the most abundant miRNA in CLL cells and also as being strongly expressed when compared to CD19+ blood lymphocytes of normal adults (N=5, P=0.008). This miRNA already has been reported to influence the differentiation and gene expression of normal B cells (Xiao et al. Cell, 2007) suggesting its possible relevance for CLL B cell biology. We examined additional CLL cell samples (N=168) and confirmed high miR-150 levels and also noted heterogeneity in its expression between CLL cells of patients with aggressive versus indolent disease. In our cohort, CLL cells of patients that expressed ZAP-70 (20% cut-off, N=74) or had unmutated IGHV (N=72) expressed significantly lower median-levels of miR-150 (fold change −1.7 and −2.0 respectively, p<0.005). Moreover, the lower levels of miR-150 also directly associated with higher response to stimulation of B-cell receptor (BCR) on CLL cells with anti-IgM (P<0.05, N=36, quantified by flow cytometric measurement of calcium mobilization). To understand the gene network regulated by miR-150 in CLL we performed array-based transcriptome analyses (HG-U133 Plus 2.0, Affymetrix) of 110 patient samples, which identified differential expression of 215 genes between CLL cells expressing low versus high levels of miR-150 (SAM analysis of upper and lower terciles). Thirty-eight of these 215 genes (17%) are predicted targets of miR-150 (determined by TargetScan, www.targetscan.org). Two well annotated genes (GAB1 and FOXP1) have evolutionary conserved binding sides for miR-150 in their 3‘UTRs, suggesting the possible importance of miR-150 in their regulation. GAB1 is an adaptor molecule and plays a key role in variety of cell signaling pathways (PLCγ, Ras/Erk, PI3K/Akt, CrkL). Interestingly, GAB1 modulates PI3K/Akt-pathway through binding domain identical to Bruton’s tyrosine kinase (Rameh et al. JBC, 1997) and is a key molecule involved in regulating BCR-signaling (Ingham et al. JBC, 1998, 2001), a process that factors prominently in the pathogenesis and progression of CLL. FOXP1 is an essential participant in the transcriptional regulatory network of B lymphopoiesis and has been identified as playing a role in disease progression of other B-cell lymphomas (Hu et al. Nat Immunol, 2006). The immunoblot analysis of GAB1 and FOXP1 in CLL cells confirmed their higher protein levels in cases with low miR-150 expression (P<0.005, fold change >10.0). Importantly, cells with higher expression of GAB1 or FOXP1 were more responsive to BCR stimulation in vitro (P<0.01, N=36) and higher expression of each associates with shorter overall survival (OS) (13.9 vs. 22.7 years, 13.9 vs. 21.1 years; N=168; P<0.05). Most notably, a reverse trend was observed for miR-150, where higher levels (>median) were associated with significantly longer OS (not-reached vs. 13.9 years, N=168, P=0.006). Additionally, the expression level of miR-150 was an independent predictor of OS and time to first treatment (TTFT) in multivariate analyses, which included IGHV status, ZAP-70, CD38, Rai stage, gender, and age (OS HR: 3.4 [CI 1.4–8.6], P=0.009; TTFT HR: 2.3 [CI 1.3–4.2], P=0.004). We conclude that there is an inverse association between high-risk disease and expression of miR-150, which may reflect its capacity to regulate the expression of genes encoding proteins that may contribute to BCR-signaling and/or survival of CLL B cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 1063-1070 ◽  
Author(s):  
Mohammad-Reza Rezvany ◽  
Mahmood Jeddi-Tehrani ◽  
Hans Wigzell ◽  
Anders Österborg ◽  
Håkan Mellstedt

Abstract T-cell receptor–B-variable (TCR-BV) gene usage and the CDR3 size distribution pattern were analyzed by reverse transcription–polymerase chain reaction (RT-PCR) in patients with B-cell chronic lymphocytic leukemia (B-CLL) to assess the T-cell repertoire. The use of TCR-BV families in CD4 and CD8 T cells stimulated with autologous activated leukemic cells was compared with that of freshly obtained blood T cells. Overexpression of individual TCR-BV families was found in freshly isolated CD4 and CD8 T cells. Polyclonal, oligoclonal, and monoclonal TCR-CDR3 patterns were seen within such overexpressed native CD4 and CD8 TCR-BV families. In nonoverexpressed TCR-BV families, monoclonal and oligoclonal populations were noted only within the CD8 subset. After in vitro stimulation of T cells with autologous leukemic B cells, analyses of the CDR3 length patterns showed that in expanded TCR-BV populations, polyclonal patterns frequently shifted toward a monoclonal/oligoclonal profile, whereas largely monoclonal patterns in native overexpressed TCR-BV subsets remained monoclonal. Seventy-five percent of CD8 expansions found in freshly obtained CD8 T cells further expanded on in vitro stimulation with autologous leukemic B cells. This suggests a memory status of such cells. In contrast, the unusually high frequency of CD4 T-cell expansions found in freshly isolated peripheral blood cells did not correlate positively to in vitro stimulation as only 1 of 9 expansions continued to expand. Our data suggest that leukemia cell–specific memory CD4 and CD8 T cells are present in vivo of patients with CLL and that several leukemia cell–associated antigens/epitopes are recognized by the patients' immune system, indicating that whole leukemia cells might be of preference for vaccine development.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3215-3215
Author(s):  
Sara S Alhakeem ◽  
Mary K McKenna ◽  
Sunil K Nooti ◽  
Karine Z Oben ◽  
Vivek M Rangnekar ◽  
...  

Abstract The most common human leukemia is B-cell chronic lymphocytic leukemia (B-CLL), which is characterized by a progressive accumulation of abnormal B-lymphocytes in blood, bone marrow and secondary lymphoid organs. Typically disease progression is slow, but as the number of leukemic cells increases, they interfere with the production of other important blood cells, causing the patients to be in an immunosuppressive state. To study the basis of this immunoregulation, we used cells from the transgenic Eμ-Tcl1 mouse, which spontaneously develop B-CLL due to a B-cell specific expression of the oncogene, Tcl1. Previously we showed that Eμ-Tcl1 CLL cells constitutively produce an anti-inflammatory cytokine, IL-10. Here we studied the role of IL-10 in CLL cell survival in vitro and the development of CLL in vivo. We found that neutralization of IL-I0 using anti-IL-10 antibodies or blocking the IL-10 receptor (IL-10R) using anti-IL-10R antibodies did not affect the survival of CLL cells in vitro. On the other hand, adoptively transferred Eμ-Tcl1 cells grew at a slower rate in IL-10R KO mice vs. wild type (WT) mice. There was a significant reduction in CLL cell engraftment in the spleen, bone marrow, peritoneal cavity and liver of the IL-10R KO compared to WT mice. Further studies revealed that IL-10 could be playing a role in the tumor microenvironment possibly by affecting anti-tumor immunity. This was seen by a reduction in the activation of CD8+ T cells as well as a significantly lower production of IFN-γ by CD4+ T cells purified from CLL-injected WT mice compared to those purified from CLL-injected IL-10R KO mice. These studies demonstrate that CLL cells suppress host anti-tumor immunity via IL-10 production. This led us to investigate possible mechanisms by which IL-10 is produced. We found a novel role of B-cell receptor (BCR) signaling pathway in constitutive IL-10 secretion. Inhibition of Src or Syk family kinases reduces the constitutive IL-10 production by Eμ-Tcl1 cells in a dose dependent manner. In addition, we found that Eμ-Tcl1 CLL cells exhibit clonal variation in their IL-10 production in response to BCR cross-linking. Further studies are being performed to understand the mechanisms by which BCR signaling affects IL-10 production. Disclosures No relevant conflicts of interest to declare.


Haematologica ◽  
2022 ◽  
Author(s):  
Vera Kristin Schmid ◽  
Ahmad Khadour ◽  
Nabil Ahmed ◽  
Carolin Brandl ◽  
Lars Nitschke ◽  
...  

Chronic lymphocytic leukemia (CLL) is a frequent lymphoproliferative disorder of B cells. Although inhibitors targeting signal proteins involved in B cell antigen receptor (BCR) signaling constitute an important part of the current therapeutic protocols for CLL patients, the exact role of BCR signaling, as compared to genetic aberration, in the development and progression of CLL is controversial. To investigate whether BCR expression per se is pivotal for the development and maintenance of CLL B cells, we used the TCL1 mouse model. By ablating the BCR in CLL cells from TCL1 transgenic mice, we show that CLL cells cannot survive without BCR signaling and are lost within eight weeks in diseased mice. Furthermore, we tested whether mutations augmenting B cell signaling influence the course of CLL development and its severity. The Phosphatidylinositol-3-kinase (PI3K) signaling pathway is an integral part of the BCR signaling machinery and its activity is indispensable for B cell survival. It is negatively regulated by the lipid phosphatase PTEN, whose loss mimics PI3K pathway activation. Herein, we show that PTEN has a key regulatory function in the development of CLL, as deletion of the Pten gene resulted in greatly accelerated onset of the disease. By contrast, deletion of the gene TP53, which encodes the tumor suppressor p53 and is highly mutated in CLL, did not accelerate disease development, confirming that development of CLL was specifically triggered by augmented PI3K activity through loss of PTEN and suggesting that CLL driver consequences most likely affect BCR signaling. Moreover, we could show that in human CLL patient samples, 64% and 81% of CLL patients with a mutated and unmutated IgH VH, respectively, show downregulated PTEN protein expression in CLL B cells if compared to healthy donor B cells. Importantly, we found that B cells derived from CLL patients had higher expression levels of the miRNA-21 and miRNA-29, which suppresses PTEN translation, compared to healthy donors. The high levels of miRNA-29 might be induced by increased PAX5 expression of the B-CLL cells. We hypothesize that downregulation of PTEN by increased expression levels of miR-21, PAX5 and miR-29 could be a novel mechanism of CLL tumorigenesis that is not established yet. Together, our study demonstrates the pivotal role for BCR signaling in CLL development and deepens our understanding of the molecular mechanisms underlying the genesis of CLL and for the development of new treatment strategies.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1470-1474
Author(s):  
DE Hammerschmidt ◽  
C Jeanneret ◽  
M Husak ◽  
M Lobell ◽  
HS Jacob

A nonanemic chronic lymphocytic leukemia patient with nearly 500,000 lymphocytes/microL underwent leukapheresis when she presented with CNS symptoms and retinal vascular engorgement. Respiratory distress developed during the cell separator run, which led us to ask whether the procedure could have changed the adhesive properties of her cells. C5a desarginine, N-f-Met-Leu-Phe, adenosine diphosphate, and collagen all failed to aggregate her lymphocytes in vitro, but arachidonic acid, excess free calcium, and 4 mumol/L epinephrine did aggregate the cells. Arachidonate-induced aggregation appeared to be a toxic phenomenon: the ED50 for aggregation was statistically indistinguishable from that for cytotoxicity, and aspirin only mildly blunted the response. In contrast, epinephrine-induced aggregation was not associated with lactic dehydrogenase release or the loss of trypan blue exclusion and was blunted by propranolol; radiopindolol-binding studies confirmed the presence of a beta-adrenergic receptor. There were approximately 3,000 receptors/cell, with no statistically significant difference between normal and chronic lymphocytic leukemia B cells or between B cells and T cells (separated by rosetting techniques). The Kd for the B cells' receptor, however, was less than that for T cells by a factor of ten (P less than .01). We conclude that B cells may aggregate when stimulated and that they--like T cells--have beta-adrenergic receptors. Adrenergically mediated changes in B cell adhesiveness may play a role in regulating lymphocyte traffic; in the rare patient with truly enormous B cell counts, we postulate that they may be an occasional cause of morbidity.


Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 767-774 ◽  
Author(s):  
LA Fernandez ◽  
JM MacSween ◽  
GR Langley

Abstract The mechanism of the hypogammaglobulinemia in patients with chronic lymphocytic leukemia (CLL) was studied by determining the generation of specific immunoglobulin-secreting cells in response to mitogen and antigen stimulation in culture. Normal peripheral blood B lymphocytes from 18 normal subjects cocultured with equal numbers of autologous T cells generated cells secreting 2,542 +/- 695 IgG, 2,153 +/- 615 IgA, and 2,918 +/- 945 IgM. Normal B lymphocytes cocultured with normal allogeneic T cells generated similar numbers. However, B lymphocytes from patients with chronic lymphocytic leukemia cocultured with T cells from the same patient generated only 0.5% as many cells secreting IgG and 11% and 23% as many secreting IgA and IgM, respectively. The reason for this markedly defective generation of immunoglobulin-secreting cells was investigated by evaluating T-helper, T-suppressor, and B-cell function using B cells from tonsil and T and B cells from peripheral blood of normal and leukemic individuals. T cells from patients with chronic lymphocytic leukemia provided somewhat greater help than did normal T cells to normal peripheral blood B cells and normal help to tonsil B cells, whether stimulated with mitogen or antigen. T cells from patients with chronic lymphocytic leukemia did not demonstrate increased suppressor function compared to normals with B cells from normal peripheral blood. The hypogammaglobulinemia in these patients therefore was associated with a markedly defective generation of immunoglobulin secreting cells, and as there was normal or increased T- cell helper activity without excessive suppressor activity, it seems likely that this was due to an intrinsic B-cell defect.


Sign in / Sign up

Export Citation Format

Share Document