Mechanisms of Tumor Suppression by the Hematopoietic Transcription Factor PU.1.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2432-2432
Author(s):  
Mark D McKenzie ◽  
Luisa Cimmino ◽  
Yifang Hu ◽  
Ladina Di Rago ◽  
Sandra Mifsud ◽  
...  

Abstract Abstract 2432 Introduction Acute myeloid leukemia (AML) is a genetically and morphologically heterogeneous disease characterized by the accumulation of immature myeloid lineage cells in the bone marrow and blood. It results from genetic alterations that cause increased self-renewal of myeloid progenitors, accompanied by a block in their normal differentiation programs. Studies in mice and humans have shown that loss of expression of PU.1, a master transcription factor that is critical for lymphoid and myeloid lineage development, is a recurrent feature of AML1. Restoring the PU.1 differentiation program in AML is an attractive therapeutic strategy, but remains elusive due to a poor understanding of PU.1 target genes and tumor suppressive mechanisms. In a novel approach to understanding PU.1 function, we have used in vivo RNA interference to inducibly inhibit and restore PU.1 expression in normal hematopoietic cells and leukemias. Results PU.1 knockdown promotes leukemia in mice We identified several short hairpin RNAs that can effectively knockdown PU.1 (Fig 1A). We infected primary fetal liver cells with the most effective LMP-shPU.1 retroviruses and performed in vitro and in vivo assays to assess the effect of PU.1 knockdown (Fig 1B). We found that PU.1 knockdown drives 1) an increased frequency of blast colony-forming cells and self-generation of granulocytic progenitors in vitro (Fig 1C) and 2) a GFP+ myeloid leukemia after several months characterized by accumulation of cKit+Gr1+Mac1+ cells (Fig 1D, E). These findings verify that shRNA-mediated PU.1 knockdown can effectively disable its tumor suppressive functions. Inducible restoration of PU.1 in leukemia in vivo To identify transcriptional targets of PU.1 in vivo, we utilized a recently generated reversible RNAi strategy that allows acute restoration of endogenous PU.1 expression upon Dox treatment in leukemias driven by PU.1 knockdown2. This TRMPV vector strategy allows tet-regulated co-expression of an shRNA and the fluorescent marker dsRed, with stable expression of GFP to mark infected cells. We transduced fetal liver cells derived from Vav-tTA transgenic mice with TRMPV-shPU.1 to drive reversible PU.1 knockdown across the hematopoietic system of reconstituted recipient mice. In contrast to the myeloid leukemia generated earlier using LMP-shPU.1, these mice developed pre-B cell (CD19+CD25+) leukemia with a latency of several months. To acutely restore endogenous PU.1 expression in leukemia, primary tumor cells were transplanted into several recipient mice to generate a cohort for analysis of Dox responses (Figure 2A). We found that dsRed intensity decreased incrementally upon Dox treatment of leukemic transplant recipient mice allowing FACS sorting of leukemia cells from triplicate untreated mice (dsRedhigh, minimal PU.1 expression) or after three days of Dox treatment (dsRedmid, partially restored PU.1 expression). We identified gene expression changes associated with PU.1 restoration using RNA sequencing (RNA-seq). Development of a transgenic mouse allowing inducible PU.1 knockdown in vivo To further investigate PU.1 target genes in vivo, we have recently generated TRE-GFP-shPU.1 transgenic mice allowing inducible knockdown and restoration of PU.1 in adult mice. To test this strain we crossed it to CAGs-rtTA3 mice and treated bitransgenic mice with Dox. Western blot analysis of GFP+ Gr1+Mac1+ sorted myeloid cells showed effective PU.1 knockdown in vivo. We are currently using these mice to identify PU.1 regulated genes in normal myeloblasts in vivo. Conclusions These studies have identified several new candidate PU.1-regulated genes. Further experiments may shed light on whether there is a common novel tumor suppressive mechanism for PU.1 in myeloid and lymphoid leukemias driven by loss of PU.1. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 646-646
Author(s):  
Katharina Wagner ◽  
Pu Zhang ◽  
Frank Rosenbauer ◽  
Bettina Drescher ◽  
Susumu Kobayashi ◽  
...  

Abstract The lineage-determining transcription factor C/EBPα is required for myeloid differentiation. Decreased function or expression of C/EBPα is often found in human acute myeloid leukemia. However, the precise impact of C/EBPα deficiency on the maturation arrest in leukemogenesis is not well understood. To address this question, we used a murine transplantation model of a bcr/abl induced myeloproliferative disease. The expression of bcr/abl in C/EBPα+/+ and C/EBPα+/− fetal liver cells lead to a chronic myeloid leukemia-like disease. Surprisingly, bcr/abl expressing C/EBPα−/− fetal liver cells fail to induce a myeloid disease in transplanted mice, but instead cause a fatal, transplantable erythroleukemia. Accordingly, increased expression of SCL and GATA-1 in hematopoietic precursor cells of C/EBPα−/− fetal livers was found. The mechanism for the lineage shift from myeloid to erythroid leukemia was studied in a bcr/abl positive cell line. Consistent with findings of the transplant model, expression of C/EBPα and GATA-1 was inversely correlated. Id1, an inhibitor of erythroid differentiation, was upregulated upon C/EBPα expression. Chromatin immunoprecipitation was done and C/EBPα binding to a 3 prime enhancer of the Id1 gene was observed. Downregulation of Id1 by RNA interference impaired C/EBPα induced granulocytic differentiation. Thus, Id1 is a direct and critical target of C/EBPα. Taken together, our study provides the first evidence that myeloid lineage identity of malignant hematopoietic progenitor cells requires the residual expression of C/EBPα.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 538-538
Author(s):  
Elena Manara ◽  
Emma Baron ◽  
Alessandra Beghin ◽  
Claudia Tregnago ◽  
Emanuela Giarin ◽  
...  

Abstract Abstract 538 The cAMP response element binding protein (CREB) is a nuclear transcription factor downstream of various stimuli and is critical for the pathogenesis of leukemia. CREB overexpression promotes abnormal proliferation, cell cycle progression, and clonogenic potential in vitro and in vivo. We found that CREB deregulation in Acute Myeloid Leukemia (AML) is due to both genomic amplification and aberrant miRNA expression. CREB has been shown to be a direct target of the microRNA, miR-34b. The inverse correlation between CREB and miR-34b expression has been described in myeloid leukemic cell lines. Mir-34b restoration reduced CREB levels and leukemia proliferation in vitro. One reason for the lower expression of miR-34b in myeloid leukemia cell lines is the hypermethylation of its promoter. Our goal was to characterize the role of miR-34b in AML progression using primary cells and mouse models. We also studied the regulation of miR-34b expression in cells from patients with AML and myelodysplastic syndromes (MDS). Primary AML cells transiently overexpressing miR-34b had decreased clonogenicity, as well as increase in apoptosis (9.9 vs. 25.5%, p<0.001). Primary leukemia cells from AML patients (n=3) treated with the demethylating agent 5-aza-2′-deoxycytidine showed a rise in miR-34b expression after 16 hours (RQ=7±2.6). We also observed a concomitant decrease in CREB protein expression and its target genes. In vivo, miR-34b overexpression resulted in decreased CREB expression and suppression of leukemia growth in flank tumor models with HL-60 and K562 cells injected into NOD-SCID IL-2receptor gamma null (NSG) mice, measured by bioluminescence and tumor volume (n=10 per group). These results demonstrated that miR-34b is an important tumor-suppressor through downregulation of CREB. We next investigated miR-34b expression in a large series of AML patients (n=118), a group of MDS patients (n= 49), and healthy bone marrows (HL-BM) (n=17) by quantitative PCR. Our results demonstrated lower miR-34b expression in blast cells from AML patients at diagnosis compared to HL-BM. The lower miR-34b expression in AML patients correlated with elevated CREB levels, similar to myeloid leukemia cell lines. The expression levels of miR-34b in bone marrow from MDS patients were intermediate between AML patients and HL-BM. These results suggest that miR-34b regulates CREB and is involved in the evolution of MDS to AML. In an effort to understand the mechanism of miR-34b downregulation in primary AML and MDS BM cells, miR-34b promoter methylation was determined using MS-PCR in both patient cohorts. The miR-34b promoter was found to be methylated in 65% (78/118) of AML patients at diagnosis, while it was unmethylated in all MDS samples (49/49). In particular, 3 MDS patients that evolved to AML had miR-34b promoter hypermethylation exclusively at the onset of AML. We further tested this hypothesis by downregulating miR-34b in primary HL-BM and fetal liver cells by using both oligonucleotides and a lentiviral transduction. An increase in CREB mRNA and several CREB target genes (for example cyclin B1, cyclin E2, p21) was observed. Moreover, the cell cycle profile demonstrated increased numbers of cells in S phase compared to negative controls. Methylcellulose colony formation was also increased in HL-BM and fetal liver cells transduced with a miR-34b inhibitor compared to controls (197 vs. 101, p<0.001). Therefore, we conclude that miR-34b promoter methylation is critical for the pathogenesis of AML through regulation of CREB-dependent pathways. Disclosures: Sakamoto: Abbott Laboratories, Inc.: Research Funding; Genentech, Inc.: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2714-2714
Author(s):  
Na Man ◽  
Yurong Tan ◽  
Fan Liu ◽  
Guoyan Cheng ◽  
Sarah Merin Greenblatt ◽  
...  

Abstract Background AML1-ETO (AE), a oncogenic protein generated by the t(8;21) translocation, causes acute myeloid leukemia (AML) in collaboration with other secondary events. The leukemogenicity of AE has been evaluated in multiple mouse models, such as expression of AE in Cdkn1a-null Hematopoietic stem cell (HSCs) and expression of AML1- ETO9a (AE9a), an alternatively spliced variant of AE, in WT HSCs. Both lead to the development of fully penetrant AML. Caspase-3 plays multiple roles in hematopoietic development and leukemia progression and treatment by affecting proliferation, self-renewal and differentiation. It has been shown that uncleaved caspase-3 levels are higher in the peripheral blood cells of AML patients compared to normal individuals, which suggests that the caspase pathway is dysregulated in AML. We and others have shown that Caspase-3 directly cleave AE in vitro, suggesting that AE may accumulate in a Caspase-3 compromised background and accelerate leukemogenesis. Methods We developed a Caspase-3 knockout genetic mouse model of AML based on fetal liver cell transplantation. In brief, fetal liver cells from WT or Caspase3-/- mice were transduced to express AE9a in vitroand 100,000 AE9a+ transduced cells were transplanted into lethally irradiated recipient mice by tail-vein injection. Results We found loss of Caspase-3 impaired leukemia stem cell (LSC) self-renewal and delayed AE9a-driven leukemogenesis, indicating that Caspase-3 may play distinct roles in the initiation or progression of AML. Moreover, we identified a new substrate of Caspase-3, ULK1, by in vitro cleavage assays and site-directed mutagenesis. ULK1 (serine/threonine UNC-51-like kinase) is the homology of Atg1 (the first autophagy related gene found in 1997) in mammalian cells, which is a direct target of mTOR and is responsible for initiation of the autophagic activity by forming a complex with mAtg13, FIP200 and Atg101. The induction of autophagy caused by upregulation of ULK1 in AE/AE9a-expressing Caspase-3-/- fetal liver cells acted to limit the leukemogenicity of AE9a in vivo. Inhibition of ULK1 by inhibitor or shRNAs could rescue the self-renewal capability induced by Caspase-3 deletion in serial replating assays. Unexpectedly, when we expressed AE/AE9a in fetal liver cells from WT and Caspase-3-/- mice, the protein levels were comparable suggesting the basal level of Caspase-3 didn't affect the expressing of AE/AE9a in fetal liver cells. Conclusion Autophagy may play a general role in the development and treatment of leukemia. In human AML, blasts display reduced expression of autophagy-related genes and decreased autophagic flux, indicating that low autophagy activity provides a general advantage for leukemia development. Beside this, a number of chemotherapy drugs have been reported to be able to induce leukemia cell death via activation of autophagy suggesting that autophagy plays critical roles in the leukemia treatment. Our study reveals that Caspase-3 regulates autophagy through its direct cleavage of ULK1 and this interaction dictates the pace of AE-driven leukemogenesis. Targeting this pathway may have therapeutic benefit for AML treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 97 (7) ◽  
pp. 1990-1998 ◽  
Author(s):  
Wolfgang E. Kaminski ◽  
Per Lindahl ◽  
Nancy L. Lin ◽  
Virginia C. Broudy ◽  
Jeffrey R. Crosby ◽  
...  

Abstract Platelet-derived growth factor (PDGF)-B and PDGF β-receptor (PDGFRβ) deficiency in mice is embryonic lethal and results in cardiovascular, renal, placental, and hematologic disorders. The hematologic disorders are described, and a correlation with hepatic hypocellularity is demonstrated. To explore possible causes, the colony-forming activity of fetal liver cells in vitro was assessed, and hematopoietic chimeras were demonstrated by the transplantation of mutant fetal liver cells into lethally irradiated recipients. It was found that mutant colony formation is equivalent to that of wild-type controls. Hematopoietic chimeras reconstituted with PDGF-B−/−, PDGFRβ−/−, or wild-type fetal liver cells show complete engraftment (greater than 98%) with donor granulocytes, monocytes, B cells, and T cells and display none of the cardiovascular or hematologic abnormalities seen in mutants. In mouse embryos, PDGF-B is expressed by vascular endothelial cells and megakaryocytes. After birth, expression is seen in macrophages and neurons. This study demonstrates that hematopoietic PDGF-B or PDGFRβ expression is not required for hematopoiesis or integrity of the cardiovascular system. It is argued that metabolic stress arising from mutant defects in the placenta, heart, or blood vessels may lead to impaired liver growth and decreased production of blood cells. The chimera models in this study will serve as valuable tools to test the role of PDGF in inflammatory and immune responses.


Blood ◽  
1980 ◽  
Vol 56 (3) ◽  
pp. 495-500
Author(s):  
JE Barker

Two types of erythroid colonies were generated in vitro from sheep fetal liver cells. The first type consisted of single colonies of 8–256 cells that were well hemoglobinized by 4 days; these are thought to originate from CFU-E. The second type consisted of macroscopic colonies composed of several subcolonies that matured between days 3 and 8 in vitro. At maturity, each contained 256 to > 1000 cells that formed a discrete macroscopic cluster. The macroscopic colonies, not previously described in sheep, are thought to be derived from BFU-E. The characteristics of sheep BFU-E were defined and the production of fetal hemoglobin (HbF, alpha 1, gamma 2) and HbC (alpha 2 beta 2) was compared in colonies derived from CFU-E or BFU-E. Bursts developed at erythropoietin (epo) concentrations as low as 0.1 U/ml, although the number observed increased with epo concentration up to 10 U/ml. The number of bursts observed was approximately proportional to the number of cells plated. As shown by thymidine suicide, approximately 50% of both the BFU e and CFU-E were in S-phase when obtained from the fetus. BFU-E were smaller and partially separable from CFU-E after sedimentation at unit gravity. The beta c/gamma synthetic ratio in colonies derived from BFU-E was greater than in CFU-E-derived colonies. These data suggest that the capacity for generation of erythroblasts making HbC is greater in the earlier or more primitive erythroid stem cells in fetal liver.


Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 870-876 ◽  
Author(s):  
Xue-Song Liu ◽  
Xi-Hua Li ◽  
Yi Wang ◽  
Run-Zhe Shu ◽  
Long Wang ◽  
...  

Abstract Palladin was originally found up-regulated with NB4 cell differentiation induced by all-trans retinoic acid. Disruption of palladin results in neural tube closure defects, liver herniation, and embryonic lethality. Here we further report that Palld−/− embryos exhibit a significant defect in erythropoiesis characterized by a dramatic reduction in definitive erythrocytes derived from fetal liver but not primitive erythrocytes from yolk sac. The reduction of erythrocytes is accompanied by increased apoptosis of erythroblasts and partial blockage of erythroid differentiation. However, colony-forming assay shows no differences between wild-type (wt) and mutant fetal liver or yolk sac in the number and size of colonies tested. In addition, Palld−/− fetal liver cells can reconstitute hematopoiesis in lethally irradiated mice. These data strongly suggest that deficient erythropoiesis in Palld−/− fetal liver is mainly due to a compromised erythropoietic microenvironment. As expected, erythroblastic island in Palld−/− fetal liver was found disorganized. Palld−/− fetal liver cells fail to form erythroblastic island in vitro. Interestingly, wt macrophages can form such units with either wt or mutant erythroblasts, while mutant macrophages lose their ability to bind wt or mutant erythroblasts. These data demonstrate that palladin is crucial for definitive erythropoiesis and erythroblastic island formation and, especially, required for normal function of macrophages in fetal liver.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2198-2203 ◽  
Author(s):  
Liquan Gao ◽  
Ilaria Bellantuono ◽  
Annika Elsässer ◽  
Stephen B. Marley ◽  
Myrtle Y. Gordon ◽  
...  

Abstract Hematologic malignancies such as acute and chronic myeloid leukemia are characterized by the malignant transformation of immature CD34+ progenitor cells. Transformation is associated with elevated expression of the Wilm's tumor gene encoded transcription factor (WT1). Here we demonstrate that WT1 can serve as a target for cytotoxic T lymphocytes (CTL) with exquisite specificity for leukemic progenitor cells. HLA-A0201– restricted CTL specific for WT1 kill leukemia cell lines and inhibit colony formation by transformed CD34+ progenitor cells isolated from patients with chronic myeloid leukemia (CML), whereas colony formation by normal CD34+ progenitor cells is unaffected. Thus, the tissue-specific transcription factor WT1 is an ideal target for CTL-mediated purging of leukemic progenitor cells in vitro and for antigen-specific therapy of leukemia and other WT1-expressing malignancies in vivo.


2006 ◽  
Vol 290 (5) ◽  
pp. H1997-H2006 ◽  
Author(s):  
Fan Xiang ◽  
Yasuhiko Sakata ◽  
Lei Cui ◽  
Joey M. Youngblood ◽  
Hironori Nakagami ◽  
...  

Pathological cardiac hypertrophy is considered a precursor to clinical heart failure. Understanding the transcriptional regulators that suppress the hypertrophic response may have profound implications for the treatment of heart disease. We report the generation of transgenic mice that overexpress the transcription factor CHF1/Hey2 in the myocardium. In response to the α-adrenergic agonist phenylephrine, they show marked attenuation in the hypertrophic response compared with wild-type controls, even though blood pressure is similar in both groups. Isolated myocytes from transgenic mice demonstrate a similar resistance to phenylephrine-induced hypertrophy in vitro, providing further evidence that the protective effect of CHF1/Hey2 is mediated at the myocyte level. Induction of the hypertrophy marker genes ANF, BNP, and β- MHC in the transgenic cells is concurrently suppressed in vivo and in vitro, demonstrating that the induction of hypertrophy-associated genes is repressed by CHF1/Hey2. Transfection of CHF1/Hey2 into neonatal cardiomyocytes suppresses activation of an ANF reporter plasmid by the transcription factor GATA4, which has previously been shown to activate a hypertrophic transcriptional program. Furthermore, CHF1/Hey2 binds GATA4 directly in coimmunoprecipitation assays and inhibits the binding of GATA4 to its recognition sequence within the ANF promoter. Our findings demonstrate that CHF1/Hey2 functions as an antihypertrophic gene, possibly through inhibition of a GATA4-dependent hypertrophic program.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1605-1605 ◽  
Author(s):  
Tsutomu Toki ◽  
Fumiki Katsuoka ◽  
Rika Kanezaki ◽  
Seiji Watanabe ◽  
Takuya Kamio ◽  
...  

Abstract Both p45 and BACH transcription factors can form dimers with one of the small Maf proteins, and these heterodimers bind to Maf recognition elements (MARE). MARE is known to act as a critical cis-regulatory element of erythroid and megakaryocytic genes. While detailed analyses of p45 -null mutant mice and small maf compound mutant mice revealed that these factors are both critical for platelet production, the functional contributions of BACH1 and the relationship or redundancy between BACH1 and p45 in megakaryocytes remain to be clarified. To address these issues, we generated transgenic lines of mice bearing human BACH1 cDNA under the control of the GATA-1 locus hematopoietic regulatory domain. The transgenic mouse lines showed significant thrombocytopenia associated with impaired maturation of the megakaryocytes, and they developed myelofibrosis. The megakaryocytes overexpressing the BACH1 transgene exhibited reduced proplatelet formation. Since the phenotype of the BACH1 transgenic mice resembled that of the p45 -deficient mice, we examined the expression of the p45 NF-E2 target genes in the primary megakaryocytes from fetal liver cells of the BACH1 transgenic mice. RT-PCR analyses showed that expression of the hematopoietic-specific ß1-tubulin, thromboxane synthase ( TXAS), and of the 3ß-hydroxy-steroid dehydrogenase genes was significantly downregulated in the megakaryocytes from BACH1 transgenic mice. The TXAS gene is a well-known MARE-dependent gene containing functional MAREs in its promoter and in the second intron. To ask whether BACH1 actually binds to MARE in the megakaryocytic genes, we then performed chromatin immunoprecipitation (ChIP) analysis with a BACH1-specific antibody. A ChIP assay with a human megakaryocytic cell line, UT-7/TPO, demonstrated that BACH1 bound to the promoter and enhancers region in vivo. As expected, co-transfection with BACH1 or Bach1-MafK fusion protein (B1K) expression plasmids repressed the reporter gene activity driven by the TXAS promoter. These findings thus provide evidence that BACH1 acts as a transcriptional repressor in the regulation of MARE-dependent genes in megakaryocytes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 776-776
Author(s):  
Zhongfa Yang ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates transcription of key myeloid genes, including CD18 (beta2 leukocyte integrin), neutrophil elastase, lysozyme, and other key mediators of the inflammatory response; it is also known to regulate important cell cycle control genes. GABP consists of two distinct and unrelated proteins that, together, form a functional transcription factor complex. GABPalpha (GABPa) is an ets protein that binds to DNA; it forms a tetrameric complex by recruiting its partner, GABPbeta (GABPb), which contains the transactivation domain. GABPa is a single copy gene in both the human and murine genomes and it is the only protein that can recruit GABPb to DNA. We cloned GABPa from a murine genomic BAC library and prepared a targeting vector in which exon 9 (which encodes the GABPa ets domain) was flanked by loxP (floxed) recombination sites. The targeting construct was electroporated into embryonic stem cells, homologous recombinants were implanted into pseudopregnant mice, heterozygous floxed GABPa mice were identified, and intercrossing yielded expected Mendelian ratios of wild type, heterozygous, and homozygous floxed GABPa mice. Breeding of heterozygous floxed GABPa mice to CMV-Cre mice (which express Cre recombinase in all tissues) yielded expected numbers of hemizygous mice (only one intact GABPa allele), but no nullizygous (GABPa−/−) mice among 64 pups; we conclude that homozygous deletion of GABPa causes an embryonic lethal defect. To determine the effect of GABPa deletion on myeloid cell development, we bred heterozygous and homozygous floxed mice to LysMCre mice, which express Cre only in myeloid cells. These mice had a normal complement of myeloid cells but, unexpectedly, PCR indicated that their Gr1+ myeloid cells retained an intact (undeleted) floxed GABPa allele. We detected similar numbers of in vitro myeloid colonies from bone marrow of wild type, heterozygous floxed, and homozygous floxed progeny of LysMCre matings. However, PCR of twenty individual in vitro colonies from homozygous floxed mice indicated that they all retained an intact floxed allele. Breeding of floxed GABPa/LysMCre mice with hemizygous mice indicated that retention of a floxed allele was not due to incomplete deletion by LysMCre; rather, it appears that only myeloid cells that retain an intact GABPa allele can survive to mature in vitro or in vivo. We prepared murine embryonic fibroblasts from homozygous floxed mice and efficiently deleted GABPa in vitro. We found striking abnormalities in proliferation and G1/S phase arrest. We used quantitative RT-PCR to identify mechanisms that account for the altered growth of GABPa null cells. We found dramatically reduced expression of known GABP target genes that regulate DNA synthesis and cell cycle that appear to account for the proliferative defect. We conclude that GABPa is required for growth and maturation of myeloid cells and we identified downstream targets that may account for their failure to proliferate and mature in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document