Chemokine Receptor Expression, Migration, and Survival of NK Cells Expanded with Mbil-15 or Mbil-21

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4683-4683
Author(s):  
Dean Lee ◽  
Maureen Aliru ◽  
Cecele J. Denman ◽  
Srinivas S. Somanchi

Abstract Abstract 4683 Natural killer (NK) cells can kill malignant or virus-infected cells through the interaction of activating and inhibitory receptors without needing specific antigen recognition of target cells, and therefor have broad therapeutic applications for treatment of human malignancies. However, due to their limited life-span in vivo and poor expansion in vitro, production of sufficient numbers of NK cells for effective adoptive immunotherapy poses an obstacle. Genetically engineered artificial antigen presenting cells (aAPCs) consisting of K562 modified 4-1BBL and membrane bound IL-15 or IL-21 have been reported for their ability to support ex vivo NK cell proliferation. aAPCs with mbIL-21 were shown to promote increased proliferation of NK cells with shorter telomeres, but differences in in vivo survival or tumor or tissue migration have not been assessed. Tumor and/or tissue migration is primarily mediated by the expression of chemokine receptors. Using aAPCs bearing mbIL15 or mbIL21, we expanded NK cells for 3 weeks and assessed their expression of chemokine receptors, organ migration, and in vivo survival in a xenograft model. Propagated NK cells showed relatively similar levels of low to modest expression of CCR2, CCR7, CXCR4 and CXCR5, and high expression levels of CXCR3. Mean CCR5 expression levels were similar on cells that were positive, but CCR5 was expressed on a higher percentage of NK cells expanded with mbIL-15 than those expanded with mbIL-21. In contrast, about 20% of mbIL-21 expanded NK cells expressed CX3CR1 expression whereas mbIL-15 NK cells showed almost no expression of this receptor. Results from ongoing migration and survival experiments will also be presented. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2806-2806
Author(s):  
Ilias Christodoulou ◽  
Michael Koldobskiy ◽  
Won Jin Ho ◽  
Andrew Marple ◽  
Wesley J. Ravich ◽  
...  

Abstract Introduction : Acute Myeloid Leukemia (AML) is an aggressive neoplastic disorder with poor outcomes in children and adults. NK cell adoptive transfer is an anti-cancer immunotherapy that has promise for AML treatment. We aimed to improve NK cell anti-tumor efficacy with expression of a Chimeric Antigen Receptor (CAR) on the cell surface. Our CAR consists of an extracellular single-chain variable fragment targeting the AML-associated antigen CD123 (IL3Rα) and intracellular domains derived from 2B4 and TCRζ. We sought to improve the persistence and long-term functionality of our CAR-NKs by introducing transgenic interleukin-15 (IL15). Methods: CD3-depleted PBMCs were first activated with lethally irradiated feeder cells, then transduced with transiently produced replication incompetent γ-retrovirus (αCD123.2B4.ζ, αCD123.2B4.ζ-IRES-sIL15, sIL15-IRES-mOrange) on day 4 of culture. CAR expression was measured on day 8 using FACS. Secretion of IL15 was verified with ELISA. Cytotoxicity was measured using ffLuc expressing target cells and bioluminescence (BL) measurement. In serial stimulation assays, target cells were repleted daily to maintain a 1:1 effector:target ratio. Immunophenotype and cell counts were assessed by FACS. Transcriptomic analysis (RNAseq) was performed on RNA derived from NK cells purified on D10. Xenograft modeling was performed using NSG mice engrafted with MV-4-11.ffLuc or MOLM-13.ffLuc AML cell lines. Mice were treated with NK cells on D4 or D4-7-10. Untreated mice served as controls. Tumor growth was serially tracked in vivo using BL imaging. NK cell persistence and expansion were measured in peripheral blood. Results: The 2B4.ζ CAR was well expressed on the surface of transduced NK cells (median transduction efficiency 95%, range 85-97%, n=3). 2B4.ζ CAR-NK treatment prolonged survival of AML engrafted mice when compared to treatment with unmodified NKs (median survival: 63 vs 55 days; n=8 mice; p=0.014). Serial peripheral blood analysis revealed a steady decline in circulating NK cells, which were undetectable in all cohorts within 21 days. NK cells were then engineered for constitutive secretion of IL15, with and without CAR expression. 2B4.ζ/sIL15 CAR-NKs had the most potent 24h-cytotoxicity against CD123+ targets (Fig. 1). After a 10-day chronic stimulation with MV-4-11, 2B4.ζ/sIL15- and sIL15-NKs expanded (x1.2 and x5.9 respectively), while NK cells without sIL15 decreased in number. In this assay, only 2B4.ζ/sIL15 CAR-NKs exhibited sustained tumor killing. Transcriptomic analysis after 10 days of serial stimulation showed sample clustering dependent on IL15 secretion. Differential gene expression analysis (DESeq2) identified upregulation of genes associated with cell cycle progression, apoptosis regulation, chemokine signaling, and NK cell mediated cytotoxicity in NK cells secreting IL15 compared to those without. In multiparameter flow cytometric analysis, 2B4.ζ/sIL15 CAR-NKs had a higher percentage of NK cells populating clusters defined by higher surface expression of NK cell activating receptors (NKp30, NKG2D, LFA-1) compared to 2B4.ζ and unmodified NK cells. In our MV-4-11 xenograft model, NKs armed with secreted IL15 expanded in vivo and had improved persistence. A single dose (D4) of 2B4.ζ/sIL15 CAR-NKs demonstrated an initial antitumor response, equivalent to that seen following 3 doses (D4-7-10) of 2B4.ζ CAR-NKs. However, mice treated with IL15-secreting NKs had short survival (Fig. 2). Compared to control mice, peripheral blood analysis showed increasing systemic hIL15 and higher levels of hTNFα. In our more aggressive MOLM-13 xenograft model, both single dose 2B4.ζ/sIL15 CAR-NK and multiple dose 2B4.ζ CAR-NK treatment prolonged survival compared to treatment with unmodified NKs. (27 and 26 vs 20 days; n=5 mice; p<0.01; Fig. 2). Conclusion: 2B4.ζ CAR-NKs have limited antitumor efficacy and short persistence in vivo. NK cells armored with secreted IL15 have enhanced anti-AML cytotoxicity and in vitro persistence. Introduction of IL15 secretion confers a distinctly activated phenotype that is maintained during chronic antigen stimulation. Constitutive local IL15 secretion improves in vivo NK cell persistence but may cause lethal toxicity when employed against AML. These results warrant further study and should impact the development of CAR-NK clinical products for patients with AML. Figure 1 Figure 1. Disclosures Ho: Rodeo Therapeutics/Amgen: Patents & Royalties; Exelixis: Consultancy; Sanofi: Research Funding. Bonifant: Kiadis Pharma: Research Funding; BMS: Research Funding; Merck, Sharpe, Dohme: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3169-3169
Author(s):  
Kathrin Schönberg ◽  
Janna Rudolph ◽  
Maria Vonnahme ◽  
Isabelle Cornez ◽  
Sowmya Parampalli Yajnanarayana ◽  
...  

Abstract Introduction: Ruxolitinib (INCB018424) is the first JAK inhibitor approved for treatment of myelofibrosis (MF). Ruxolitinib-induced reduction of splenomegaly and symptoms control is linked to a substantial suppression of MF-associated circulating pro-inflammatory and pro-angiogenic cytokines. However, an increased rate of infections in ruxolitinib-exposed patients with MF was recently described. Natural killer (NK) cells are innate immune effector cells eliminating malignant or virus-infected cells. Thus, the aim of this project was to define in more detail the impact of JAK inhibition on NK cell biology both in vitro and in vivo. Methods: 28 patients with myeloproliferative neoplasms (MPN) with or without ruxolitinib therapy and 12 healthy donors were analyzed for NK cell frequency, NK receptor expression and function. Phenotypic and functional NK cell markers (e.g. CD11b, CD27, KIR, NKG2A, NKG2D, NKp46, CD16, granzyme B, and perforin) were analyzed by FACS. NK cell function was evaluated by classical killing assays upon stimulation with MHC class I-deficient target cells K562. Finally, a set of additional in vitro experiments (e.g. analysis of lytic synapse formation by FACS and confocal microscopy) were performed to define in more detail the characteristics and potential mechanisms of ruxolitinib-induced NK cell dysfunction. Results: In addition to our recent finding that ruxolitinib induces NK cell dysfunction in vitro (e.g. reduced killing, degranulation and IFN-γ production), we here demonstrate that NK cell proliferation and cytokine-induced receptor expression as well as cytokine signalling are drastically impaired by ruxolitinib. Interestingly, reduced killing is at least in part due to a reduced capacity to form a mature lytic synapse with target cells. The significance of the in vitrofindings is underscored by a dramatically reduced proportion and absolute number of NK cells in ruxolitinib-treated MPN patients when compared to treatment-naïve patients or to healthy controls (mean percentage of NK cell frequency: ruxolitinib-naïve MPN patients 12.63% ±1.81; healthy donors 13.51% ±1.44; ruxolitinib-treated patients 5.47% ±1.27). A systematic analysis of NK cell receptor expression revealed that the reduction of NK cells in ruxolitinib-exposed individuals is most likely due to an impaired NK cell differentiation and maturation process, as reflected by a significantly increased ratio of immature to mature NK cells. Finally, the endogenous functional NK cell defect in MPN is further aggravated by intake of the JAK inhibitor ruxolitinib. Conclusion: We here provide compelling in vitro and in vivo evidence that inhibition of the JAK/STAT-pathway by ruxolitinib exerts substantial effects on the NK cell compartment in MPN patients due to the inhibition of NK cell differentiation and NK cell key functions. Our data may help to better understand the increased rate of severe infections and complement recent reports on ruxolitinib-induced immune dysfunction. Disclosures Koschmieder: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel, Accomodation, Expenses Other. Brümmendorf:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Wolf:Novartis: Consultancy, Honoraria, Research Funding, Travel and Accommodation Other.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3236-3236
Author(s):  
Luis J. Espinoza ◽  
Akiyoshi Takami ◽  
Katsuya Nakata ◽  
Ly Quoc Trung ◽  
Kayoko Yamada ◽  
...  

Abstract Abstract 3236 NKG2D is a powerful activating receptor expressed by natural killer (NK) cells that promotes cytotoxic lysis of cancer cells expressing NKG2D ligands (NKG2D-Ls). Pharmacological induction of NKG2D-Ls in malignant cells has been an attractive therapeutic approach but has gained poor clinical utility because currently available NKG2D-Ls inducers have been hampered either by their limited efficacy or by their associated toxicity. Resveratrol (RVT), a compound derived from several natural sources, has proved in vivo and in vitro potent anti-tumor effects against various cancers. Extensive research in the last decade has shown that such effects are mediated by targeting various molecules involved in the regulation of proliferation and cell survival and those include, NFκB, STAT3, ATM/ATR and ERK1/2. To date, it is unknown whether RVT has any effect on NKG2D-Ls expression. We report here NKG2D-Ls induction by RVT in a broad range of leukemia cells. RVT upregulated the NKG2D-Ls MICA/B, ULBP1, ULBP2 and ULBP3 in the myeloid leukemia cells OUN-1, NB4, THP-1 and KG1 and upregulated MICA/B, ULBP-1 and ULBP3 ligands in the lymphoid leukemia cells Jurkat and Molt-4. The upregulation of NKG2D-Ls by RVT was associated with increased transcription of each NKG2D-L gene. Ligand upregulation induced by RVT was prevented by cell pretreatment with caffeine, and inhibitor of ATM/ATR, which is the main signal regulator of NKG2D-Ls expression. Leukemia cells treated with RVT were more susceptible to killing by NK cells than untreated cells and the enhanced cytotoxicity of NK cells was blocked by the treatment of NK cells with anti-NKG2D monoclonal antibodies. Interestingly, the same concentration of RVT that effectively induced NKG2D-Ls in tumor cells, consistently upregulated NKG2D receptor expression in primary NK cells from healthy individuals and in the NK cell lines NKL and NK-92 and this effect was also associated with enhanced NKG2D-mediated NK cells cytotoxicity. RVT-induced NKG2D receptor enhancement in NK cells associated with the activation of the MAP kinase ERK1/2 and was prevented by the ERK1/2 specific inhibitor PD98059. Thus, RVT represents the first identified agent capable of activating both arms of the NKG2D axis. Since several clinical trials on RVT are ongoing, these previously unrecognized properties of this non toxic compound have an attractive immunotherapeutic potential. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3960-3960
Author(s):  
Roberto Bellucci ◽  
Allison Martin ◽  
Marc Buren ◽  
Hong-Nam Nguyen ◽  
Davide Bommarito ◽  
...  

Abstract Abstract 3960 Multiple myeloma (MM) is a B cell neoplasm characterized by clonal expansion of malignant plasma cells in the bone marrow. Despite the use of new drugs such as lenalidomide and bortezomib, MM remains an incurable disease. Successful treatment of MM with allogeneic stem cell transplantation suggests that MM is susceptible to immunologic approaches. NK cells are the primary effectors of the innate immune response against infectious pathogens and malignant transformation. Unlike T and B cells, NK cells do not recognize antigens in the context of classical major histocompatibility complex (MHC) but lyse target cells without specific antigen recognition. Nevertheless, MM cells have developed mechanisms to evade innate immune surveillance and the molecular basis for target resistance to NK cell-mediated lysis is not well understood. To identify novel pathways that modulate MM cell resistance to the immune system, we previously developed a genetic screen to detect cell-cell interactions using a large lentiviral shRNA library containing a total of 6,144 shRNAs targeting more than 1,000 human genes. Using this approach we found that silencing JAK1 and JAK2 results in significantly increased MM cell susceptibility to NK cell lysis. This effect was not noted when JAK3 and TYK2 were targeted. JAK1, JAK2 JAK3 and TYK2 are members of a family of tyrosine kinases that are constitutively associated with many membrane cytokine receptors. After activation, JAK proteins regulate phosphorylation/activation of STAT proteins, which subsequently initiate gene transcription. To understand JAK1 and JAK2 involvement in MM resistance to NK cells, we undertook a series of experiments to analyze the JAK signaling pathway in MM cells. We first analyzed the activation status of STAT proteins in a series of MM cell lines (IM-9, KM12BM, RPMI 8226, U266) in which JAK1 and JAK2 expression was reduced by specific shRNAs. Constitutive activation of STAT proteins was not affected by JAK1 or JAK2 gene silencing suggesting that these kinases were not activated in the absence of cytokine receptor-mediated signaling. Since JAK1 and JAK2 are associated with the IFN-γ receptor and we previously showed that JAK1 and JAK2 silencing induces increased secretion of IFN-γ from NK cells, we pre incubated MM cell lines with NK activated supernatant or recombinant IFN-γ and tested them for STAT activation. 15 min incubation was sufficient to initiate phosphorylation of STAT1 but no other STATs were activated. Silencing of JAK1 or JAK2 with specific shRNAs prevented STAT1 activation. To validate this finding, we tested primary MM cells treated with different concentrations of Jak inhibitor 1 (0 nM, 10 nM, 30 nM and 40 nM). These cells had a similar STAT profile at their basal level when compared with the previously tested MM cell lines. Pre-incubation with NK activated supernatant or IFN-γ also induced rapid activation of STAT1, which was completely inhibited when cells were pre-treated with Jak inhibitor 1. Treatment of MM cells with 10, 30 and 40 nM of Jak inhibitor enhanced killing by NK cells by 46.6%, 51% and 53%, compared to untreated cells (p=0.0036, p=0.0011 and p=0.0010 respectively). These findings demonstrate that IFN-γ signals rapidly enhance resistance of MM cells to NK cells but inhibition of this pathway at the level of JAK1 and JAK2 reverses this effect and induces susceptibility to NK cell mediated lysis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3024-3024
Author(s):  
Tatiana Pazina ◽  
Alexander MacFarlane ◽  
Ashley Mentik-James ◽  
Clinton Yam ◽  
Rebecca Kotcher ◽  
...  

Abstract Background: Monoclonal antibodies (mAbs) are an emerging therapeutic class for MM patients (pts). Elotuzumab, a mAb in late-phase clinical development, targets the SLAMF7 receptor expressed highly on MM cells. While its primary mechanism of action is through CD16-mediated ADCC, elotuzumab can also directly activate SLAMF7-expressing NK cells. Gaining a greater understanding of phenotypic and functional changes in NK cells over the course of the disease, and how these changes impact capacity for ADCC, may help identify profiles that can better select pts likely to benefit from elotuzumab or other mAb therapies. Methods: We prospectively performed a comprehensive flow cytometry-based analysis of lymphocyte subsets, focusing on expression of NK cell activating and inhibitory receptors, activation and maturation markers, and degranulation in 30 MM pts (12 newly-diagnosed (ND), 18 relapsed/refractory (RR)) and 19 aged-matched healthy donors (HD). Over 140 immune parameters were analyzed, with differences in expression between HD and pt subsets compared by Wilcoxon rank-sum test. We analyzed correlations between expression of certain markers with each other, and with elotuzumab-induced NK cell degranulation against MM cell targets (MM1R) in a 2-hour co-culture assay. We also compared NK cell parameters in blood and bone marrow (BM) from pts with matched samples available. Results: Within the blood, there was no difference in relative NK cell frequency between the groups, and little difference phenotypically between HD and ND pt NK cells, except for decreased DNAM1 expression in ND. In contrast, in comparison to HD, CD56dim NK cells in RR pts were less mature with a higher CD56bright to CD56dim NK cell ratio and reduced expression of the terminal differentiation/maturation markers, CD57 and KLRG1. RR pts also showed increased expression of the activation marker CD69 on all NK cells, and their CD56dim NK cells had increased levels of the natural cytotoxicity receptors, NKp30 and NKp46 and decreased expression of activating receptors DNAM1 and NKG2D. SLAMF7 expression was also increased in RR pts, but only on the CD56bright subset. Consistent changes in NK cell expression of checkpoint/co-stimulatory molecules (eg. PD-1, Tim3, LAG3, CD137) were not seen. Despite these phenotypic changes, no significant differences between groups were noted for elotuzumab-induced ADCC against MM1R targets, as measured by CD107a degranulation by CD56dim NK cells, with significant variability noted within groups. Interestingly, the expression levels of SLAMF7 on CD56dim NK cells directly correlated with CD16 levels, particularly within RR pts (Fig.), suggesting cooperative interactions between these receptors that may be beneficial in MM patients treated with elotuzumab. In addition, degranulation toward elotuzumab-treated MM1R targets was significantly associated with surface expression levels of both SLAMF7 and CD16 on the CD56dim NK cells. The status of NK cells was also compared between matching blood and BM samples from ND (n=7) and RR (n=8) pts. NK cell phenotype and degranulation in blood and BM were similar in ND pts, but in RR pts, expression of CD69 and SLAMF7 were higher on BM-derived NK cells, and CD56dim NK cells from BM demonstrated greater degranulation toward elotuzumab-treated MM1R targets. DNAM1 expression was reduced, but NKG2D, NKp30, and NKp46 were upregulated on various NK cell populations in BM from RR pts compared to peripheral blood. Conclusions: Taken together, our data indicate that NK cells in RR MM pts had increased activation, reduced maturation status, and distinct changes in activating receptor expression levels that are often further enhanced in the BM microenvironment. Furthermore, CD56dim NK cells in many RR pts had parallel increased expression levels of CD16 and SLAMF7, which correlated with enhanced degranulation toward elotuzumab-treated MM target cells. The fact that these changes are seen primarily in RR pts rather than untreated ND pts implies a significant impact of disease evolution and prior therapy on the NK cell compartment, and supports further exploration of these parameters as potential biomarkers of activity of elotuzumab and other therapeutic mAbs in myeloma. Figure 1. Figure 1. Disclosures Campbell: Bristol-Meyers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding. Cohen:Bristol-Meyers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3299-3299
Author(s):  
Maria Montserrat Aguilar ◽  
Matthew D Blunt ◽  
Jonathan C Strefford ◽  
Francesco Forconi ◽  
Mark Cragg ◽  
...  

Abstract The B cell receptor (BCR) is critical for survival and proliferation of chronic lymphocytic leukemia (CLL) cells and is activated following antigen/autoantigen engagement. BCR engagement in vivo triggers a partial receptor down modulation, phosphorylation of tyrosine residues in CD79A and CD79B, signalosome formation and subsequent calcium mobilization and ERK phosphorylation (ERK-P). Interestingly CLL cells incubated in vitro recover surface(s)IgM receptor expression and subsequently their ability to signal (calcium flux and ERK-P). During this recovery of sIgM, expression of a fully glycosylated “mature” form of sIgM increases. Interestingly, sIgD is not downregulated in vivo and expression does not increase in vitro. Downregulation by antigen engagement therefore appears only to affect sIgM. IL-4 appears to be present in CLL tissue sites and has a known role in protecting CLL cells from apoptosis however its effect on BCR expression and subsequent downstream signalling has not previously been demonstrated. Therefore we investigated the effects of IL-4 on BCR signalling and on the expression of surface receptors including chemokine receptors CXCR4 and MHC-class II (MHCII). CLL cells were pretreated with and without IL-4 for 24h and sIgM and sIgD expression measured by flow cytometry. sIgM naturally recovers with time and this is significantly enhanced further by IL-4 (p=0.006, n=33), whereas sIgD does not (p=0.48, n=30). The same CLL samples pre-treated with IL-4 for 24 hours followed by treatment with anti-IgM (n=22) for 15 minutes showed enhanced calcium flux in 77% (p=0.0005) of samples compared to the control. The increase in sIgM expression correlated strongly with the ability to induce calcium mobilization in IL-4 treated samples (p=0.0007, r=0.7). The fold increase in sIgM expression following pre-treatment with IL-4 was significantly greater in U-CLL compared with M-CLL (p=0.012) and in ZAP70+ve samples (p=0.02). However, analysis of IL-4R expression did not show a significant difference between M-CLL and U-CLL samples (p=0.18, n=20). The increase in sIgM expression by IL-4 coincided with an increase in CD79b protein expression (p<0.0001, n=26). Futhermore IL-4 pretreatment significantly augmented expression of the fully glycosylated µ-chain of sIgM on the surface of the CLL cells (p=0.005), as confirmed by resistance to EndoH cleavage, indicating a role of IL-4 in IgM assembly and transport to the cytoplasmic membrane. These IL-4-specific effects were blocked with either a JAK3 or STAT6 inhibitor (Tofacitinib or Axon 1992, respectively) which specifically inhibit IL-4 signalling. We next identified whether the effects observed with IL-4 was limited to sIgM. Interestingly, in contrast to the spontaneous recovery of CXCR4 expression which occurs in vitro and parallels the recovery of sIgM expression, IL-4 significantly inhibited CXCR4 recovery in vitro (p<0.0001, n=21) and prevented migration towards CXCL12 in transwell migration assays (p=0.03, n=6). This indicates that IL-4 is not simply amplifying the natural process of recovery of these receptors but is having a differential effect. For other molecules, a significant increase in MHCII expression in IL-4 pre-treated samples (p=0.0011, n=12) was observed mimicking the changes with sIgM, whilst other negative or positive BCR regulator such as CD5 (p=0.47, n=25) and CD19 (p=0.93, n=20) respectively, remained unchanged. Indicating the effect of IL-4 on receptor expression was receptor dependent. These data suggest a role for IL-4 in augmenting sIgM expression and subsequent downstream signalling, increasing MHCII expression, whilst down modulating chemokine receptors to retain CLL cells within the lymph node. Thus IL-4 may play an important biological role when CLL cells encounter antigen/autoantigen and therefore inhibition of this pathway with JAK3 inhibitors may be a potential clinical target for the treatment of CLL. Disclosures No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 298
Author(s):  
Arnika K. Wagner ◽  
Ulf Gehrmann ◽  
Stefanie Hiltbrunner ◽  
Valentina Carannante ◽  
Thuy T. Luu ◽  
...  

Natural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g., tumor or virus-infected cells. A desired property of cancer immunotherapy is, therefore, to activate educated NK cells during anti-tumor responses in vivo. We here analyze NK cell responses to α-galactosylceramide (αGC), a potent activator of invariant NKT (iNKT) cells, or to exosomes loaded with αGC. In mouse strains which express different MHC-I alleles using an extended NK cell flow cytometry panel, we show that αGC induces a biased NK cell proliferation of educated NK cells. Importantly, iNKT cell-induced activation of NK cells selectively increased in vivo missing self-responses, leading to more effective rejection of tumor cells. Exosomes from antigen-presenting cells are attractive anti-cancer therapy tools as they may induce both innate and adaptive immune responses, thereby addressing the hurdle of tumor heterogeneity. Adding αGC to antigen-loaded dendritic-cell-derived exosomes also led to an increase in missing self-responses in addition to boosted T and B cell responses. This study manifests αGC as an attractive adjuvant in cancer immunotherapy, as it increases the functional capacity of educated NK cells and enhances the innate, missing self-based antitumor response.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 659-659 ◽  
Author(s):  
Jan Davidson-Moncada ◽  
Noriko Sato ◽  
Robert F Hoyt ◽  
Robert N Reger ◽  
Marvin Thomas ◽  
...  

Abstract Adoptive transfer of allogeneic or autologous natural killer (NK) cells is now being developed for therapy of both hematological and solid malignancies. The efficacy of NK immunotherapy to mediate anti-tumor effects will ultimately be dependent on their ability to traffic and home to the tumor microenvironment. Recent data suggest expanded NK cells are ineffective at homing to the bone marrow (BM) and lymph nodes (LN) where hematological malignancies reside. A variety of techniques to maintain and/or enforce expression of homing receptors in NK cells are now being explored in preclinical models to improve their localization to the BM and LN. Historically, xenogeneic human into mouse or mouse into mouse models have been utilized for preclinical development of adoptive NK transfer. These experiments often use fluorescent dye-labeled NK cells and require repeated invasive biopsies, which can be confounded by sampling error, or the requirement for post mortem analysis. Here we present a method to track in real time and in vivo adoptively infused zirconium-89 (89Zr) labelled NK cells by PET imaging. A rhesus macaque (RM) model was used for these preclinical experiments as RM and human NK cells have similar expansion kinetics, and have greater similarity than mice in their phenotype, function, and homing receptors and ligands. PBMCs collected from the PB of 13 RMs were enriched for NK cells by CD3+ T-cell depletion and were then expanded for 14 days by culturing with irradiated human EBV-LCL cells in X-VIVO 20 media containing 10% human AB serum and 500 IU/μl of human IL-2. RM NK cells expanded a mean 145±41 fold and contained >99% pure CD3- and CD56+ cells. The phenotype and tumor cytotoxicity of RM NK cells were similar to NK cells expanded from humans (n=3) using similar expansion cultures; at a 10:1 E:T ratio, 67% and 73% of K562 cells were lysed by RM and human NK cell respectively. To label NK cells, 89Zr was conjugated to oxine, which readily permeabilized the cellular membrane and was retained in the cells. Expanded NK cells from both humans and RM showed no changes in CD16 or CD56 expression for up to 6 days following radiolabeling. Human and RM NK cell viability 0 to 24 hours following radiolabelling was 60-100% then declined to 20-30% after 6 days. 89Zr retention by both human and RM NK cells was 75-80% in the first 24 hours of culture but gradually declined with time, decreasing to 20-30% after 7 days of culture. Culturing radiolabeled human NK cells for 24-36 hours with different cellular populations including Ramos and Raji cell lines and normal human PBMCs revealed no significant transfer of radioactivity (max 2% above baseline), establishing that 89Zr was not transferred from labeled to unlabeled cells. Oxine labeling did not alter the cytotoxicity of human or RM NK cells vs K562 cells compared to unlabeled controls. 89Zr-oxine labeling of expanded RM NK cells is currently being used to quantify NK cell trafficking and survival following adoptive transfer in autologous macaques. In these experiments, RM recipients of adoptively infused 89Zr labeled NK cells receive concurrent deferoxamine to chelate and then enhance renal excretion of any free 89Zr that is released from dead cells. In the experiments shown below, 13 x 107 autologous ex vivo expanded 89Zr-labeled RM NK cells were injected IV into a 5.7 kg RM and tracked by sequential PET/CT imaging for 7 days. Up to 1-hour post infusion, most NK cell activity was restricted to the lungs. By 4 hours, NK cells began to traffic from the lungs to the liver and spleen. By 2 days, NK cells were no longer detectable in the lungs and resided largely in the liver and spleen, where they remained for the remainder of the 7 day imaging period. During the entire observation period, little to no NK cell radioactivity was detected in the LN or BM. In conclusion, 89Zr oxine labelling of NK cells followed by PET/CT imaging represents a powerful tool to track the in vivo fate of adoptively transferred NK cells. The RM model presented here provides a method to evaluate and optimize various strategies aimed at altering the phenotype of NK cells, with the goal of improving their homing to the BM and LN where hematological cancers reside. These preclinical in vitro and in vivo data suggest this technology could be safely extended to humans and could be applied to other cellular populations besides NK cells. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


1985 ◽  
Vol 162 (2) ◽  
pp. 472-486 ◽  
Author(s):  
K Oshimi ◽  
Y Oshimi ◽  
M Satake ◽  
H Mizoguchi

After depletion of monocytes, natural killer (NK) cells were partially purified from peripheral blood by Percoll density gradient sedimentation. The NK cells were then cultured for 1 d and assayed for their cytotoxicity against various types of normal and malignant target cells. All types of target cells tested were found to be susceptible to NK cells. The susceptible targets were autologous T and B lymphocytes, mitogen-induced T and B blasts, monocytes, large granular lymphocytes, autologous or allogeneic lymphoma and leukemia cells isolated from patients, and cultured cell lines, including those resistant to interferon-activated lymphocytes. Such a broad spectrum of cytotoxicity was demonstrated in 1 d of culture, and freshly prepared NK cells were not cytotoxic, or, if anything, were less cytotoxic. Monocytes and their supernatants, added throughout the course of culture, markedly inhibited the development of their cytotoxicity. These results may suggest that, although NK cells having ability to lyse autologous normal and malignant target cells are present in vivo, their lytic activity is regulated by coexisting monocytes.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yingkun Xu ◽  
Guangzhen Wu ◽  
Jiayao Zhang ◽  
Jianyi Li ◽  
Ningke Ruan ◽  
...  

Purpose. To evaluate the expression of tripartite motif-containing 33 (TRIM33) in ccRCC tissues and explore the biological effect of TRIM33 on the progress of ccRCC. Method. The Cancer Genome Atlas (TCGA) database was used to examine the mRNA expression levels of TRIM33 in ccRCC tissues and its clinical relevance. Immunohistochemistry (IHC) was performed to evaluate its expression in ccRCC tissues obtained from our hospital. The correlation between TRIM33 expression and clinicopathological features of the patients was also investigated. The effects of TRIM33 on the proliferation of ccRCC cells were examined using the CCK-8 and colony formation assays. The effects of TRIM33 on the migration and invasion of ccRCC cells were explored through wound healing and transwell assays, along with the use of Wnt signaling pathway agonists in rescue experiments. Western blotting was used to explore the potential mechanism of TRIM33 in renal cancer cells. A xenograft model was used to explore the effect of TRIM33 on tumor growth. Result. Bioinformatics analysis showed that TRIM33 mRNA expression in ccRCC tissues was downregulated, and low TRIM33 expression was related to poor prognosis in ccRCC patients. In agreement with this, low TRIM33 expression was detected in human ccRCC tissues. TRIM33 expression levels were correlated with clinical characteristics, including tumor size and Furman’s grade. Furthermore, TRIM33 overexpression inhibited proliferation, migration, and invasion of 786-O and ACHN cell lines. The rescue experiment showed that the originally inhibited migration and invasion capabilities were restored. TRIM33 overexpression reduced the expression levels of β-catenin, cyclin D1, and c-myc, and inhibited tumor growth in ccRCC cells in vivo. Conclusion. TRIM33 exhibits an abnormally low expression in human ccRCC tissues. TRIM33 may serve as a potential therapeutic target and prognostic marker for ccRCC.


Sign in / Sign up

Export Citation Format

Share Document