The Tumor Suppressor APC/CCdh1 and Its Role In Replication Stress and The Origin Of Genomic Instability

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2489-2489 ◽  
Author(s):  
Julika Krohs ◽  
Dominik Schnerch ◽  
Marie Follo ◽  
Julia Felthaus ◽  
Monika Engelhardt ◽  
...  

Abstract Introduction We have previously proposed that Cdh1 is a tumor suppressor by maintaining genomic stability. We also found Cdh1 downregulated in several tumor cell lines including AML (Oncogene 2008; 27:907-17). Heterozygous Cdh1 knockout mice develop epithelial tumors, myelodysplasia and plasma cell dyscrasias (Nat. Cell Biol. 2008;10:802-11). By analyzing primary AML samples from bone marrow (BM) or peripheral blood (PB) we detected downregulation of Cdh1 in the vast majority of samples when compared to normal CD34+ HSCs. Progression through the cell cycle is tightly regulated by different cyclin-dependent kinases (Cdks) and their activating cyclin subunits. Stage-specific proteolysis of cyclins and other cell cycle regulators is important for transition to the next cell cycle phase. The anaphase-promoting complex/cyclosome (APC/C) is an E3-ubiquitin ligase that controls mitosis and G1 through degradation of these proteins. Through its activating subunits Cdh1 and Cdc20 the APC/C ensures substrate-specifity. While Cdc20 regulates progression through mitosis, Cdh1 is activated in late mitosis to coordinate accurate entry into S-phase. Thereby, the APC/C is crucial for maintaining genomic stability during the cell cycle. Suppression of APC/C-Cdh1 can lead to unscheduled cyclin expression and Cdk activity, which can cause cell cycle defects leading to the accumulation of DNA alterations and further to malignant transformations. However, the exact nature of the origin of genomic instability upon downregulation of Cdh1 is unclear. Methods To investigate stability of cyclins in Cdh1-knockdown (kd) cells, origin loading and start of replication, cells were released from a mitotic block and samples were taken every 2 h until S-phase entry for FACS and immunoblotting. For live-cell imaging cells were seeded 24 h before imaging in chambered coverslips, after which progression through the cell cycle was analyzed by automated microscopy. Results Characterization of a Cdh1-kd revealed strong stabilization of the substrates cyclin A/B leading to diminished loading of mini-chromosome maintenance (MCM) proteins on replication origins in G1. Stabilization of cyclin A/B and unscheduled Cdk1/2 activity may cause the observed premature entry into S-phase, while the reduced loading of MCMs in G1 could be responsible for the prolonged replication in S-phase seen in Cdh1-kd cells. Accordingly, treatment with the Cdk1 inhibitor RO-3306 restored reduced MCM loading. Polo-like kinase 1 (Plk1) was stabilized in Cdh1-kd cells, which may cause bypass of the Cdc14B-Cdh1-Plk1 dependent DNA damage checkpoint. Indeed, potential replication stress in Cdh1-kd cells did not lead to G2/M arrest, but was enforced by inhibition of the Cdh1 substrate Plk1. Underreplicated DNA and replication intermediates in mitosis may be the reason for increased genomic instability, namely lagging chromosomes, anaphase bridges and micronuclei in Cdh1-kd cells detected by live-cell imaging. In addition, aberrant cytokinesis and the development of polyploid cells generated by misseparation of chromosomes during mitosis were enhanced in Cdh1-kd cells. Finally, monitoring of 53BP1, a DNA-repair marker, in living cells showed amplified DNA-damage through increased double-strand breaks in Cdh1-kd cells. Conclusions Downregulation of the tumor suppressor APC/C-Cdh1 leads to deregulation of DNA-replication by stabilizing cyclin A and B in G1 and reduced loading of replication origins with MCM proteins resulting in the accumulation of enhanced genomic instability and DNA damage. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3349-3349
Author(s):  
Stephen J. Orr ◽  
Terry Gaymes ◽  
Rong Wang ◽  
Barbara Czepulkowski ◽  
Darius Ladon ◽  
...  

Abstract Normal DNA replication must be accurate and occur only once per cell cycle. Sites of DNA replication are specified by binding the origin recognition complex, that includes minichromosome maintenance (MCM) proteins. Paradoxically, in higher eukaryotes MCM proteins are present in >20 fold excess of that required for DNA replication. They are also downregulated by elevated expression of proteins such as cyclin E that occurs in cancers, including AML and breast cancer. We investigated why human cells need “excess” MCM proteins and whether the reduction of MCM protein levels might contribute to a malignant phenotype. We determined the consequences of reducing the levels of MCM proteins in primary human T cells in which cell cycle controls and DNA damage responses are normal. Mass spectrometry sequencing of chromatin/nuclear matrix-bound proteins and western blotting identified that Mcm7 is not present in quiescent, normal primary human T cells. Mcm7 is induced in mid G1after the G0→G1 commitment point, the point beyond which T cells are committed to entering the cell cycle. Reduction of Mcm7 with siRNA to <5% of normal during G0→G1→S-phase reduces chromatin-binding of each of the MCM proteins that form the DNA helicase. However, these cells still enter S-phase and replicate DNA. Reducing MCM levels by titrating siRNA causes dose-dependent DNA-damage responses involving activation of ATR & ATM and Chk1 & Chk2. However, cells depleted of Mcm7 do not undergo apoptosis, rather reducing MCM levels even by 50% causes gross non-clonal chromosomal abnormalities normally found in genomic instability syndromes. M-FISH identified chromosome translocations, as well as loss and gain of individual chromosomes, which can occur individually or together in the same cell. Reducing MCM levels also causes misrepair by non-homologous end joining (NHEJ), and both NHEJ and homologous recombination (HR) are necessary for chromosomal abnormalities to occur. Therefore, “excess” MCM proteins that are present in a normal, proliferating cell are necessary for maintaining genome stability and reduction of MCM loading onto DNA that occurs in cancers is sufficient to cause genomic instability.


2002 ◽  
Vol 22 (6) ◽  
pp. 1819-1833 ◽  
Author(s):  
Joon-Ho Sheen ◽  
Robert B. Dickson

ABSTRACT Study of the mechanism(s) of genomic instability induced by the c-myc proto-oncogene has the potential to shed new light on its well-known oncogenic activity. However, an underlying mechanism(s) for this phenotype is largely unknown. In the present study, we investigated the effects of c-Myc overexpression on the DNA damage-induced G1/S checkpoint, in order to obtain mechanistic insights into how deregulated c-Myc destabilizes the cellular genome. The DNA damage-induced checkpoints are among the primary safeguard mechanisms for genomic stability, and alterations of cell cycle checkpoints are known to be crucial for certain types of genomic instability, such as gene amplification. The effects of c-Myc overexpression were studied in human mammary epithelial cells (HMEC) as one approach to understanding the c-Myc-induced genomic instability in the context of mammary tumorigenesis. Initially, flow-cytometric analyses were used with two c-Myc-overexpressing, nontransformed immortal lines (184A1N4 and MCF10A) to determine whether c-Myc overexpression leads to alteration of cell cycle arrest following ionizing radiation (IR). Inappropriate entry into S phase was then confirmed with a bromodeoxyuridine incorporation assay measuring de novo DNA synthesis following IR. Direct involvement of c-Myc overexpression in alteration of the G1/S checkpoint was then confirmed by utilizing the MycER construct, a regulatable c-Myc. A transient excess of c-Myc activity, provided by the activated MycER, was similarly able to induce the inappropriate de novo DNA synthesis following IR. Significantly, the transient expression of full-length c-Myc in normal mortal HMECs also facilitated entry into S phase and the inappropriate de novo DNA synthesis following IR. Furthermore, irradiated, c-Myc-infected, normal HMECs developed a sub-G1 population and a >4N population of cells. The c-Myc-induced alteration of the G1/S checkpoint was also compared to the effects of expression of MycS (N-terminally truncated c-Myc) and p53DD (a dominant negative p53) in the HMECs. We observed inappropriate hyperphosphorylation of retinoblastoma protein and then the reappearance of cyclin A, following IR, selectively in full-length c-Myc- and p53DD-overexpressing MCF10A cells. Based on these results, we propose that c-Myc attenuates a safeguard mechanism for genomic stability; this property may contribute to c-Myc-induced genomic instability and to the potent oncogenic activity of c-Myc.


2019 ◽  
Author(s):  
Debjani Pal ◽  
Adrian E. Torres ◽  
Abbey L. Messina ◽  
Andrew Dickson ◽  
Kuntal De ◽  
...  

ABSTRACTThe interplay of the Anaphase-Promoting Complex/Cyclosome (APC/C) and Skp1-Cul1-F-box (SCF) E3 ubiquitin ligases is necessary for controlling cell cycle transitions and checkpoint responses, which are critical for maintaining genomic stability. Yet, the mechanisms underlying the coordinated activity of these enzymes are not completely understood. Recently, Cyclin A- and Plk1- mediated phosphorylation of Cdh1 was demonstrated to trigger its ubiquitination by SCFβTRCP at the G1/S transition. However, Cyclin A-Cdk and Plk1 activities peak in G2 so it is unclear why Cdh1 is targeted at G1/S but not in G2. Here, we show that phosphorylation of Cdh1 by Chk1 contributes to its recognition by SCFβTRCP, promotes efficient S-phase entry, and is important for cellular proliferation. Conversely, Chk1 activity in G2 inhibits Cdh1 accumulation. Overall, these data suggest a model whereby the rise and fall of Chk1 activity is a key factor in the feedback loop between APC/CCdh1 and the replication machinery that enhances the G1/S and S/G2 transitions, respectively.


2021 ◽  
Vol 22 (10) ◽  
pp. 5195
Author(s):  
Hui Zhang

In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.


2001 ◽  
Vol 21 (5) ◽  
pp. 1710-1718 ◽  
Author(s):  
David J. Galgoczy ◽  
David P. Toczyski

ABSTRACT Despite the fact that eukaryotic cells enlist checkpoints to block cell cycle progression when their DNA is damaged, cells still undergo frequent genetic rearrangements, both spontaneously and in response to genotoxic agents. We and others have previously characterized a phenomenon (adaptation) in which yeast cells that are arrested at a DNA damage checkpoint eventually override this arrest and reenter the cell cycle, despite the fact that they have not repaired the DNA damage that elicited the arrest. Here, we use mutants that are defective in checkpoint adaptation to show that adaptation is important for achieving the highest possible viability after exposure to DNA-damaging agents, but it also acts as an entrée into some forms of genomic instability. Specifically, the spontaneous and X-ray-induced frequencies of chromosome loss, translocations, and a repair process called break-induced replication occur at significantly reduced rates in adaptation-defective mutants. This indicates that these events occur after a cell has first arrested at the checkpoint and then adapted to that arrest. Because malignant progression frequently involves loss of genes that function in DNA repair, adaptation may promote tumorigenesis by allowing genomic instability to occur in the absence of repair.


2008 ◽  
Vol 28 (12) ◽  
pp. 4173-4187 ◽  
Author(s):  
Rosa Farràs ◽  
Véronique Baldin ◽  
Sandra Gallach ◽  
Claire Acquaviva ◽  
Guillaume Bossis ◽  
...  

ABSTRACT JunB, a member of the AP-1 family of dimeric transcription factors, is best known as a cell proliferation inhibitor, a senescence inducer, and a tumor suppressor, although it also has been attributed a cell division-promoting activity. Its effects on the cell cycle have been studied mostly in G1 and S phases, whereas its role in G2 and M phases still is elusive. Using cell synchronization experiments, we show that JunB levels, which are high in S phase, drop during mid- to late G2 phase due to accelerated phosphorylation-dependent degradation by the proteasome. The forced expression of an ectopic JunB protein in late G2 phase indicates that JunB decay is necessary for the subsequent reduction of cyclin A2 levels in prometaphase, the latter event being essential for proper mitosis. Consistently, abnormal JunB expression in late G2 phase entails a variety of mitotic defects. As these aberrations may cause genetic instability, our findings contrast with the acknowledged tumor suppressor activity of JunB and reveal a mechanism by which the deregulation of JunB might contribute to tumorigenesis.


2016 ◽  
Vol 124 (6) ◽  
pp. 1780-1787 ◽  
Author(s):  
Zhenjun Zhao ◽  
Michael S. Johnson ◽  
Biyi Chen ◽  
Michael Grace ◽  
Jaysree Ukath ◽  
...  

OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation causes remarkable cellular changes in endothelial cells. Significant PS externalization is induced by radiation at doses of 15 Gy or higher, concomitant with a block in the cell cycle. Radiation-induced markers/targets may have high discriminating power to be harnessed in vascular targeting for AVM treatment.


Sign in / Sign up

Export Citation Format

Share Document