Antibody Against Macrophage Receptor with Collagenous Structure (Anti-MARCO IgG) in Thrombotic Thrombocytopenic Purpura Patients.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2201-2201
Author(s):  
Phandee Watanaboonyongcharoen ◽  
Jessica L. Allen ◽  
Yuri D. Fedoriw ◽  
Herbert C. Whinna ◽  
Rommel P. Lu ◽  
...  

Abstract Abstract 2201 Idiopathic thrombotic thrombocytopenic purpura (TTP) is typically associated with severe ADAMTS13 deficiency due to the production of autoantibodies against ADAMTS13. Recent studies have demonstrated that B cell activating factor (BAFF), a TNF family member known to promote activation and survival of autoreactive B cells, is increased in TTP patients (Thomas et al. 2011 155:620 Br J Haematol; Watanaboonyongcharoen et al. 2011, AABB Abstract # 1118421). We hypothesized that high BAFF levels in TTP results in loss of B cell tolerance and the production of autoantibodies. Since defective clearance of apoptotic cells by macrophages has been found in autoimmune diseases, antibodies against MARCO (Macrophage Receptor with Collagenous structure) represented good candidate for study as a potentially pathophysiologically relevant autoantibody. Such anti-MARCO antibodies may lead to defective apoptotic cell clearance and the development of TTP. We measured anti-MARCO antibodies by ELISA and Western blot in 34 idiopathic TTP patients between 1999 and 2012: 25 female and 9 male with a median age of 40 years (range 25–72). All patients were diagnosed on the clinical basis of microangiopathic hemolytic anemia and thrombocytopenia without any other cause. ADAMTS13 activity and the presence of anti-ADAMTS13 inhibitor tests were performed in all patients. Fifty percent of patients had ADAMTS13 activity less than 10%, while 56% had ADAMTS13 inhibitor. All 34 patients underwent therapeutic plasma exchange (TPE) daily until the platelet count was at least 150 × 109/l for two consecutive days. High dose steroids were initiated immediately after first TPE. While direct binding ELISA did not yield specific results due to high background, specific MARCO bands were detected by Western blotting of recombinant MARCO protein with patient plasma IgG. Ninety-seven percent of patients with TTP (33/34) were positive for anti-MARCO IgG antibody compared to forty percent (10/25) of healthy controls, p < 0.001 (Table 1). As a surrogate for antibody titer, intensity of each Western blot band was quantified by densitometry using NIH ImageJ software. Patients with TTP had significantly increased anti-MARCO IgG as defined by the densitometric area under the curve (1.3 × 103; range 0–8.2 × 103) compared to healthy controls (0, range 0–4.5 × 103), p < 0.001. A cut-off point for high titer anti-MARCO IgG was calculated by using mean + 2SD of the area under the curve (AUC) of anti-MARCO IgG Western blot band density measured in healthy controls. Patients with an increased amount of anti-MARCO IgG (AUC > 2.9× 103) tended to have a higher relapse rate compared to those with normal anti-MARCO IgG (4 of 6 patients [67%] vs. 10 of 28 patients [36%], respectively, p = 0.20), although statistical significance was not reached due to the limited number of patients. Thus, for the first time, we identify anti-MARCO IgG in idiopathic TTP, suggesting a role for macrophage inhibition in the pathophysiology of TTP. Studies of anti-MARCO antibodies in larger numbers of patients may lead to development of a novel prognostic marker for TTP patients. Table 1. Presence of anti-MARCO IgG on Western blot Anti-MARCO IgG Population group TTP n (%) Healthy n (%) Yes, (n = 43) 33 (97) 10 (40) No, (n = 16) 1 (3) 15 (60) p < 0.001. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 523-523
Author(s):  
Wenjing Cao ◽  
Alicia Veninga ◽  
Elizabeth M. Staley ◽  
Adam Miszta ◽  
Nicole Kocher ◽  
...  

Abstract Background: Immune thrombotic thrombocytopenic purpura (iTTP), a potentially fatal hematological emergency, is primarily caused by acquired deficiency of ADAMTS13 activity due to autoantibodies. Immunoglobulin G (IgG)-type autoantibodies bind ADAMTS13 and inhibit its ability to cleave endothelium-derived ultra large von Willebrand factor (ULVWF). However, it remains poorly understood whether plasma VWF status can be used as a disease marker for diagnosis and monitoring therapy in patients with acute iTTP. Objective: To address this question, we determined plasma levels of VWF antigen (VWF:Ag), collagen-binding activity (VWF:CB), active forms of VWF (VWF:Ac), and VWF multimers in iTTP patients during acute episode and in early remission. Patients and Methods: From the Alabama registry, we identified 69 unique patients with a confirmed diagnosis of iTTP in whom plasma ADAMTS13 activity was <10 U/dL with positive inhibitors and elevated anti-ADAMTS13 IgGs. Of 69 patients, 21 had longitudinal plasma samples collected. Plasma samples from 56 healthy individuals, who did not have a hematological disease, cancer, and infection, were recruited as controls. Plasma levels of VWF:Ag, VWF:CB, and VWF:Ac were determined by an ELISA-based assay. Plasma VWF multimer distribution was assessed by an in-gel Western blotting assay following electrophoresis on a 1% SDS-agarose gel. Results: The mean age for our cohort iTTP patients was 43.9 ± 13.4 years. Twenty-six patients were male and 43 were female with male to female ratio of 1 to 1.7. Fifty-three patients were African American descents, 14 Caucasians, 1 Hispanic, and 1 unknown race. Plasma levels of VWF:Ag in acute iTTP patients were 289.4 ± 17.7%, significantly increased compared with those in the healthy controls (144.9 ± 7.6%) (p<0.0001); plasma levels of VWF:CB in these patients were 241 ± 17.9%, also significantly elevated compared with those in the healthy controls (149.9 ± 12.01%) (p=0.0001); additionally, plasma levels of VWF:Ac (304.6 ± 23.2%), assessed by its ability to bind anti-VWF-A1 nanobody, were more dramatically elevated compared with those in the controls (101.6 ± 5.9%) (p<0.0001). More interestingly, while the ratios of VWF:CB to VWF:Ag in patients with acute iTTP (0.8 ± 0.04) were lower than those in the healthy controls (1.0 ± 0.05) (p=0.0036), the ratios of VWF:Ac to VWF:Ag were significantly higher in patients with acute episode (1.2 ± 0.1) than those in the controls (0.8 ± 0.05) (p=0.0003). Furthermore, there was no statistically significant difference in the patient plasma levels of VWF:Ag (p=0.69) and VWF:CB (p=0.08) during acute episode and during early remission. However, the plasma levels of VWF:Ac in patients with acute disease were significantly higher than those in the early remission (p=0.002). Surprisingly, 90% (36/40) of out iTTP patients during acute episode showed the presence of ULVWF in their plasma using in-gel Western blotting, which allows the ULVWF to be detected without the transfer step to avoid any potential loss of larger VWF multimers during protein transfer. These ULVWF multimers disappeared in 3/4 iTTP patients in remission when ADAMTS13 activity recovered. In 28 healthy control samples, only one showed ULVWF. Conclusion: Our results demonstrate, for the first time in a large cohort, that active forms of VWF and ultra large VWF multimers are present in iTTP patient's plasma during the acute period, which is reduced or disappears during the early remission. Therefore, measuring active forms of VWF and ultra large VWF multimers may aid in diagnosis of iTTP and help monitoring of disease processes following therapy. Our ongoing study is to determine whether these biomarkers can be used to predict responses to treatment and long-term outcome. Disclosures Zheng: Alexion: Research Funding, Speakers Bureau.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 600-600 ◽  
Author(s):  
Xiao-Hui Hu ◽  
Jialing Bao ◽  
Yoshiyasu Ueda ◽  
Takashi Miwa ◽  
Wenchao Song ◽  
...  

Abstract Thrombotic thrombocytopenic purpura (TTP), a potential fatal syndrome, is often associated with severe deficiency of plasma ADAMTS13 activity, either resulting from ADAMTS13 mutations or acquired anti-ADAMTS13 autoantibodies that inhibit plasma ADAMTS13 activity. Patients with severe ADAMTS13 do not always have TTP signs and symptoms, which often occur following infections or inflammatory responses. The mechanism of TTP flare is not fully understood. In the present study, complement activation markers (iC3b, C5b, Bb, and C4b) were determined by enzyme-linked absorbent assays (ELISA) in the initial plasmas (prior to plasma exchange) of 20 patients with acquired TTP with severe ADAMTS13 deficiency (less than 20% of normal) and plasmas from 20 healthy controls. Of 20 TTP patients, 19 exhibited positive inhibitor in the 50:50 mixing study. Plasma levels of iC3b (1,000 ± 1,062 ng/ml), sC5b-9 (1,342±867 ng/ml), and Bb (38.2±47.7 ng/ml), as well as C4b (74.3±49.5 ng/ml) in acquired TTP patients were significantly higher than those in healthy controls (p value less than 0.01) These results indicate that complement activation in both classic and alternative pathways is a common phenomenon in patients with acquired autoimmune TTP. To demonstrate the causative effect of complement activation in TTP, we turned to our Adamts13 null mice. C57BL/6 (Adamts13-/-) mice are resistant to the development of spontaneous and Shigatoxin-induced TTP syndrome. When injected with a murine specific monoclonal antibody against complement factor H (CFH) (800 micro grams/mouse), which inhibits binding of circulating CFH to endothelial cells and C3b, Adamts13-/- mice (C57BL/6) developed more severe thrombocytopenia and anemia than wild type mice did within 6 days without additional challenge. However, renal insufficiency manifested by the increase of plasma BUN concentration was similar in both groups (Fig. 1). These results indicate that complement activation through an alternative pathway, following antibody-mediated inhibition of CFH or other complement regulatory components, may trigger the onset of TTP in light of severe ADAMTS13 deficiency. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S19-S20
Author(s):  
Malay Kumar Basu ◽  
Elizabeth Staley ◽  
Konstantine Halkidis ◽  
Jingrui (Jean) Sui ◽  
Nicole K Kocher ◽  
...  

Abstract Background Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal syndrome, resulting from autoantibodies against ADAMTS13. However, the mechanism underlying autoantibody formation is not known. Neither is known about the other genetic abnormality in the setting of severe deficiency of plasma ADAMTS13 activity. Methods Whole-exome sequencing (WES) was performed in 40 patients with iTTP who had plasma ADAMTS13 activity <10% and a positive inhibitor or elevated anti-ADAMTS13 IgG. Fifteen age- and ethnicity-matched subjects who never had iTTP were recruited as healthy controls. Results WES identified mutations in the genes involved in glycosylation, including O-linked glycosylation to be the major pathway affected in patients with iTTP. Mass spectrometry confirmed the changes in plasma levels of various glycoproteins in patients with acute iTTP when compared with those in the healthy controls. The altered glycosylation in glycoproteins may be responsible for the development of autoantibodies, susceptibility of von Willebrand factor to proteolysis by ADAMTS13, and the clearance of platelets in iTTP patients. Moreover, candidate gene analysis revealed that various genes involving in hemostasis, complement activation, platelet number and function, and inflammation were all affected in patients with iTTP, which may contribute to the onset, progress, severity, and long-term outcome of iTTP. Conclusions Our findings provide novel insight into a pathogenic mechanism underlying autoantibody production and the potential contribution of other genetic abnormalities in pathogenesis of iTTP in the individuals with severe deficiency of plasma ADAMTS13 activity. Future Direction Further studies are warranted to determine the specific glycosylation patterns of various plasma and cellular proteins in patients with iTTP and to determine the synergistic role of various gene mutations and severe ADAMTS13 deficiency in the pathogenesis of iTTP.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4195-4195
Author(s):  
Doyeun Oh ◽  
Ji Young Huh ◽  
So Young Chong ◽  
In-Ho Kim ◽  
Soo-Mee Bang ◽  
...  

Abstract Background: Uncontrolled complement activation has a major role in the pathogenesis of atypical HUS (aHUS) and the restraint of this process by eculizumab is life saving. However, the evidence of complement dysregulation in the pathogenesis of Thrombotic Thrombocytopenic Purpura (TTP) is still unclear. In this study we examined the presence of complement activation biomarkers in patients with aHUS and TTP and the levels were compared to normal healthy controls . Patients and Methods: Patients with thrombotic microangiopathic thrombocytopenia diagnosed either as TTP with low ADAMTS13 activity less than 10% or aHUS with impaired renal function, Cr> 2mg/dL and normal ADAMTS13 activity were chosen from the Korean TTP registry from February 2012 to June 2014. Prospective plasma and serum samples prior to intervention were collected from newly diagnosed patients with TTP (n=20), aHUS (n=20), and 20 healthy controls and frozen at -700C. Complement activation products (C3a, Bb as alternative pathway; C4d as classic pathway; C5a, C5b-9; terminal pathway) were measured by ELISA. Results: Significantly increased levels of Bb and C5b-9 were observed in TTP (median [range], ng/mL; Bb, 1220 [540.0 – 16560], p=0.048; C5b - 9, 390.1 [238.5 - 938.7], p<0.0001) when compared with controls (Bb, 870.0 [630.0 - 2070]; C5b - 9, 190.8 [77.96 - 458.9]). Increased levels of C3a, C5a, C5b - 9, and Factor Bb were observed in HUS (C3a, 231.3 [80.70 - 791.8], p<0.0001; C5a, 21.38 [5.590 - 34.96], p= 0.006; C5b - 9, 0.49 [0.21 - 1.41], p<0.0001; Bb, 1490 [540.0 – 11800], p= 0.0003) as compared with controls (C3a, 108.7 [30.98 - 425.1]; C5a, 8.620 [2.660 - 26.93]; C5b - 9, 0.49 [0.21 - 1.41]; Bb, 870.0 [630.0 - 2070]). These suggested alternative and terminal complement pathways were activated in initial episodes of TTP or HUS. However levels of C4d were not different in HUS and TTP as compared with controls which suggested classic complement pathways were not important in this process. There were no significant differences in complement levels between TTP and HUS although levels of C3a, C4d, C5b - 9 in HUS (C3a, 231.3 [80.70 - 791.8]; C4d, 2140 [10.00 - 960.0]; C5b - 9, 488.4 [212.7 – 1414]) tended to be increased as compared with TTP (C3a, 134.5 [61.97 - 378.4]; C4d, 1330 [2.000 - 699.0]; C5b - 9, 390.1 [238.5 - 938.7]). Conclusion: Complement biomarkers are activated to a similar level in both newly diagnosed cases of TTP and aHUS. Complement activation product levels did not differentiate aHUS from TTP. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 101 (02) ◽  
pp. 233-238 ◽  
Author(s):  
Sara Gastoldi ◽  
Erica Daina ◽  
Daniela Belotti ◽  
Enrico Pogliani ◽  
Paolo Perseghin ◽  
...  

SummaryThrombotic thrombocytopenic purpura (TTP) is a rare and severe disease characterized by thrombocytopenia, microangiopathic haemolytic anemia, neurological and renal involvement associated with deficiency of the von Willebrand factor-cleaving protease, ADAMTS13. Persistence of high titers of anti-ADAMTS13 autoantibodies predisposes to relapsing TTP. Since relapses are associated with high morbidity and mortality rates, the optimal therapeutic option should be a pre-emptive treatment able to deplete anti-ADAMTS13 autoantibodies and avoid relapses. Five patients who presented with persistence of undetectable ADAMTS13 activity and high titers of autoantibodies, were treated with rituximab as pre-emptive therapy during remission. Four of them were affected by relapsing TTP and one was treated after the first episode. ADAMTS13 activity ranging from 15% to 75% with disappearance of inhibitors was achieved after three months in all patients, and persisted >20% without inhibitors at six months. In three patients disease-free status is still ongoing after 29, 24 and six months, respectively. Relapses were documented in two patients during follow-up: in one patient remission lasted 51 months; while in the other patient relapse occurred after 13 months. Results demonstrated that rituximab used as pre-emptive treatment may be effective in maintaining a sustained remission in patients with anti-ADAMTS13 antibodies in whom other treatments failed to limit the production of inhibitors, and suggests that re-treatment with rituximab should be considered when ADAMTS13 activity decreases and inhibitors reappear into the circulation, to avoid a new relapse.


2016 ◽  
Vol 115 (05) ◽  
pp. 1034-1043 ◽  
Author(s):  
György Sinkovits ◽  
Péter Farkas ◽  
Dorottya Csuka ◽  
Katalin Rázsó ◽  
Marienn Réti ◽  
...  

SummaryThrombotic thrombocytopenic purpura (TTP) is characterised by the deficiency of the von Willebrand factor (VWF) cleaving protease (ADAMTS-13). Although several observations indicate an important role of endothelial activation in the pathogenesis of TTP, no reliable endothelial activation markers are available in the clinical management of TTP. Our aim was to investigate the presence of endothelial activation in TTP and to determine its connections with disease activity, therapy and complement activation. We enrolled 54 patients (median age 40.5; 44 females) and 57 healthy controls (median age 34; 30 females),VWF antigen, carboxiterminal-pro-endothelin-1 (CT-proET-1), complement Factor H and complement activation products (C3bBbP and SC5b-9) were measured. In both the acute and remission phase of TTP we found increased CT-proET-1 and VWF levels, while Factor H levels decreased compared with healthy controls. In remission, however, the elevated CT-proET-1 levels showed 22 % decrease when compared with the acute phase in paired samples (p=0.0031), whereas no changes for VWF and Factor H levels were observed. We also found positive correlations between CT-proET-1 levels and alternative pathway activation markers (C3bBbP; p=0.0360; r=0.4299). The data we present here demonstrate a role of endothelium activation in patients with acute TTP. The finding that CT-proET-1 levels decreased in remission compared with the acute phase further supports endothelial involvement. In addition, we show that endothelial activation also correlated with the activation of the alternative complement pathway. The data suggest that complement and endothelium activation jointly contribute to the development of TTP episodes in patients with predisposition to TTP.Supplementary Material to this article is available online at www.thrombosis-online.com.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 217-217
Author(s):  
Felipe Massicano ◽  
Elizabeth M. Staley ◽  
Konstantine Halkidis ◽  
Nicole K. Kocher ◽  
Lance A. Williams ◽  
...  

Background: Immune thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal syndrome, resulting primarily from autoantibodies against ADAMTS13. However, the mechanism underlying the autoantibody formation and the contribution of other genomic alterations to the pathogenesis of iTTP are largely unknown. Methods: Whole exome sequencing (WES) and bioinformatic analyses were performed to determine the genetic variations in 40 patients with iTTP who had ADAMTS13 activity &lt;10 IU/dL and a positive inhibitor or an elevated anti-ADAMTS13 IgG in concordance with clinical presentations of severe thrombocytopenia and microangiopathic hemolytic anemia with various degrees of organ injury. WES was also performed at the same time in fifteen age-, gender-, and ethnicity- matched individuals who did not have a history of iTTP or other hematological disorders as controls. Results: WES identified variants or mutations in the genes involving in glycosylation, including O-linked glycosylation, to be the major pathway affected in patients with iTTP. We propose that the altered glycosylation may be responsible for the development of autoantibodies against ADAMTS13 which impair the proteolytic cleavage of von Willebrand factor, accelerate the clearance of ADAMTS13 from circulation, and result in severe thrombocytopenia platelets in patients with iTTP. We also identified defects in ankyrin repeat containing protein ANKRD36C, a protein with hitherto unknown function, as the most statistically significant genomic alterations associated with iTTP (p &lt; 10-5). Moreover, candidate gene analysis revealed that various genes involving in hemostasis, complement activation, platelet function and signaling pathway, and inflammation were all affected in patients with iTTP, which may contribute to the onset, progress, severity, and long-term outcome of iTTP. Finally, we also identified two patient subgroups where the disease mechanism might be different. Conclusion: Our findings provide novel insight into the pathogenic mechanism underlying ADAMTS13 autoantibody production and the potential contribution of other genetic abnormalities in modifying the iTTP clinical presentations in the individuals with severe deficiency of plasma ADAMTS13 activity. Disclosures Zheng: Alexion: Speakers Bureau; Ablynx/Sanofi: Consultancy, Speakers Bureau; Shire/Takeda: Research Funding; Clotsolution: Other: Co-Founder.


2021 ◽  
Vol 29 (3) ◽  
pp. 270-273
Author(s):  
Başak Ergin ◽  
Berna Buse Kobal ◽  
Zeynep Yazıcı ◽  
Ali Hakan Kaya ◽  
Sezin Canbek ◽  
...  

Objective Thrombotic thrombocytopenic purpura is a thrombotic microangiopathic condition characterized by hemolytic anemia, thrombocytopenia, neurologic abnormalities, fever and renal dysfunction. Thrombotic microangiopathies such as preeclampsia and HELLP syndrome are pregnancy-specific, whereas others such as thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome are not. In this report, we present a case at which we identified a novel mutation which led to a significant reduction of ADAMTS13 activity. Case(s) A nulliparous pregnant woman of 32-year-old presenting with epigastric pain, hypertension and low platelet count was first suspected of HELLP syndrome, but was diagnosed with congenital TTP after delivery. Conclusion HELLP syndrome co-existed with undiagnosed TTP in this case. We strive to have sufficient awareness in order to distinguish these two pathologies from each other on an antenatal basis, because the causes of the managements are entirely different.


Sign in / Sign up

Export Citation Format

Share Document