Inhibition Of JAK-STAT Pathway As a Therapeutic Option For Myelofibrosis Associated Pulmonary Hypertension

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1585-1585 ◽  
Author(s):  
Ali Tabarroki ◽  
Daniel Lindner ◽  
Valeria Visconte ◽  
Li Zhang ◽  
Edy Hasrouni ◽  
...  

Abstract Pulmonary hypertension (PH) is an under-recognized complication of myelofibrosis (MF) occurring in 30% of MF patients and associated with poor survival. Echocardiographic diagnostic findings include; elevated right ventricular systolic pressure (RVSP)>35 mmHg, right atrial (RA) enlargement and increased tricuspid regurgitation velocity (TRV) ≥2.5 m/sec. The pathophysiology of PH in MF has not been elucidated, although in idiopathic PH, the proliferation of pulmonary artery endothelial cells has been linked to activation of STAT3 pathway. Dysregulation of JAK-STAT pathway has been implicated in the pathogenesis of MF. Ruxolitinib, a JAK1/2 inhibitor, was approved for management of splenomegaly and cytokine-mediated symptoms in MF. Furthermore, no specific therapy in the management of MF-associated PH has been established. Given the association between MF and PH and the possible pathophysiologic link mediated by JAK signaling, we prospectively followed 19 patients with MF-associated PH and compared their echocardiographic findings and PH relevant serum biomarker levels (nitric oxide [NO], NT-pro brain natriuretic peptide [NT-proBNP], von Willebrand antigen (vWB), ristocetin co-factor (RCA), and uric acid (UA) pre- and post-ruxolitinib therapy. All categorical data were summarized for frequency, counts and percentages, and the comparison between two groups was performed by two-sample Wilcoxon signed rank test. Among 19 patients (pts), 9 had PMF, 5 post-ET MF, 4 post-PV MF and one CMML-1. In this cohort, 11 were females and 8 were males. The median age of the cohort was 68 years (range, 50-81 years). Fifteen pts were JAK2 V617F positive and 4 were wild-type, 8 were intermediate-1, 4 intermediate-2 and 6 high risk per Dynamic International Prognostic Scoring System-Plus risk grouping. The mean ruxolitinib dose was 10 mg BID (range: 5 mg QOD-20 mg BID]. Median duration of disease was 32 mos (6-164 mos), ruxolitinib duration of treatment was 10 mos (4 -17 mos) and follow-up was 11 mos (6-22 mos). Prior to the initiation of ruxolitinib treatment, NT-pro BNP levels, were measured and found to be elevated in 90% (17/19) of pts. In addition, UA, vWB, and RCA levels were all elevated in 47% (9/19), 24% (4/17), and 12% (2/17) of pts respectively. The strongest correlation among serum biomarkers was between plasma vWB and RCA levels (r2=-0.89, P=<.001). The biomarker most closely associated with elevated NT-pro BNP was UA both in the pre- (r2=-0.53, P=.065) and post-treatment (r2=-0.64, P=.019) settings. Echocardiographic findings by TTE pre- and post ruxolitinib therapy were available for 12 pts (63%). All 12 had documented PH with a mean RVSP of 47.5 mm Hg (42-68) [normal pressure ≤30 mmHg]. Echocardiographic evidence correlated with RCA (r2=-0.64, P= .045) and plasma NT-pro BNP levels (r2=-0.8, P=.013). Ruxolitinib resulted in reductions in NT-pro BNP level (88%) (p=.013), plasma UA levels in (71%), vWB (71%), and RCA (71%) (P=.045). Nitric oxide, a primary regulator of vascular endothelial function is reduced in MF patients with PH compared to normal individuals (median NO, 36 vs 65 pM). Treatment with ruxolitinib resulted in marked increase in NO levels compared to baseline (68 pM vs 36 pM; P=0.04) while no changes in NO levels were observed after treatment with hydroxyurea and lenalidomide (N=10). Treatment with ruxolitinib also resulted in reduction of key cytokines (TNF-α, IL-4, IL-10) that inhibit NO production and induction of cytokines (IFN-γ) that lead to increase in NO synthesis supporting the role of cytokines in PH pathogenesis in MF. Murine studies further supported the role of ruxolitinib in induction of NO levels. Eight normal CD-1 mice were treated with ruxolitinib (50 mg/kg p.o. daily for 5 days for three consecutive cycles with 14 day intervals between each cycle). After the first cycle, NO levels were significantly higher compared to baseline followed by significant increase compared to baseline at cycle 3 (P=.04). In addition, PH mice (Caveoline-1 mice) have been bred and undergoing treatment with ruxolitinib to assess changes in NO levels and its impact in improving of PH. In conclusion, aberrant JAK-STAT signaling in MF mediates PH by dysregulation of NO and cytokines levels which can be restored by therapy with JAK inhibitors. This suggests that inhibition of the JAK-STAT signaling pathway is a novel and viable target for the management of patients with MF-associated PH. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiaoyan Jin ◽  
Hui Su ◽  
Rui Yang ◽  
Yanzhen Tan ◽  
Buying Li ◽  
...  

AbstractInjury/dysfunction of the endothelium of pulmonary arteries contributes to hypoxia-induced pulmonary hypertension (HPH). We investigated whether C1q/tumor necrosis factor-related protein-9 (CTRP9), a newly identified cardiovascular agent, has protective roles in the development of HPH. HPH was induced in adult male rats by chronic hypobaric hypoxia. CTRP9 overexpression by adeno-associated virus (AAV)-CTRP9 transfection attenuated the increases in right ventricular systolic pressure, right ventricular hypertrophy index, and pulmonary arterial remodeling of rats under hypoxia. Importantly, CTRP9 overexpression improved endothelium-dependent vasodilation in pulmonary arterioles in HPH rats. CTRP9 overexpression enhanced expression of phosphorylated 5′-adenosine monophosphate-activated protein kinase (p-AMPK) and phosphorylated endothelial nitric oxide synthase (p-eNOS), and reduced phosphorylated extracellular signal-regulated protein kinase (p-ERK1/2) expression in pulmonary microvascular endothelial cells (PMVECs) of HPH rats. In cultured PMVECs, CTRP9 not only preserved the decrease of AMPK and eNOS phosphorylation level and nitric oxide (NO) production induced by hypoxia, but also blocked the increase in hypoxia-induced ERK1/2 phosphorylation level and endothelin (ET)-1 production. Furthermore, the effects of CTRP9 were interrupted by inhibitors or knockdown of AMPK. CTRP9 enhances NO production and reduces ET-1 production by regulating AMPK activation. CTRP9 could be a target for HPH.


2018 ◽  
Vol 16 (2) ◽  
pp. 194-199
Author(s):  
Wioletta Ratajczak-Wrona ◽  
Ewa Jablonska

Background: Polymorphonuclear neutrophils (PMNs) play a crucial role in the innate immune system’s response to microbial pathogens through the release of reactive nitrogen species, including Nitric Oxide (NO). </P><P> Methods: In neutrophils, NO is produced by the inducible Nitric Oxide Synthase (iNOS), which is regulated by various signaling pathways and transcription factors. N-nitrosodimethylamine (NDMA), a potential human carcinogen, affects immune cells. NDMA plays a major part in the growing incidence of cancers. Thanks to the increasing knowledge on the toxicological role of NDMA, the environmental factors that condition the exposure to this compound, especially its precursors- nitrates arouse wide concern. Results: In this article, we present a detailed summary of the molecular mechanisms of NDMA’s effect on the iNOS-dependent NO production in human neutrophils. Conclusion: This research contributes to a more complete understanding of the mechanisms that explain the changes that occur during nonspecific cellular responses to NDMA toxicity.


2005 ◽  
Vol 289 (6) ◽  
pp. F1324-F1332 ◽  
Author(s):  
Manish M. Tiwari ◽  
Robert W. Brock ◽  
Judit K. Megyesi ◽  
Gur P. Kaushal ◽  
Philip R. Mayeux

Acute renal failure (ARF) is a frequent and serious complication of endotoxemia caused by lipopolysaccharide (LPS) and contributes significantly to mortality. The present studies were undertaken to examine the roles of nitric oxide (NO) and caspase activation on renal peritubular blood flow and apoptosis in a murine model of LPS-induced ARF. Male C57BL/6 mice treated with LPS ( Escherichia coli) at a dose of 10 mg/kg developed ARF at 18 h. Renal failure was associated with a significant decrease in peritubular capillary perfusion. Vessels with no flow increased from 7 ± 3% in the saline group to 30 ± 4% in the LPS group ( P < 0.01). Both the inducible NO synthase inhibitor l- N6-1-iminoethyl-lysine (l-NIL) and the nonselective caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (Z-VAD) prevented renal failure and reversed perfusion deficits. Renal failure was also associated with an increase in renal caspase-3 activity and an increase in renal apoptosis. Both l-NIL and Z-VAD prevented these changes. LPS caused an increase in NO production that was blocked by l-NIL but not by Z-VAD. Taken together, these data suggest NO-mediated activation of renal caspases and the resulting disruption in peritubular blood flow are an important mechanism of LPS-induced ARF.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Maria Drakopoulou ◽  
Konstantinos Stathogiannis ◽  
Konstantinos Toutouzas ◽  
George Latsios ◽  
Andreas Synetos ◽  
...  

Objective: Severe aortic stenosis leads to increased pulmonary arterial systolic pressure. A controversy still remains regarding the impact of persistent pulmonary hypertension (PHT) on prognosis of patients undergoing transcatheter aortic valve implantation (TAVI). We sought to investigate the impact of persistent PHT on 2-year all-cause mortality of patients with severe aortic stenosis following TAVI. Methods: Patients with severe and symptomatic aortic stenosis (effective orifice area [EOA]≤1 cm 2 ) who were scheduled for TAVI with a self-expanding valve at our institution were prospectively enrolled. Prospectively collected echocardiographic data before and after TAVI were retrospectively analyzed in all patients. Pulmonary artery systolic pressure was estimated as the sum of the right ventricular to the right atrial gradient during systole and the right atrial pressure. PHT following TAVI was classified as absent if <35 mmHg and persistent if ≥35 mmHg. Primary clinical end-point was 2-year all-cause mortality defined according to the criteria proposed by the Valve Academic Research Consortium-2. Results: Hundred and forty patients (mean age: 82±9 years) were included in the study. The primary clinical end point occurred in 17 patients (12%) during a median follow-up period of 2 years. Mean pulmonary artery systolic pressure was reduced in all patients following TAVI (45±9 versus 41±6 mmHg, p<0.01). Mortality rate was higher in patients with persistent PHT compared to patients with normal pulmonary artery systolic pressure following TAVI (26% versus 14 %, p<0.01). Patients that reached the primary clinical end point had a higher post procedural mean systolic pulmonary pressure (43±9 versus 39±6 mmHg, p=0.02). In multivariate regression analysis, persistence of PHT (OR: 2.51, 95% CI: 1.109-7.224, p=0.01) was an independent predictor of long-term mortality. Conclusions: The persistence of pulmonary hypertension after TAVI is associated with long term mortality. Identifying the population that will clearly benefit from TAVI is still need to be validated by larger trials.


Author(s):  
Antoine Berger ◽  
Alexandre Boscari ◽  
Alain Puppo ◽  
Renaud Brouquisse

Abstract The interaction between legumes and rhizobia leads to the establishment of a symbiotic relationship between plant and bacteria. This is characterized by the formation of a new organ, the nodule, which facilitates the fixation of atmospheric nitrogen (N2) by nitrogenase through the creation of a hypoxic environment. Nitric oxide (NO) accumulates at each stage of the symbiotic process. NO is involved in defense responses, nodule organogenesis and development, nitrogen fixation metabolism, and senescence induction. During symbiosis, either successively or simultaneously, NO regulates gene expression, modulates enzyme activities, and acts as a metabolic intermediate in energy regeneration processes via phytoglobin-NO respiration and the bacterial denitrification pathway. Due to the transition from normoxia to hypoxia during nodule formation, and the progressive presence of the bacterial partner in the growing nodules, NO production and degradation pathways change during the symbiotic process. This review analyzes the different source and degradation pathways of NO, and highlights the role of nitrate reductases and hemoproteins of both the plant and bacterial partners in the control of NO accumulation.


1995 ◽  
Vol 10 (6) ◽  
pp. 270-282
Author(s):  
Stella Kourembanas

Persistent pulmonary hypertension of the newborn (PPHN) is a common cause of respiratory failure in the full-term neonate. Molecular and cellular studies in vascular biology have revealed that endothelial-derived mediators play a critical role in the pathogenesis and treatment of PPHN. Endothelial-derived vasoconstrictors, like endothelin, may increase smooth muscle cell contractility and growth, leading to the physiologic and structural changes observed in the pulmonary arterioles of infants with this disease. On the other hand, decreased production of the endothelial-derived relaxing factor, nitric oxide, may exacerbate pulmonary vasoreactivity and lead to more severe pulmonary hypertension. Exogenous (inhaled) nitric oxide therapy reduces pulmonary vascular resistance and improves oxygenation. The safety and efficacy of this therapy in reducing the need for extracorporeal membrane oxygenation and decreasing long-term morbidity is being tested in several trials nationally and abroad. Understanding the basic mechanisms that regulate the gene expression and production of these vasoactive mediators will lead to improved preventive and therapeutic strategies for PPHN.


2017 ◽  
Vol 398 (3) ◽  
pp. 319-329 ◽  
Author(s):  
Christine C. Helms ◽  
Xiaohua Liu ◽  
Daniel B. Kim-Shapiro

Abstract Nitrite was once thought to be inert in human physiology. However, research over the past few decades has established a link between nitrite and the production of nitric oxide (NO) that is potentiated under hypoxic and acidic conditions. Under this new role nitrite acts as a storage pool for bioavailable NO. The NO so produced is likely to play important roles in decreasing platelet activation, contributing to hypoxic vasodilation and minimizing blood-cell adhesion to endothelial cells. Researchers have proposed multiple mechanisms for nitrite reduction in the blood. However, NO production in blood must somehow overcome rapid scavenging by hemoglobin in order to be effective. Here we review the role of red blood cell hemoglobin in the reduction of nitrite and present recent research into mechanisms that may allow nitric oxide and other reactive nitrogen signaling species to escape the red blood cell.


2003 ◽  
Vol 1 (3) ◽  
pp. 113-117 ◽  
Author(s):  
M. Myronidou ◽  
B. Kokkas ◽  
A. Kouyoumtzis ◽  
N. Gregoriadis ◽  
A. Lourbopoulos ◽  
...  

In these studies we investigated if losartan, an AT1- receptor blocker has any beneficial effect on NO production from the bovine aortic preparations in vitro while under stimulation from angiotensin II. Experiments were performed on intact specimens of bovine thoracic aorta, incubated in Dulbeco's MOD medium in a metabolic shaker for 24 hours under 95 % O2 and 5 % CO2 at a temperature of 37°C. We found that angiotensin II 1nM−10 μM does not exert any statistically significant action on NO production. On the contrary, angiotensin II 10nM increases the production of NO by 58.14 % (from 12.16 + 2.9 μm/l to 19.23 + 4.2 μm/l in the presence of losartan 1nM (P<0.05). Nitric oxide levels depend on both rate production and rate catabolism or chemical inactivation. Such an equilibrium is vital for the normal function of many systems including the cardiovascular one. The above results demonstrate that the blockade of AT1-receptors favors the biosynthesis of NO and indicate the protective role of losartan on the vascular wall.


Sign in / Sign up

Export Citation Format

Share Document