Notch Signaling Represses Mir-223 in T-Cell Acute Lymphoblastic Leukemia

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4630-4630
Author(s):  
Samuel D Gusscott ◽  
Florian Kuchenbauer ◽  
Andrew P Weng

Abstract Abstract 4630 T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer of immature T cells that often shows aberrant activation of the Notch1 signaling pathway. Several studies have utilized mRNA expression profiling to identify downstream mediators of oncogenic Notch signaling in this context. Since microRNAs (miRNAs) have in recent years been shown to play important roles in hematological maliganancy, we performed a microarray-based screen for Notch-dependent miRNA expression in T-ALL. Jurkat and P12-Ichikawa cell lines were treated with gamma-secretase inhibitor to block Notch signaling vs. DMSO control for 4 days and profiled using Exigon miRCURY LNA miRNA microarrays. Surprisingly few miRNAs were found to be regulated by this approach; however, one of the hits, miR-223, showed consistent upregulation after gamma-secretase treatment in Jurkat cells and 5 additional human T-ALL cell lines assessed by miRNA qPCR. This observation was unique to human T-ALL as murine models of T-ALL showed no evidence for Notch-dependent miR-223 expression. Given that canonical Notch signaling results in transcriptional activation, our observation that Notch signaling is associated with reduced miR-223 expression suggests an intermediary repressor may be involved. miR-223 has been reported to play an important role in normal granulopoiesis, to be expressed relatively highly in T-ALL with myeloid-like gene features, and most recently to accelerate Notch-mediated T-cell leukemogenesis. To explore potential functional consequences for Notch-dependent miR-223 repression in T-ALL, candidate miR-223 targets identified by TargetScan software were analyzed with Ingenuity Pathway Analysis software, which indicated IGF-1, insulin receptor, PTEN, and ERK5 signaling pathways as the top hits. We recently reported IGF1R signaling to be important for growth and viability of bulk T-ALL cells as well as for leukemia-initiating cell activity. Additionally, we reported that Notch signaling directly upregulates IGF1R transcription by binding to an intronic enhancer which is present between exons 21/22 in the human, but not mouse IGF1R locus. As miR-223 has previously been reported to target IGF1R mRNA and reduce its translation, we hypothesized that Notch signaling may also upregulate net IGF1R protein expression by repressing miR-223. To test this hypothesis, we transduced several human T-ALL cell lines with miR-223 retrovirus and observed a modest decrease in total IGF1R protein levels by western blot; however, no significant change was observed in surface IGF1R levels as assessed by flow cytometry. Addtionally, knockdown of miR-223 by lentiviral expression miR-223 target sequences (miR-223 “sponge”) resulted in modestly increased total IGF1R protein levels, but again showed no demonstrable effect on surface IGF1R levels. Of note, we also observed no apparent effect of either overexpression or knockdown of miR-223 on bulk cell growth or viability. We interpret these findings to suggest that Notch signaling does not have major effects on the miR transcriptome, and that up- or down-modulation of miR-223 in established T-ALL cells does not have significant effects on overall cell growth/viability. Further studies will be required to determine if miR-223 may act in concert with other Notch target genes to modulate cell physiology. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2819-2819 ◽  
Author(s):  
Raymond Moellering ◽  
Melanie Cornejo ◽  
Jennifer Rocknik ◽  
Michael Hancock ◽  
Christina DelBianco ◽  
...  

Abstract Notch signaling represents a central pathway regulating hematopoiesis, stem cell differentiation, and malignant transformation in human cancer. Activation of highly conserved Notch1 receptors results in cleavage and release of an intracellular domain (ICN1). Following translocation to the nucleus, ICN1 forms a ternary complex with the transcriptional repressor CSL (CBF-1, Suppressor of Hairless and Lag-1) bound to cognate DNA. This event triggers a repressor-to-activator switch, as an interfacial groove is formed which recruits the Mastermind-Like (MAML1) co-activator protein. Activating mutations in NOTCH1 are found in more than 50% of patients with T-Cell Acute Lymphoblastic Leukemia (T-ALL), promoting protein stability and establishing a direct link to disease pathogenesis. Pharmacologic efforts to target the Notch pathway in T-ALL have been directed at gamma secretase, a regulatory enzyme in Notch activation. Recently, the observed clinical resistance to gamma secretase inhibitors has been explained, in part, by additional mutations in the Notch-targeting ubiquitin ligase, Fbxw7, which further increases oncoprotein stability. Therefore, direct inhibitors of ICN1 function are highly desirable. Drawing upon insights afforded by the resolved crystal structure of the DNA-bound ICN1:MAML1:CSL complex, we synthesized a series of hydrocarbon stapled alpha-helical peptides targeting Notch (SAHNs) based on minimal motifs of the MAML protein predicted to engage the composite ICN1:CSL interface. Direct, high-affinity binding to purified components of the Notch complex was confirmed using surface plasmon resonance (SPR). Nuclear access of SAHN1 was confirmed using quantitative epifluorescent and confocal microscopy. Intracellular association with ICN1 and CSL was established using bidirectional affinity chromatography. Using a novel CSL-responsive reporter construct, we observed inhibition of endogenous Notch transactivation by SAHN1 in T-ALL cell lines. Furthermore, SAHN1 induces a dose-dependent knockdown of endogenous Notch1 target genes including HES1, HEY1 and cMYC in T-ALL cell lines. Remarkably, inhibition of Notch signaling by SAHN1 confers selective cytotoxicity at 48 hours in a panel of T-ALL cell lines with known mutations in NOTCH, including those resistant to gamma secretase inhibitors. Supporting an on-target mechanism of action, we have prepared a damaged analogue of SAHN1 containing a two-residue rearrangement (SAHN1D). SAHN1D possesses reduced binding affinity for the Notch complex and despite comparable intracellular access, SAHN1D lacks both transcriptional and cytotoxic effects on cultured T-ALL cell lines in vitro. Efficacy studies have also been performed in vivo using a novel murine model of T-ALL. In summary, we report here the design, biochemical characterization and translational rationale supporting the first direct inhibitor of the Notch transactivation complex in T-ALL.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2440-2440
Author(s):  
Tian Yuan ◽  
Yaling Yang ◽  
Jeffrey You ◽  
Daniel Lin ◽  
Kefeng Lin ◽  
...  

Abstract Introduction: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy accounting for 15% of pediatric and 25% of adult acute lymphoblastic leukemia (ALL) cases. With current chemotherapies and transplantation therapy, there are still 25-50% T-ALL patients that suffer from relapse and have a poor outcome. MicroRNAs (miRNAs or miRs) are endogenous small non-coding RNAs (containing about 22 nucleotides in length). miRs function at posttranscriptional level as negative regulators of gene expression and exert their regulatory function through binding to target mRNAs and silencing gene expression. To better understand the pathogenesis and develop the new therapeutic targets of T-ALL, we have developed a Pten tumor suppressor knockout T-ALL mouse model and profiled miRs from the mouse Pten deficient T-ALL. miR-26b was one of the miRs that were found down-regulated in the mouse Pten deficient T-ALL. Recent studies showed that the aberrant expression of miR-26b is implicated in several types of cancer. The expression level of miR-26b and its role of in T-ALL, however, are unknown. We investigated if the expression level of miR-26b is aberrant in T-ALL and the effect of potentially altered expression on the growth of human T-ALL cells. Methods: We conducted miR array profiling to identify differentially expressed miRs in the mouse Pten deficient T-ALLs compared with preneoplastic thymocyte controls. We validated expression levels of several miRs, including miR-26b, that are differentially expressed in mouse and human T-ALL cells using quantitative RT-PCR. We also overexpressed miR-26b using a lentivirus based vector in human T-ALL cell lines to assess its effect on cell growth and apoptosis. Results: Employing miR array profiling, we identified a subset of miRs that exhibited marked altered expression in the mouse Pten deficient T-ALL cells. Quantitative RT-PCR validated that the expression level of miR-26b in the mouse Pten deficient T-ALL cells was markedly lower in comparison to that of preneoplastic thymocytes. To determine if miR-26b expression level is also altered in human T-ALL, we performed quantitative RT-PCR on a panel of human T-ALL cell lines. Indeed, the expression level of miR-26b is significantly lower in the human T-ALL cell lines when compared with that of normal thymocytes. To functionally assess if miR-26b plays a role in the cell growth of human T-ALL cells, we expressed exogenous miR-26b in a panel of human T-ALL cell lines. We demonstrated that the expression of exogenous miR-26b significantly reduced the proliferation and promoted apoptosis of several human T-ALL cell lines. Conclusions: Our results demonstrated that miR-26b is down-regulated in T-ALL and the expression of exogenous miR-26b elicits deceased cell proliferation and increased apoptosis of human T-ALL. These results suggest that miR-26b may function as a tumor suppressor in the development of T-ALL and further characterization of the target and regulation of miR-26b may have therapeutic implications. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1279-1279 ◽  
Author(s):  
Christopher R Jenkins ◽  
Hongfang Wang ◽  
Olena O Shevchuk ◽  
Sonya H Lam ◽  
Vincenzo Giambra ◽  
...  

Abstract Abstract 1279 T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy characterized by the clonal outgrowth of developmentally arrested T-lymphoid blasts. Notch signaling is activated by mutation of NOTCH1 and/or FBW7 in over half of cases, and ultimately results in increased expression of target genes via the NOTCH/CSL transcriptional complex. Enforced expression of activated NOTCH1 in mouse hematopoietic progenitors leads to the development of clonal T-cell leukemias, suggesting that collaborating mutations are required for establishment and/or propagation of malignant clones. To identify candidate collaborating loci, Beverly and Capobianco performed a retroviral insertional mutagenesis screen in mice expressing a relatively weak activated Notch1 transgene and found recurrent insertions into Ikaros (Ikzf1). These insertions resulted in expression of dominant negative isoforms of Ikaros and thus potentiated Notch signaling since Ikaros and Notch/CSL compete for occupancy at target gene regulatory elements. In an attempt to identify collaborating mutations outside of the Notch pathway, we performed a similar screen, but employed instead a very potent activated NOTCH1 allele (ΔE) in hopes of saturating the Notch signaling pathway. We thus cloned out the insertion sites from 88 primary mouse leukemias generated by transduction of bone marrow with ΔE retrovirus. While recurrent insertions into Ikzf1 were again identified, we also observed frequent insertions into other regions including the Runx3 locus. The Runx3 integrations were tightly clustered in a region 40–60kb upstream of the transcriptional start site, suggesting the retroviral LTR might be inducing an increase in Runx3 expression. A single integration upstream of Runx1 was also identified in a region frequently mutated in similar screens. Of note, analysis of publically available gene expression profile data revealed that RUNX1 and RUNX3 are ubiquitously expressed in patient T-ALL samples. In order to functionally characterize the roles of RUNX1 and RUNX3 in T-ALL, we utilized lentiviral shRNAs to knock down RUNX1 and/or RUNX3 across a broad panel of 26 human T-ALL cell lines. Despite recent studies suggesting RUNX1 may act as a tumor suppressor in T-ALL, we observed the overwhelming majority of cell lines to show substantial growth defects after knock-down of RUNX1/3 as measured by competitive growth assay. These results were confirmed in a subset of cell lines and also in xenograft-expanded primary T-ALL samples by BrdU incorporation/DNA content assays which showed reduced proliferation/G1 cell cycle arrest following RUNX1/3 knock-down. Conversely, overexpression of RUNX3 induced T-ALL cells to proliferate more rapidly and to resist ABT-263-induced apoptosis. To explore potential target genes responsible for these pro-growth/survival effects, we mined available ChIP-Seq data and found NOTCH1/CSL and RUNX1 binding sites to co-localize within IGF1R and IL7R loci at intronic enhancer-like regions with associated H3K4me1>H3K4me3 marks and reduced H3K27me3 marks. Importantly, we show that NOTCH1 and RUNX factors co-regulate surface protein expression of IGF1R and IL7R in a synergistic/additive manner. As we and others have previously demonstrated important roles for both IGF1R and IL7R in T-ALL cell growth and leukemia-initiating activity, these studies reveal a novel collaborative mechanism between NOTCH1 and RUNX proteins in supporting propagation of established T-ALL disease. Disclosures: No relevant conflicts of interest to declare.


HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 413-414
Author(s):  
C. de Bock ◽  
R. Habets ◽  
L. Serneels ◽  
I. Lodewijckx ◽  
D. Verbeke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document