Down-Regulation of Mir-26b and Its Inhibition on the Growth of T Cell Acute Lymphoblastic Leukemia

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2440-2440
Author(s):  
Tian Yuan ◽  
Yaling Yang ◽  
Jeffrey You ◽  
Daniel Lin ◽  
Kefeng Lin ◽  
...  

Abstract Introduction: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy accounting for 15% of pediatric and 25% of adult acute lymphoblastic leukemia (ALL) cases. With current chemotherapies and transplantation therapy, there are still 25-50% T-ALL patients that suffer from relapse and have a poor outcome. MicroRNAs (miRNAs or miRs) are endogenous small non-coding RNAs (containing about 22 nucleotides in length). miRs function at posttranscriptional level as negative regulators of gene expression and exert their regulatory function through binding to target mRNAs and silencing gene expression. To better understand the pathogenesis and develop the new therapeutic targets of T-ALL, we have developed a Pten tumor suppressor knockout T-ALL mouse model and profiled miRs from the mouse Pten deficient T-ALL. miR-26b was one of the miRs that were found down-regulated in the mouse Pten deficient T-ALL. Recent studies showed that the aberrant expression of miR-26b is implicated in several types of cancer. The expression level of miR-26b and its role of in T-ALL, however, are unknown. We investigated if the expression level of miR-26b is aberrant in T-ALL and the effect of potentially altered expression on the growth of human T-ALL cells. Methods: We conducted miR array profiling to identify differentially expressed miRs in the mouse Pten deficient T-ALLs compared with preneoplastic thymocyte controls. We validated expression levels of several miRs, including miR-26b, that are differentially expressed in mouse and human T-ALL cells using quantitative RT-PCR. We also overexpressed miR-26b using a lentivirus based vector in human T-ALL cell lines to assess its effect on cell growth and apoptosis. Results: Employing miR array profiling, we identified a subset of miRs that exhibited marked altered expression in the mouse Pten deficient T-ALL cells. Quantitative RT-PCR validated that the expression level of miR-26b in the mouse Pten deficient T-ALL cells was markedly lower in comparison to that of preneoplastic thymocytes. To determine if miR-26b expression level is also altered in human T-ALL, we performed quantitative RT-PCR on a panel of human T-ALL cell lines. Indeed, the expression level of miR-26b is significantly lower in the human T-ALL cell lines when compared with that of normal thymocytes. To functionally assess if miR-26b plays a role in the cell growth of human T-ALL cells, we expressed exogenous miR-26b in a panel of human T-ALL cell lines. We demonstrated that the expression of exogenous miR-26b significantly reduced the proliferation and promoted apoptosis of several human T-ALL cell lines. Conclusions: Our results demonstrated that miR-26b is down-regulated in T-ALL and the expression of exogenous miR-26b elicits deceased cell proliferation and increased apoptosis of human T-ALL. These results suggest that miR-26b may function as a tumor suppressor in the development of T-ALL and further characterization of the target and regulation of miR-26b may have therapeutic implications. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4630-4630
Author(s):  
Samuel D Gusscott ◽  
Florian Kuchenbauer ◽  
Andrew P Weng

Abstract Abstract 4630 T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer of immature T cells that often shows aberrant activation of the Notch1 signaling pathway. Several studies have utilized mRNA expression profiling to identify downstream mediators of oncogenic Notch signaling in this context. Since microRNAs (miRNAs) have in recent years been shown to play important roles in hematological maliganancy, we performed a microarray-based screen for Notch-dependent miRNA expression in T-ALL. Jurkat and P12-Ichikawa cell lines were treated with gamma-secretase inhibitor to block Notch signaling vs. DMSO control for 4 days and profiled using Exigon miRCURY LNA miRNA microarrays. Surprisingly few miRNAs were found to be regulated by this approach; however, one of the hits, miR-223, showed consistent upregulation after gamma-secretase treatment in Jurkat cells and 5 additional human T-ALL cell lines assessed by miRNA qPCR. This observation was unique to human T-ALL as murine models of T-ALL showed no evidence for Notch-dependent miR-223 expression. Given that canonical Notch signaling results in transcriptional activation, our observation that Notch signaling is associated with reduced miR-223 expression suggests an intermediary repressor may be involved. miR-223 has been reported to play an important role in normal granulopoiesis, to be expressed relatively highly in T-ALL with myeloid-like gene features, and most recently to accelerate Notch-mediated T-cell leukemogenesis. To explore potential functional consequences for Notch-dependent miR-223 repression in T-ALL, candidate miR-223 targets identified by TargetScan software were analyzed with Ingenuity Pathway Analysis software, which indicated IGF-1, insulin receptor, PTEN, and ERK5 signaling pathways as the top hits. We recently reported IGF1R signaling to be important for growth and viability of bulk T-ALL cells as well as for leukemia-initiating cell activity. Additionally, we reported that Notch signaling directly upregulates IGF1R transcription by binding to an intronic enhancer which is present between exons 21/22 in the human, but not mouse IGF1R locus. As miR-223 has previously been reported to target IGF1R mRNA and reduce its translation, we hypothesized that Notch signaling may also upregulate net IGF1R protein expression by repressing miR-223. To test this hypothesis, we transduced several human T-ALL cell lines with miR-223 retrovirus and observed a modest decrease in total IGF1R protein levels by western blot; however, no significant change was observed in surface IGF1R levels as assessed by flow cytometry. Addtionally, knockdown of miR-223 by lentiviral expression miR-223 target sequences (miR-223 “sponge”) resulted in modestly increased total IGF1R protein levels, but again showed no demonstrable effect on surface IGF1R levels. Of note, we also observed no apparent effect of either overexpression or knockdown of miR-223 on bulk cell growth or viability. We interpret these findings to suggest that Notch signaling does not have major effects on the miR transcriptome, and that up- or down-modulation of miR-223 in established T-ALL cells does not have significant effects on overall cell growth/viability. Further studies will be required to determine if miR-223 may act in concert with other Notch target genes to modulate cell physiology. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1470-1470
Author(s):  
Takaomi Sanda ◽  
Jeffrey W Tyner ◽  
Alejandro Gutierrez ◽  
Vu N Ngo ◽  
Jason M Glover ◽  
...  

Abstract Abstract 1470 To discover oncogenic pathways that are characteristically deregulated in T-cell acute lymphoblastic leukemia (T-ALL), we performed RNA interference screens both in T-ALL cell lines and primary specimens. We found that the JAK tyrosine kinase family member, TYK2, and its downstream effector, STAT1, are each required for the survival of T-ALL cells. To identify the effector molecules downstream of the TYK2-STAT1 pathway in T-ALL, we analyzed global gene expression profiles in TYK2-dependent T-ALL cell lines after silencing of TYK2 or STAT1. As expected, gene set enrichment analysis revealed that genes downregulated by TYK2 knockdown were generally also downregulated by knockdown of STAT1. Importantly, we found that expression of the anti-apoptotic gene BCL2 was significantly downregulated after silencing of both TYK2 and STAT1. Analysis by quantitative PCR of additional T-ALL cell lines revealed that silencing of TYK2 resulted in significant reductions of BCL2 mRNA expression in multiple TYK2-dependent cell lines. Expression of the wild-type but not the kinase-dead TYK2 protein was sufficient to rescue BCL2 protein expression and to prevent apoptosis after knockdown of endogenous TYK2, indicating that the tyrosine kinase activity of TYK2 is required for BCL2 upregulation. Similarly, expression of the shRNA-resistant wild-type STAT1A protein partially rescued BCL2 protein expression and prevented apoptosis, while a variant of STAT1A (Y701F) that is incapable of becoming phosphorylated on a requisite tyrosine residue did not rescue BCL2 levels. Taken together, our findings indicate that aberrant activation of a TYK2-STAT1 pathway upregulates BCL2 expression in T-ALL cells, and that the T-ALL cells develop pathway dependence, in that they require these sustained high levels BCL2 expression for survival. Disclosures: No relevant conflicts of interest to declare.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0224652
Author(s):  
Mingmin Wang ◽  
Jinquan Wen ◽  
Yuxia Guo ◽  
Yali Shen ◽  
Xizhou An ◽  
...  

1995 ◽  
Vol 81 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Wei Huang ◽  
Shao-Qin Kuang ◽  
Qiu-Hua Huang ◽  
Shuo Dong ◽  
Tong Zhang ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 710-710
Author(s):  
Alfonso Quintas-Cardama ◽  
Weigang Tong ◽  
Taghi Manshouri ◽  
Jan Cools ◽  
D. Gary Gilliland ◽  
...  

Abstract The fusion of ABL1 with BCR results in the hybrid BCR-ABL1 oncogene that encodes the constitutively active Bcr-Abl tyrosine kinase encountered in the majority of patients with chronic myeloid leukemia (CML) and in approximately 30% of pts with B-cell acute lymphoblastic leukemia (B-ALL). Recently, the episomal amplification of ABL1 has been described in 6% of pts with T-ALL (Nat Genet2004;36:1084–9). Molecular analysis demonstrated the oncogenic fusion of ABL1 with the nuclear pore complex protein NUP214 (NUP214-ABL1). We screened 29 pts with T-cell lymphoblastic lymphoma (T-LBL) and T-ALL for the presence of the NUP214-ABL1 fusion transcript by RT-PCR using specific primers for the 5 different transcripts thus far described. Three (10%) pts were found to express this fusion transcript, including 2 with T lymphoblastic lymphoma (NUP214 exon 31) and 1 with T-ALL (NUP214 exon 29). This was confirmed by direct sequencing in all cases. All pts received therapy with hyperCVAD and achieved a complete remission (CR). However, 2 of them died 6 and 9 months into therapy, respectively. One other pt remains in CR (19+ months) by morphologic and flow cytometry criteria. However, NUP214-ABL1 is still detectable in peripheral blood by nested PCR, thus suggesting minimal residual disease (MRD). We then studied the activity of the tyrosine kinase inhibitors imatinib and nilotinib in the NUP214-ABL1-expressing cell lines PEER and BE-13. Although PEER and BE-13 cell viability was reduced with both agents, the IC50 was almost 10-fold higher for imatinib (643 nM) than for nilotinib (68 nM) (F test, p<0.001), which parallels the 10− to 30− fold higher Abl kinase inhibitory activity of nilotinib compared to imatinib in BCR-ABL-expressing cells. Nilotinib also potently inhibited the cell proliferation of BE-13 cells (IC50 131 nM). In contrast, Jurkat cells, a T-ALL cell line which does not carry NUP214-ABL1, were remarkably resistant to both imatinib and nilotinib with an IC50 values greater than 5 μM indicating that the cytotoxicity mediated by both TKIs is not related to a general toxic effect on T-ALL cell lines. The inhibition of cellular proliferation by imatinib and nilotinib was associated with a dose- and time-dependent induction of apoptosis in both PEER and BE-13 cells. In Western blotting, higher inhibition of phospho-Abl and phospho-CRKL (a surrogate of Bcr-Abl kinase status) was observed in PEER cells upon exposure to nilotinib as compared with imatinib at their respective IC50 concentrations for cell growth inhibition. We conclude that NUP214-ABL1 can be detected in 10% of pts with T-cell malignancies and its detection can be used as a sensitive marker of MRD. Imatinib and nilotinib potently inhibits the growth of NUP214-ABL1-expressing cells. Given the higher Abl kinase inhibitory activity of nilotinib with respect to imatinib, this agent must be further investigated in clinical studies targeting patients with T-ALL and T-LBL expressing the NUP214-ABL1 fusion kinase.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2372-2372
Author(s):  
Kam Tong Leung ◽  
Karen Kwai Har Li ◽  
Samuel Sai Ming Sun ◽  
Paul Kay Sheung Chan ◽  
Yum Shing Wong ◽  
...  

Abstract Despite progress in the development of effective treatments against T-cell acute lymphoblastic leukemia (T-ALL), about 20% of patients still exhibit poor response to the current chemotherapeutic regimens and the cause of treatment failure in these patients remains largely unknown. In this study, we aimed at finding mechanisms that drive T-ALL cells resistant to chemotherapeutic agents. By screening etoposide sensitivity of a panel of T-ALL cell lines using DNA content and PARP cleavage as apoptosis markers, we identified an apoptosis-resistant cell line, Sup-T1. Western blot analysis and caspase activity assay showed that Sup-T1 cells were deficient in etoposide-induced activation of caspase-3 and caspase-9. In addition, mitochondrial cytochrome c release was not evident in etoposide-treated Sup-T1 cells. However, addition of exogenous cytochrome c in cell-free apoptosis reactions induced prominent caspase-3 activation, indicating that the chemoresistance observed in Sup-T1 cells was due to its insusceptibility to the drug-induced mitochondrial alterations. Analysis of the basal expression of the Bcl-2 family proteins revealed that the levels of Bcl-2 was higher in Sup-T1 cells, while Bax and BimEL levels were lower, when compared to etoposide-sensitive T-ALL cell lines. Gene silencing using antisense oligonucleotide to Bcl-2 and overexpression of Bax did not resensitize cells to etoposide-induced apoptosis. On the contrary, transient transfection of BimEL into Sup-T1 cells significantly restored etoposide sensitivity. Further experiments revealed that the lack of BimEL expression in Sup-T1 cells was due to the rapid degradation of newly-synthesized BimEL by the proteosomal pathway, as treatment of Sup-T1 cells with a proteosome inhibitor significantly restored the protein level of BimEL. Moreover, treatment with proteosome inhibitor resulted in mobility shift of BimEL, which was sensitive to phosphatase digestion. Furthermore, treatment of Sup-T1 cells with JNK inhibitor resulted in accumulation of BimEL, and pretreatment with JNK inhibitor restored sensitivity of Sup-T1 cells to etoposide-induced apoptosis, indicating that constitutive activation of the JNK pathway in Sup-T1 cells was responsible for promoting BimEL phosphorylation, and this may serve as a signal targeting BimEL to the proteosome for degradation. Altogether, our findings provide the first evidence that JNK activation correlates inversely with BimEL level by promoting its phosphorylation and degradation. This, in turn, reduces the sensitivity of T-ALL cells to chemotherapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document