The TAL1 Complex Represses the FBXW7 Tumor Suppressor Through Mir-223 in Human T-Cell Acute Lymphoblastic Leukemia

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1296-1296
Author(s):  
Marc R Mansour ◽  
Takaomi Sanda ◽  
Lee N Lawton ◽  
Xiaoyu Li ◽  
Taras Kreslavsky ◽  
...  

Abstract Abstract 1296 The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T-cell acute lymphoblastic leukemia (T-ALL) and causes T-ALL in murine transgenic models, emphasizing its importance in the molecular pathogenesis of this disease. However, the mechanism by which TAL1 leads to transformation of thymocytes is unclear. Dysregulation of miRNAs play an important role in tumorigenesis in diverse cancer types. A recent study identified miR-223 as the most abundant miRNA in T-ALL patient samples and was oncogenic by virtue of its ability to accelerate Notch-induced T-ALL in a murine model (Mavrakis et al. Nature Genetics 2011). However, the underlying mechanisms leading to dysregulated miRNA expression in T-ALL remain poorly understood. In order to explore the hypothesis that aberrant expression of miRNAs is mediated by the TAL1 oncogene in T-ALL, we generated high-resolution maps of the genome-wide occupancy of the TAL1 complex, including E2A, HEB, GATA3, LMO2 and RUNX1 by chromatin immunoprecipitation coupled to massively parallel DNA sequencing (ChIP-seq). Analysis of binding sites in two TAL1-positive T-ALL cell lines (Jurkat and CCRF-CEM cells) and two primary T-ALL samples identified 54 miRNAs where binding of the TAL1 complex was within 10 kb of either the transcriptional start sites or the start sites of genes that contain miRNAs in their intronic regions. To determine which of these miRNAs were not only directly bound, but also regulated by the TAL1 complex, we analyzed global changes in miRNAs after knockdown of TAL1 in Jurkat cells using two independent shRNAs. By miRNA expression profiling, we identified significant changes in expression of 25 miRNAs, of which nine were down-regulated on TAL1 knockdown (and thus positively regulated by TAL1) and 16 were up-regulated on TAL1 knockdown (and thus negatively regulated by TAL1). Of these 25 miRNAs, four (miR-223, miR181a*, miR-26a and miR-29c) were shown to be direct targets of the TAL1 complex based on our ChIP-seq data. We chose to focus on miR-223 because it exhibited the most dynamic down-regulation after TAL1 knockdown. ChIP-qPCR validated binding of the TAL1 complex to a region within 4 kb of the miR-223 transcriptional start site. Analysis of RNA polymerase II and CBP binding showed significant enrichment, and high levels of H3K4M3 and H3K79M2 modification were detected indicative of transcriptional initiation and elongation of this locus. Furthermore, expression of miR-223 was significantly higher in the TAL1-positive cell lines (n=13) as compared to the TAL1-low cells (n=10) (P<0.0001). miR-223 levels also closely mirrored TAL1 levels in murine thymic subsets, with marked down-regulation after the DN2 stage, suggesting miR-223 is a physiological target of TAL1 during normal thymic development, and that its overexpression in TAL1-positive T-ALL cells, arrested at the double-positive (DP) stage, is aberrant compared to their normal DP counterpart. To test the hypothesis that the growth inhibition observed after TAL1 knockdown is mediated by decreases in miR-223 expression, we retrovirally infected Jurkat and RPMI-8402 T-ALL cell lines with a miR-223 construct, such that miR-223 expression was no longer under the control of TAL1 in these cells. Forced expression of miR-223 partially rescued the growth inhibitory effects induced by TAL1 knockdown, in both a lentiviral and doxycycline-inducible shRNA system. Additionally, inhibition of mature miR-223 by lentiviral infection of a miR-223 shRNA construct led to significant growth inhibition of TAL1-positive cell lines through the induction of apoptosis. Thus, maintenance of miR-223 expression is required for optimal growth of TAL1-positive T-ALL cells. The highest ranked predicted target of miR-223 by Targetscan is the FBXW7 tumor suppressor, a ubiquitin ligase that is mutated in a significant proportion of T-ALL patients and targets oncogenes such as c-MYC, NOTCH and mTOR for degradation. Accordingly, overexpression of miR-223 in TAL1-low miR-223-low T-ALL cells markedly down-regulated FBXW7 protein expression. Furthermore, the up-regulation of FBXW7 protein expression observed on knockdown of TAL1 in TAL1-positive cell lines could be prevented by retroviral miR-223 expression. Thus, miR-223 is an important target of TAL1 and links the TAL1 oncogene to repression of the FBXW7 tumor suppressor. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1470-1470
Author(s):  
Takaomi Sanda ◽  
Jeffrey W Tyner ◽  
Alejandro Gutierrez ◽  
Vu N Ngo ◽  
Jason M Glover ◽  
...  

Abstract Abstract 1470 To discover oncogenic pathways that are characteristically deregulated in T-cell acute lymphoblastic leukemia (T-ALL), we performed RNA interference screens both in T-ALL cell lines and primary specimens. We found that the JAK tyrosine kinase family member, TYK2, and its downstream effector, STAT1, are each required for the survival of T-ALL cells. To identify the effector molecules downstream of the TYK2-STAT1 pathway in T-ALL, we analyzed global gene expression profiles in TYK2-dependent T-ALL cell lines after silencing of TYK2 or STAT1. As expected, gene set enrichment analysis revealed that genes downregulated by TYK2 knockdown were generally also downregulated by knockdown of STAT1. Importantly, we found that expression of the anti-apoptotic gene BCL2 was significantly downregulated after silencing of both TYK2 and STAT1. Analysis by quantitative PCR of additional T-ALL cell lines revealed that silencing of TYK2 resulted in significant reductions of BCL2 mRNA expression in multiple TYK2-dependent cell lines. Expression of the wild-type but not the kinase-dead TYK2 protein was sufficient to rescue BCL2 protein expression and to prevent apoptosis after knockdown of endogenous TYK2, indicating that the tyrosine kinase activity of TYK2 is required for BCL2 upregulation. Similarly, expression of the shRNA-resistant wild-type STAT1A protein partially rescued BCL2 protein expression and prevented apoptosis, while a variant of STAT1A (Y701F) that is incapable of becoming phosphorylated on a requisite tyrosine residue did not rescue BCL2 levels. Taken together, our findings indicate that aberrant activation of a TYK2-STAT1 pathway upregulates BCL2 expression in T-ALL cells, and that the T-ALL cells develop pathway dependence, in that they require these sustained high levels BCL2 expression for survival. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4-4
Author(s):  
Andrew P. Weng ◽  
Adolfo A. Ferrando ◽  
Woojoong Lee ◽  
John P. Morris ◽  
Lewis B. Silverman ◽  
...  

Abstract NOTCH1 was discovered originally through its involvement in a rare (7;9) translocation found in human T cell acute lymphoblastic leukemia (T-ALL). Here, we report that >50% of human T-ALLs have activating NOTCH1 mutations, occurring as amino acid substitutions in an extracellular heterodimerization (HD) domain and/or as frameshift and stop codon mutations that result in the deletion of a C-terminal PEST destruction box. Normal pro-NOTCH1 is processed into a heterodimer consisting of an extracellular subunit and a transmembrane subunit, which associate non-covalently through the HD domain. NOTCH1 activation is triggered by binding of Serrate or Delta-like ligands to the extracellular subunit, which induces successive proteolytic cleavages in the transmembrane subunit that are dependent on i) metalloproteases and ii) gamma-secretase. The γ-secretase cleavage releases intracellular NOTCH1 (ICN1), which translocates to the nucleus and forms a transcriptional activation complex with the transcription factor CSL and co-activators of the Mastermind family. Normal turnover of ICN1 is regulated by the C-terminal PEST sequence. Data pointing to the existence of frequent abnormalities of NOTCH1 in T-ALL stemmed from a functional screen of 30 T-ALL cell lines. This identified five T-ALL cell lines that underwent growth arrest in response to i) treatment with an inhibitor γ-secretase, and ii) retroviral transduction of dominant negative Mastermind-like-1. Sequencing of of cDNAs from 4 of these 5 cell lines demonstrated both a missense mutation in the HD domain and a frameshift mutation in the PEST domain lying in cis in the same NOTCH1 allele. Subsequent sequencing of genomic DNA obtained from bone marrow lymphoblasts of 96 children and adolescents with T-ALL demonstrated identical or similar mutations in NOTCH1 in 53 samples (55.2%). Mutations in the HD domain alone were observed in 26 cases (27.1%), in the PEST domain alone in 11 cases (11.4%), and in both the HD and PEST domains in 16 cases (16.7%). Mutations were observed in tumors associated with expression of HOX11 (2/3), HOX11L2 (10/13; 77%), TAL1 (12/31; 39%), LYL1 (9/14; 64%), MLL-ENL (1/3) or CALM-AF10 (1/2), which span the major molecular T-ALL subtypes. In contrast, NOTCH1 mutations were not observed in genomic DNAs samples obtained from B-ALL lymphoblasts (N=89), or from T-ALL patients with NOTCH1-associated disease at the time of clinical remission (N=4). Reporter gene assays conducted with plasmids expressing normal and mutated forms of NOTCH1 showed that a PEST deletion or various HD mutations alone caused ~1.5-fold and 3–9-fold stimulations of reporter gene activity, respectively, whereas normal NOTCH1 lacked intrinsic signaling activity. More strikingly, the combination of various HD mutations and a PEST deletion in cis caused synergistic 20–40-fold stimulations of reporter gene activity that were completely abrogated by a γ-secretase inhibitor, indicating that signaling depends on proteolysis. These results suggest a model in which HD domain mutations promote ICN1 production, and PEST domain mutations enhance ICN1 stability. Our findings greatly expand the role of NOTCH1 in the pathogenesis of human T-ALL, and provide a rationale for targeted therapies that interfere with NOTCH signaling.


2013 ◽  
Vol 210 (8) ◽  
pp. 1545-1557 ◽  
Author(s):  
Marc R. Mansour ◽  
Takaomi Sanda ◽  
Lee N. Lawton ◽  
Xiaoyu Li ◽  
Taras Kreslavsky ◽  
...  

The oncogenic transcription factor TAL1/SCL is aberrantly expressed in 60% of cases of human T cell acute lymphoblastic leukemia (T-ALL) and initiates T-ALL in mouse models. By performing global microRNA (miRNA) expression profiling after depletion of TAL1, together with genome-wide analysis of TAL1 occupancy by chromatin immunoprecipitation coupled to massively parallel DNA sequencing, we identified the miRNA genes directly controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. The most dynamically regulated miRNA was miR-223, which is bound at its promoter and up-regulated by the TAL1 complex. miR-223 expression mirrors TAL1 levels during thymic development, with high expression in early thymocytes and marked down-regulation after the double-negative-2 stage of maturation. We demonstrate that aberrant miR-223 up-regulation by TAL1 is important for optimal growth of TAL1-positive T-ALL cells and that sustained expression of miR-223 partially rescues T-ALL cells after TAL1 knockdown. Overexpression of miR-223 also leads to marked down-regulation of FBXW7 protein expression, whereas knockdown of TAL1 leads to up-regulation of FBXW7 protein levels, with a marked reduction of its substrates MYC, MYB, NOTCH1, and CYCLIN E. We conclude that TAL1-mediated up-regulation of miR-223 promotes the malignant phenotype in T-ALL through repression of the FBXW7 tumor suppressor.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 748-748
Author(s):  
Sophie Kusy ◽  
Nicolas Goardon ◽  
Florence Armstrong ◽  
Francoise Pflumio ◽  
paul-Henri Romeo

Abstract The TAL1/SCL gene encodes a bHLH (basic Helix-Loop-helix) protein that acts as a master gene in hematopoiesis. The TAL1/SCL gene is also the most frequently activated gene in human T-ALL but the oncogenic transcriptional programs, downstream of TAL1 in human T-ALL, are not well characterized. Using RNA interference to knockdown TAL1 expression, we show that TAL1 regulates both cell proliferation and death of human T-ALL cells. To determine the TAL1 target genes in human T-ALL, we combine TAL1 knockdown and gene expression profiling and show that TAL1 activates and repress a common subset of genes in cell lines. This subset includes known TAL1 target genes but also the NKX3.1 gene that is a homeobox gene, specifically expressed in the prostate epithelium during prostate development and in adulthood. NKX3.1 gene inactivation is one of the earliest events that occur in prostate cancer initiation, defining NKX3.1 as a major tumor suppressor gene of this cancer. TAL1 expression is associated with NKX3.1 activation in human T-ALL cell lines and NKX3.1 is expressed in TAL1 expressing human T-ALL blasts. TAL1 and GATA-3 are specifically bound in vivo to the [−870/−570] region of the human NKX3.1 gene promoter, and ex vivo, TAL1 can either directly binds an E-box [position −738] or be recruited by GATA-3 on a GATA binding site [position −697]. Finally, functional analyses of the NKX3.1 promoter indicate that these binding sites mediate the transcriptional activity of this promoter in T-cell lines. Sequences analysis of the human and mouse NKX3.1 promoters show that the regulatory sequences involved in the TAL1 activation of the human NKX3.1 gene are not conserved in the mouse gene, indicating why the NKX3.1 gene is not expressed in mouse models of TAL1 mediated leukemogenesis. NKX3.1 knockdown shows that NKX3.1 is necessary for the proliferation of TAL1 expressing T-ALL cell lines and NKX3.1 overexpression can complement the proliferation defects associated with TAL1 knockdown in T-ALL cell lines. Microarray analyses show that TAL1 and NKX3.1 regulate a common subset of genes in T-ALL that includes numerous genes encoding proteins known to be involved in T-cell proliferation and/or signaling. Finally, using a new culture system that enables proliferation of primary human leukemic cells, we show that the NKX3.1 gene is specifically activated in human TAL1 expressing T-ALL together with the defined potential TAL1 and/or NKX3.1 target genes. These results characterize NKX3.1 as the first gene directly activated by TAL1 and involved in the TAL1 dependent proliferation of human T-cell Acute Lymphoblastic Leukemia.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3558-3558 ◽  
Author(s):  
Alejandro Gutierrez ◽  
Alex Kentsis ◽  
Li Pan ◽  
Frederic Baleydier ◽  
Jason Marineau ◽  
...  

Abstract Abstract 3558 Despite the use of intensive and toxic treatment regimens, T-cell acute lymphoblastic leukemia (T-ALL) remains fatal in 25% of children and 60% of adults, highlighting the need for novel therapeutic strategies. We performed two complementary small molecule screens to identify novel T-ALL therapeutic agents: i) an in vivo zebrafish screen for small molecules toxic to MYC-overexpressing thymocytes, and ii) an in vitro screen for drugs that synergize with NOTCH inhibitors in human T-ALL cell lines. Hits common to both screens included perphenazine, an FDA-approved phenothiazine antipsychotic. Perphenazine potently induced mitochondrial apoptosis and had antileukemic activity in zebrafish T-ALL, in human T-ALL cell lines, and in primary human T-ALL lymphoblasts. However, the molecular target mediating the antileukemic activity of perphenazine appeared to be unrelated to any of its known cellular targets. To identify the relevant biologic target of perphenazine, we developed a novel method for drug target discovery, termed activity correlation proteomics, which combines native protein extraction of isotope-labeled proteomes, fluorous affinity chromatography, and quantitative mass spectrometry proteomics to relate phenotypic activities of drugs with their binding targets. Using activity correlation proteomics, we identified protein phosphatase 2A (PP2A) as the protein whose binding affinity for different phenothiazines most closely correlated with their antileukemic activity. Perphenazine was shown to activate PP2A in T-ALL cells, as assessed by rapid drug-induced dephosphorylation of multiple PP2A substrates including MYC, AKT, p70S6K, ERK, and BAD, and its effects were phenocopied by FTY720, a PP2A activator. Moreover, shRNA knockdown of PP2A scaffolding or catalytic subunits attenuated the activity of perphenazine, indicating that PP2A is required for its antileukemic activity. Our findings thus establish a novel strategy for pharmacologic activation of the PP2A tumor suppressor, and highlight its therapeutic potential in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates. Disclosures: Off Label Use: Discovery of antileukemic activity of perphenazine mediated via activation of PP2A.


Blood ◽  
2014 ◽  
Vol 124 (4) ◽  
pp. 567-578 ◽  
Author(s):  
Rui D. Mendes ◽  
Leonor M. Sarmento ◽  
Kirsten Canté-Barrett ◽  
Linda Zuurbier ◽  
Jessica G. C. A. M. Buijs-Gladdines ◽  
...  

Key Points Microdeletions represent an additional inactivation mechanism for PTEN in human T-cell acute lymphoblastic leukemia. PTEN microdeletions are RAG-mediated aberrations.


Sign in / Sign up

Export Citation Format

Share Document