Synergistic Control of Acute GvHD: Effectively Down-Regulating T Cell Proliferation and Cytotoxicity with Combined mTOR Inhibition and CD28:CD80/86 Costimulation Blockade.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2998-2998
Author(s):  
Natalia Kozyr ◽  
Swetha Ramakrishnan ◽  
Aneesah Polnett ◽  
Kelly Hamby ◽  
Divya Tiwari ◽  
...  

Abstract Abstract 2998 Introduction: GvHD remains the most deadly complication of HSCT despite current prevention strategies. To address the unmet need for better GvHD control, we have created a non-human primate (NHP) model with which to rigorously test mechanism and efficacy of novel therapeutics. In this study, we determined whether a novel combination of mTOR inhibition (with sirolimus) and CD28:CD80/86 costimulation blockade (with belatacept) could control GvHD. Here we show for the first time that these two agents combine synergistically to prevent both the clinical and immunologic manifestations of primate aGvHD. Methods: Rhesus macaque recipients were irradiated (9.6 Gy in 2 fractions at 7cGy/min), and then transplanted with G-CSF-mobilized PBSC from a haplo-identical donor (1–5×108 TNC/kg). Recipients were treated with either sirolimus alone (n = 4, troughs targeted at 5–10 ng/mL), belatacept alone (receiving weekly doses of 20 mg/kg), or combination therapy. Clinical GvHD was monitored using our previously described NHP grading scale (Miller et al., Blood 2010), and multiparameter flow cytometric analysis was performed. Results: Untreated controls (n = 5) developed rapid, severe histopathologically-proven aGvHD and succumbed rapidly (MST = 7 days). Recipients treated with either sirolimus or belatacept alone were partially protected from the clinical manifestations of GvHD. Sirolimus-treated recipients (n = 6) developed predominantly GI disease (with diarrhea but no elevation of bilirubin) and had an MST of 14 days (Figure 1). Recipients treated with belatacept alone (n = 3) developed primarily liver aGvHD (bilirubin rapidly rising to 6–30 × normal with histologically-confirmed lymphocytic infiltration) and an MST of 11 days. In striking contrast, recipients treated with combined sirolimus + belatacept (n = 5) demonstrated neither uncontrolled diarrhea nor hyperbilirubinemia at the timed terminal analysis (1 month post-transplant). We employed multiparameter flow cytometry to determine the immunologic consequences of sirolimus and belatacept on T cell proliferation (using Ki-67 expression) and cytotoxity (using granzyme B expression). We found that the clinical synergy observed with combined therapy was recapitulated immunologically. Thus, while untreated aGvHD was associated with rampant CD8+ proliferation (with 83 +/− 14% Ki-67+ CD8+ vs 4.7 +/− 0.6% pre-transplant), sirolimus or belatacept as monotherapy both partially controlled proliferation (35 +/− 3% and 65 +/− 23% Ki-67+ CD8+ with sirolimus or belatacept, respectively). Combined sirolimus + belatacept dramatically reduced proliferation (to 8 +/− 3%, favorably comparing with 13% Ki-67+ CD8+ T cells using standard Calcineurin Inhibitor/Methotrexate (CNI/MTX) prophylaxis). Sirolimus and belatacept both also partially controlled GvHD-related T cell cytotoxicity. Thus, while untreated aGvHD was associated with excessive granzyme B expression in CD8+ T cells (82 +/− 2% granzyme Bvery high CD8+ cells vs 0.3 +/− 0.2% pre-transplant) sirolimus or belatacept monotherapy also partially controlled cytotoxicity (8 +/− 1% and 35 +/− 1% granzyme Bvery high with sirolimus or belatacept, respectively). Combination therapy dramatically reduced the proportion of these cells, to 1.5 +/− 0.8 % granzyme Bvery high, favorably comparing with 4% granzyme Bvery high using CNI/MTX. The ability of sirolimus, belatacept, or the combination to control Ki-67 and Granzyme B expression closely correlated with survival (Figure 2A, B) supporting a pathogenic role for these highly proliferative and cytotoxic cells in aGvHD pathology. Moreover, significant co-expression of granzyme B in the Ki-67+ cells was observed (Figure 2C) suggesting that dual-positive Ki-67/Granzyme B cells may mark a pathogenic population, amenable to tracking in the peripheral blood. Implications: These results reveal a previously undiscovered synergy between sirolimus and belatacept in the control of primate aGvHD, and provide support for future clinical investigation of this novel prevention strategy. They also identify CD8+/Ki-67+/Granzyme Bvery high dual-positive T cells as a potentially sensitive biomarker of GvHD pathogenesis, amenable to monitoring in either the blood or in GvHD target organs. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2549-2549
Author(s):  
Karnail Singh ◽  
Swetha Srinivasan ◽  
Angela Panoskaltsis-Mortari ◽  
Sharon Sen ◽  
Kelly Hamby ◽  
...  

Abstract Abstract 2549 Introduction: Given the emerging importance of sirolimus as a therapuetic for graft-versus host disease (GvHD), it is critical to rigorously define the mechanisms by which this agent impacts T cell immunity after hematopoietic stem cell transplantation (HSCT). Therefore, we have used our novel rhesus macaque model of haploidentical HSCT and GVHD to probe the mechanisms of sirolimus-mediated GvHD prevention when given as a monotherapy. The insights gained from this study will facilitate the rational design of sirolimus-containing combinatorial therapies to maximize immunosuppressive efficacy. Methods: Transplant recipients were prepared with 8Gy total body irradiation and were then infused with MHC-mismatched donor leukopheresis products(n=3, avg. 6.5×108 TNC/kg, 3.4×107 total T cells/kg). Recipients received sirolimus monotherapy (serum troughs 5–15 ng/mL) alone as post-transplant immunosuppresson. Clinical GvHD was monitored according to our standard primate GvHD scoring system and flow cytometric analysis was performed to determine the immune phenotype of sirolimus-treated recipients compared to a cohort of recipients (n= 3) that were given no GvHD immunoprophylaxis. Results: Sirolimus modestly prolonged survival after MHC-mismatched HSCT compared to no immunosuppression (>19 days versus 6.5 days in the untreated cohort, with GvHD confirmed histopathologically at the time of necropsy). We found that sirolimus significantly inhibited lymphocyte proliferation in transplant recipients: The ALC remained suppressed post-transplant (eg ALC of 0.46 × 106/mL on day 15 post-transplant versus 4.3 × 106/mL pre-transplant, with recovery of other leukocytes: WBC=5.1 × 106/mL, ANC=2.6 × 106/mL). These results suggest that sirolimus can have a profound impact on lymphocyte proliferation, inhibiting GvHD-associated lymphocyte expansion by as much as 200–300-fold compared to untreated controls. Sirolimus had a similar impact on CD4+ and CD8+ subpopulation expansion. Thus, while CD4+ T cells and CD8+ T cells expanded by as much as 300-fold and 2000-fold, respectively, without sirolimus, the expansion of these cells was significantly blunted with sirolimus, with maximal expansion of CD4+ and CD8+ T cells being 4- and 3.6-fold, respectively compared to the post-transplant nadir. Sirolimus-treated recipients also better controlled the upregulation of the proliferation marker Ki-67 on CD4+ or CD8+ T cells. Thus, while untreated recipients upregulated Ki-67 expression by as much as 10-fold after engraftment, (with >80-98% T cells expressing high levels of Ki-67 post-transplant versus 5–10% pre-transplant) sirolimus-treated recipients better controlled Ki-67 expression (17-40% Ki-67-high CD4+ and CD8+ T cells post-transplant). While the impact of sirolimus on T cell proliferation was profound, it failed to completely inhibit activation of T cells, as measured by both Granzyme B and CD127 expression. Thus, when effector CD4+ and CD8+ T cell cytotoxic potential was measured by determining expression levels of granzyme B, we found that sirolimus could not downregulate this key component of immune function and GvHD-mediated target organ damage: Granzyme B expression in both CD4+ and CD8+ CD28-/CD95+ effector T cells was unchanged despite sirolimus monotherapy. Down-regulation of CD127 expression, which identifies activated CD8+ T cells in both humans and rhesus macaques, also demonstrated resistance to sirolimus treatment. Thus, while a cohort of recipients that were treated with combined costimulation blockade and sirolimus maintained stable CD127 levels post-transplant, and untreated animals demonstrated total loss of CD127, up to 60% of CD8+ T cells in sirolimus-treated recipients down-regulated CD127, consistent with breakthrough activation of these cells despite mTOR inhibition. Discussion: These results indicate that while the predominant effect of sirolimus during GvHD prophylaxis is its striking ability to inhibit T cell proliferation, sirolimus-based immunosuppression spares some cellular signaling pathways which control T cell activation. These results imply that therapies that are combined with sirolimus during multimodal GvHD prophylaxis should be directed at inhibiting T cell activation rather than proliferation, in order to target non-redundant pathways of alloimmune activation during GvHD control. Disclosures: No relevant conflicts of interest to declare.


1993 ◽  
Vol 22 (2-3) ◽  
pp. 80-85
Author(s):  
A. Malley ◽  
N. Pangares ◽  
S.K. Mayo ◽  
M. Zeleny‐Pooley ◽  
J.V. Torres ◽  
...  

2008 ◽  
Vol 19 (2) ◽  
pp. 701-710 ◽  
Author(s):  
Isabel María Olazabal ◽  
Noa Beatriz Martín-Cofreces ◽  
María Mittelbrunn ◽  
Gloria Martínez del Hoyo ◽  
Balbino Alarcón ◽  
...  

The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKCθ. At the same doses of loaded antigen (1 μM), “phagocytic” macrophages were more efficient than peptide-antigen–loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3–30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3710-3710
Author(s):  
Ilse Houtenbos ◽  
Saskia J.A.M. Santegoets ◽  
Theresia M. Westers ◽  
Quinten Waisfisz ◽  
Sergey Kipriyanov ◽  
...  

Abstract Dendritic cell (DC)-based immunotherapy faces new challenges since efficacy of DC vaccines in clinical trials has been inconsistent. Strategies to improve immune responses induced by DC are currently being explored. We have recently shown the feasibility of generating fully functional DC from Acute Myeloid Leukemic (AML) blasts, but with varying expression levels of the important costimulatory molecule CD86. To overcome this variability, we developed a novel bispecific diabody (BsDb) simultaneously and agonistically targeting CD40 on AML-DC and CD28 on naïve T cells. Beside optimization of CD28-mediated signaling, the resulting cellular cross-linking was also hypothesized to increase the strength and duration of T cell/AML-DC interactions, thus increasing T cell responsiveness to AML antigens. Indeed the αCD40/αCD28-bispecific diabody provokes increased T cell-DC cluster formation as assessed by light microscopy. Significant increased cluster formation was observed when T cells and AML-DC were cocultured in presence of the BsDb as compared to T cells incubated with a control protein (46%±2 versus 22%±1 respectively, p<0.05). Prior incubation of T cells and/or AML-DC with CD28 or CD40, respectively, completely prevented cluster formation in presence of the BsDb indicating specific binding of the BsDb to CD40 and CD28. The αCD40/αCD28 BsDb significantly increases T cell proliferation induced by AML-DC as compared to the unstimulated cocultures, in a dose dependent manner, as evaluated by mixed lymphocyte reactions (fold increased T cell proliferation of cocultures stimulated with BsDb as compared to unstimulated cocultures:170%±12, p<0.05). In addition, BsDb is capable of DC maturation induction as shown by significant increased mean fluorescence index (MFI) of the maturation markers CD80 (MFI of AML-DC cultured in presence of control protein vs AML-DC cultured in presence of BsDb: 22±5 vs 12±3, p<0.05) and CD83 (4±1 vs 1.5±0.5, p<0.05). In order to determine the effect of aCD40/aCD28-bispecific diabody-mediated cross-linking of AML-derived DC and CD8+ T cells on the induction efficiency of tumor-specific CTL, AML-DC derived from the HLA-A2+ AML cell line MUTZ-3 were pre-incubated with the aCD40/aCD28-bispecific diabody, loaded with the heteroclitic variant of the aa988 epitope of hTERT, and used as stimulator cells in an HLA-A2-matched allogeneic in vitro CTL induction protocol. In total nine parallel bulk cultures, were stimulated twice with peptide-loaded MUTZ-3 DC, either pulsed with control protein or the aCD40/aCD28-bispecific diabody. hTERT988Y-specific CD8+ T cells could be detected in 5/9 individual cultures when stimulated with DC pulsed with the aCD40/aCD28-bispecific diabody, whereas in only 1/9 individual cultures hTERT988Y-specific CD8+ T cells could be detected when stimulated with DC pulsed with the control protein. Thus, priming efficacy of tumor-specific cytotoxic T cells can also be improved by cross-linking AML-DC and T cells with the αCD40/αCD28 diabody. We propose that the αCD40/αCD28-bispecific diabody can serve as a potent therapeutic tool to effectively augment anti-tumor T cell responses elicited by AML-DC.


1990 ◽  
Vol 171 (6) ◽  
pp. 1965-1979 ◽  
Author(s):  
M Suthanthiran

Transmembrane signaling of normal human T cells was explored with mAbs directed at TCR, CD2, CD4, CD5, or CD8 antigens and highly purified CD4+ T cells and CD8+ T cells. Our experiments explicitly show that: (a) crosslinkage of TCR with the CD2 antigen, and not independent crosslinking of TCR and of CD2 antigen or crosslinking of either protein with the CD4 or CD8 antigen induces significant proliferation independent of co-stimulatory signals (e.g., accessory cells, recombinant lymphokines, or tumor promoter), (b) F(ab')2 fragments of mAb directed at the TCR and F(ab')2 anti-CD2, crosslinked with F(ab')2 fragments of rabbit anti-mouse IgG, promote the proliferation of highly purified T cells, (c) a prompt and sustained increase in intracellular free Ca2+ concentration results from crosslinkage of TCR with the CD2 antigen, (d) T cell proliferation induced by this novel approach is curtailed by EGTA and by direct or competitive inhibitors of PKC, (e) crosslinkage of TCR with the CD2 antigen results in the transcriptional activation and translation of the gene for IL-2 and in the expression of IL-2 receptor alpha (CD25), (f) anti-CD25 mAbs inhibit T cell proliferation initiated by crosslinkage of TCR with the CD2 antigen, and recombinant IL-2 restores the proliferative response. Our first demonstration that crosslinkage of TCR with the CD2 antigen induces proliferation of normal human CD4+ T cells and CD8+ T cells, in addition to revealing a novel activation mechanism utilizable by the two major subsets of T cells, suggest that the CD2 antigen might be targeted for the regulation of antigen-specific T cell immunity (e.g., organ transplantation).


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1342-1342
Author(s):  
Ruth Seggewiss ◽  
Karin Lore ◽  
Elisabeth Greiner ◽  
Magnus K. Magnusson ◽  
David A. Price ◽  
...  

Abstract We and others have shown that the tyrosine kinase inhibitor imatinib (STI571, Gleevec®) inhibits T-cell proliferation and activation at concentrations achieved in vivo. At 10μM, imatinib inhibited T-cell receptor (TCR)-mediated proliferation of purified peripheral blood T-cells almost completely. Up-regulation of the activation markers CD25 and CD69 at 24h in response to TCR cross-linking was suppressed by imatinib at a mean IC50 of 5.4μM and 7.3μM, respectively and IL-2 production was also severely impaired. However, these assays may not fully reflect the response to clinical relevant antigens. Therefore, we chose to investigate the antigen-triggered proliferation of memory CD8+ T-cells specific for immunodominant CMV and EBV HLA-A2 peptide epitopes. We used HLA-peptide tetramers to identify healthy blood donors with detectable CMV- or EBV-specific CD8+ T-cell populations. Purified T-cells from these donors were then stimulated with the CMV peptide pp65495–503 or the EBV peptide BMFLI259–267. Antigen-induced proliferation was measured by dilution of the vital dye CFSE over a period of 4 or 8 days. The magnitude of the virusspecific CD8+ T-cell population ranged from 0.5 % to 7.1% of CD8+ T-cells for CMV and from 0.05% to 0.35% of CD8+ T-cells for EBV. Antigen-specific CD8+ T-cells from all 10 donors studied proliferated in response to the CMV peptide. In 8 from 10 donors, imatinib reduced CMV peptide induced proliferation. With increasing imatinib concentrations (range: 5 – 10μM), we observed dose dependent reduction of both the number of cells undergoing cell division and the average number of divisions completed per cell. Comparable inhibition of specific T-cell proliferation in response to the EBV-derived peptide was observed in two donors. Immunoblots demonstrated that imatinib substantially reduced tyrosine phosphorylation of ZAP70 and LAT in response to TCR-mediated activation in Jurkat T-cells. Sequence comparisons of all 90 tyrosine kinase genes in the human genome for homology in the ATP binding pocket identified Lck, which is required for ZAP70 activation, as a likely target for imatinib. Our results indicate that imatinib may interfere with clinically important T-cell effector functions. As concentrations sufficient for half-maximal inhibition of TCR signalling are achieved in vivo, imatinib could increase the risk of opportunistic infections and impact on GVH and GVL reactions post-transplantation especially when used in conjuction with other immunosuppressive agents. Therefore, close monitoring of patients on imatinib for CMV reactivation or EBV-induced lymphoproliferative diseases, especially in stem cell transplant recipients, appears warranted.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2550-2550
Author(s):  
Swetha Srinivasan ◽  
Weston P. Miller IV ◽  
Angela Panoskalltsis-Mortari ◽  
Sharon Sen ◽  
Kelly Hamby ◽  
...  

Abstract Abstract 2550 We have developed a novel, MHC-defined rhesus macaque model of total body irradiation-based haploidentical hematopoietic stem cell transplantation. This model has permitted us, for the first time, to perform a rigorous study of the cellular and molecular basis of uncontrolled primate GvHD, and to evaluate the efficacy of a novel, clinically-relevant T cell costimulation blockade-based immunosuppressive regimen to control this disease. We have found that after unprophylaxed haploidentical transplant, severe GvHD developed, which was characterized by rapid clinical decline, and widespread T-cell infiltration and organ damage, with histopathologic evidence of disease in the lungs, the liver, and the GI tract. Mechanistic analysis revealed activation as well as possible counter-regulation, with rapid, CD8-predominant T-cell expansion and accumulation of both CD8+ and CD4+ granzyme B+ effector cells as well as FoxP3pos/CD27high/CD25pos/CD127low CD4+ T-cells. In addition, CD8+ cells downregulated CD127 and BCl-2 and upregulated Ki-67, consistent with a highly activated, proliferative profile. A cytokine storm also occurred, with GvHD-specific secretion of IL-1Ra, IL-18, and CCL4. The combination of CD40/CD28 costimulation blockade (using a monoclonal antibody against CD40 and the CTLA4Ig fusion protein) and mTOR inhibition with sirolimus (Costimulation Blockade and Sirolimus, “CoBS”) resulted in striking protection against GvHD. Thus, at the 30-day primary end-point, CoBS-treated recipients demonstrated 100% survival compared to no survival in untreated recipients. Long-term analysis revealed that CoBS treatment resulted in mean survival increasing from 11.6 to 62 days (p<0.01) with significant blunting of both T-cell expansion and activation. However, some CoBS-treated animals did eventually develop GvHD, with both clinical and histopathologic evidence of smoldering disease. We used multiplexed cytokine-secretion analysis as well as multicolor flow cytometry to determine the origins of the reservoir of the CoBS-resistant breakthrough immune activation. We found that this reservoir included the secretion of IFNγ, IL-2, MCP-1 and IL12/23. In addition, animals developing breakthrough GvHD demonstrated CoBS-resistant proliferation of CD28-negative, CD8+ T-cells, and in vitro analysis confirmed that allo-proliferation of these CD28-negative T cells was resistant to immunosuppression with CTLA4Ig, which targets the CD28/B7 T cell costimulation pathway. These results demonstrate the utility of this novel primate model to provide mechanistic insights into the molecular and cellular basis of GvHD as well as to allow a rigorous evaluation of novel, clinically-relevant immunosuppression strategies. Our results with CoBS suggest that while significant disease control was accomplished, the CD28-negative CD8+ T cell compartment was relatively resistant to CD28/CD40 costimulation blockade and sirolimus, and that adjuvant treatments targeting this subpopulation may be needed for full disease control, especially after high-risk, T cell replete haploidentical transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 845-845
Author(s):  
Yongxia Wu ◽  
David Bastian ◽  
Jessica Lauren Heinrichs ◽  
Jianing Fu ◽  
Hung Nguyen ◽  
...  

Abstract Graft-versus-host disease (GVHD) remains a life threatening complication after allogeneic hematopoietic stem cell transplantation (HCT). Donor T cells are the key pathogenic effectors in the induction of GVHD. MicroRNAs (miRs) have been shown to play an important role in orchestrating immune response, among which miR-17-92 cluster is one of the best characterized miR clusters that encodes 6 miRs including 17, 18a, 19a, 20a, 19b-1 and 92-1. Although regulatory functions of miR-17-92 cluster have been elaborated in a variety of immune responses including anti-infection, anti-tumor, and autoimmunity, the role of this miR cluster in the modulation of T-cell response to alloantigens and the development of GVHD has not been explored previously. Based on the previous report that miR-17-92 promotes Th1 responses and inhibits induced regulatory T-cell (iTreg) differentiation in vitro, we hypothesized that blockade of miR-17-92 would constrain T-cell alloresponse and attenuate GVHD. To evaluate the function of miR-17-92 on T-cell alloresponse, we utilized the mice with miR-17-92 conditional knock-out (KO) on T cells as donors, and compared the alloresponse of WT and KO T cells after allogeneic bone marrow transplantation (allo-BMT). We observed that KO T cells had substantially reduced ability to proliferate and produce IFNγ as compared to WT counterparts 4 days after cell transfer. Interestingly, CD4 but not CD8 KO T cells had increased cell death in the population of fast-dividing T cells. Thus, miR-17-92 cluster promotes activation and expansion of both CD4 and CD8 T cells, and inhibits activation-induced cell death of CD4 but not CD8 T cells at the early stage of alloresponse in vivo. We further evaluated the role of miR-17-92 on T cells in the development of acute GVHD in a fully MHC-mismatched BMT model. In sharp contrast to WT T cells that caused severe GVHD and resulted in 100% mortality of the recipients, KO T cells were impaired in causing severe GVHD reflected by mild clinical manifestations and no mortality. These observations were extended to MHC-matched but minor antigen-mismatched as well as haploidentical BMT models that are more clinically relevant. We next addressed the critical question whether T cells deficient for miR-17-92 are still capable of mediating graft-versus-leukemia (GVL) effect. Using A20 lymphoma and P815 mastocytoma cell lines, we demonstrated that the KO T cells essentially retained the GVL activity in MHC-mismatched and haploidentical BMT model, respectively. Mechanistic studies revealed that miR-17-92 promoted CD4 T-cell proliferation, survival, migration to target organs, and Th1-differentiation, but reduced Th2-differentiation and iTreg generation. However, miR-17-92 had less impact on CD8 T-cell proliferation, survival, IFNγ production, and cytolytic activity reflected by granzyme B and CD107a expression. Moreover, miR-17-92 negatively regulated TNFα production by both CD4 and CD8 T cells. We therefore conclude that miR-17-92 cluster is required for T cells to induce severe GVHD, but it is dispensable for T cells to mediate the GVL effect. To increase translational potential of our findings, we designed the locked nucleic acid (LNA) antagomirs specific for miR-17 or miR-19, which have been reported to be the key members in this cluster. We observed that the treatment with anti-miR-17 significantly inhibited T-cell expansion and IFNγ production in response to alloantigen in vivo, and anti-miR-19 was more effective. Furthermore, our ongoing experiment showed the treatment with anti-miR-17 or anti-miR-19 was able to considerably attenuate the severity of GVHD as compared to scrambled antagomir in a MHC-mismatched BMT model. Taken together, the current work reveals that miR-17-92 cluster is essential for T-cell alloresponse and GVHD development, and validates miR-17-92 cluster as promising therapeutic target for the control of GVHD while preserving GVL activity in allogeneic HCT. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document