DOT1L Inhibitor EPZ-5676 Displays Synergistic Antiproliferative Activity in Combination with Standard of Care Drugs or DNA Hypomethylating Agents in MLL-Rearranged Leukemia Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3930-3930 ◽  
Author(s):  
Christine R Klaus ◽  
Scott R. Daigle ◽  
Dorothy Iwanowics ◽  
L. Danielle Johnston ◽  
Carly A Therkelsen ◽  
...  

Abstract EPZ-5676 is a small molecule inhibitor of the histone methyltransferase DOT1L that is currently under clinical investigation as a potential therapy for acute leukemias bearing MLL-rearrangements. Gene knockout and small molecule inhibitor studies have demonstrated that DOT1L is required for MLL-fusion protein–mediated leukemogenesis in model systems. In preclinical studies EPZ-5676 promoted cell killing of acute leukemia lines bearing MLL translocations in vitro while sparing those without MLL gene translocations and also caused sustained tumor regressions in a rat xenograft model of MLL-rearranged leukemia [Daigle et al. Blood 2013]. To support potential future clinical scenarios, we evaluated the activity of EPZ-5676 in combination with current standard of care agents for acute leukemias as well as other chromatin modifying drugs in cell proliferation assays with three human acute leukemia cell lines; Molm-13 (MLL-AF9 expressing acute myeloid leukemia (AML)), MV4-11 (MLL-AF4 expressing acute biphenotypic leukemia cell line) and SKM-1 (non-MLL-rearranged AML). We established a high density combination platform suitable for testing the anti-proliferative activity of a complete titration matrix of two agents with multiple replicate points to enable generation of statistically meaningful results. This platform was used to evaluate the anti-proliferative effects of EPZ-5676 combinations tested in a co-treatment model in which the second agent was added along with EPZ-5676 at the beginning of the assay, or in a pre-treatment model in which cells were incubated for several days in the presence of EPZ-5676 prior to the addition of the second agent. The drug combination analysis was performed using the Chou-Talalay method [Chou TC Pharmacological Reviews 2006]. Graphs representing values of combination index (CI) versus Fractional effect (Fa) known as Fa-CI plots were generated and synergy was evaluated. Drug synergy was statistically defined by CI values less than 1, antagonism by CI >1 and additive effect by CI equal to 1. We found that EPZ-5676 acts synergistically with the AML standard of care agents cytarabine or daunorubicin in Molm-13 and MV4-11 MLL-rearranged cell lines. However, in the non-rearranged SKM-1 cell line EPZ-5676 had no effect alone and did not act synergistically with cytarabine or daunorubicin. Moreover, a persistent combination benefit was observed even when EPZ-5676 was washed out prior to the addition of the standard of care agents (Figure 1), suggesting that EPZ-5676 sets up a durable altered chromatin state that enhances the effect of chemotherapeutic agents in MLL-rearranged cells. We are currently exploring the mechanism of action of this synergy in more detail.Figure 1. Fa-CI plots show that EPZ-5676 and cytarabine act synergistically to induce an antiproliferative effect in the Molm-13 cell line in a pre-treatment model. (A) Ten-day continuous dosing of EPZ-5676 with addition of cytarabine at day 7 showed a range of fractional effects with CI values <1 denoting synergy. (B) EPZ-5676 was removed at day 7 prior to the addition of cytarabine showing durable combination benefit.Figure 1. Fa-CI plots show that EPZ-5676 and cytarabine act synergistically to induce an antiproliferative effect in the Molm-13 cell line in a pre-treatment model. (A) Ten-day continuous dosing of EPZ-5676 with addition of cytarabine at day 7 showed a range of fractional effects with CI values <1 denoting synergy. (B) EPZ-5676 was removed at day 7 prior to the addition of cytarabine showing durable combination benefit. Our evaluation of EPZ-5676 in conjunction with other chromatin modifying drugs also revealed a consistent combination benefit including synergy with DNA hypomethylating agents. In summary, our results indicate that EPZ-5676 is highly efficacious as a single agent and is synergistic with other anticancer agents including AML standard of care drugs and DNA hypomethylating agents in MLL-rearranged cells. Disclosures: Klaus: Epizyme, Inc.: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Daigle:Epizyme, Inc.: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Iwanowics:Epizyme, Inc.: Employment, Equity Ownership, Stock Options Other. Johnston:Epizyme, Inc: Employment, Equity Ownership, Stock Options Other. Therkelsen:Epizyme, Inc.: Employment, Equity Ownership, Stock Options Other. Smith:Epizyme, Inc.: Employment, Equity Ownership, Stock Options Other. Moyer:Epizyme, Inc.: Employment, Equity Ownership, Stock Options Other. Copeland:Epizyme Inc. : Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties; Mersana: Membership on an entity’s Board of Directors or advisory committees. Olhava:Epizyme, Inc: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Porter Scott:Epizyme, Inc: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Pollock:Epizyme Inc.: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Raimondi:Epizyme, Inc: Employment, Equity Ownership, Patents & Royalties, Stock Options Other.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3287-3287 ◽  
Author(s):  
Ivana Gojo ◽  
Alison Walker ◽  
Maureen Cooper ◽  
Eric J Feldman ◽  
Swaminathan Padmanabhan ◽  
...  

Abstract Abstract 3287 Background: Dinaciclib is a potent and selective inhibitor of the CDKs 1, 2, 5, and 9 that has demonstrated anti-tumor activity against both myeloid and lymphoid leukemia cell lines in vitro and human tumor xenografts in vivo. Methods: A randomized, multicenter, open-label phase 2 study of dinaciclib 50 mg/m2 administered by 2-hour i.v. infusion once every 21 days was initiated with the goal of assessing its efficacy and safety in patients (pts) with advanced acute myeloid (AML, ≥60 years old) or lymphoid (ALL, ≥18 years old) leukemia. AML pts were randomized between dinaciclib and gemtuzumab ozogamicin (GO) with cross-over to dinaciclib if no response to GO, while ALL pts only received dinaciclib. Intra-patient dose escalation of dinaciclib to 70 mg/m2 in cycle 2 was allowed. Twenty-six pts were treated on study (20 AML, 6 ALL). Data on 14 AML (2 cross-over from GO) and 6 ALL pts treated with dinaciclib are presented. Their median age was 70 (range 38–76) years and 70% were male. Sixteen pts were refractory and 4 pts had relapsed after a median of one (range 1–4) chemotherapy regimens. Four AML pts had complex karyotypes (≥3 abnormalities), 2 monosomy 7, 2 trisomy 8, 1 der (1:7)(q10;p10), 1 trisomy 21, 1 deletion 9q, and 3 had normal karyotype. Two ALL pts had t(9;22). Response: Anti-leukemia activity was observed in 60% of pts. Ten of 13 pts with circulating blasts (7/7 AML and 3/6 ALL) had >50% and 6 pts (4 AML, 2 ALL) >80% decrease in the absolute blast count (ABC) within 24 hours of the first dinaciclib dose. An additional pt had a 29% decrease in ABC. The median pre-treatment ABC was 1085 (range 220–9975) and the median ABC nadir was 169 (range 0–1350). The median duration of blast nadir was 6 days (range 2–23). A representative graph from an AML patient (below) shows a rapid decrease of circulating blasts and WBC after treatment, followed by a gradual recovery. Two patients had >50% reduction of marrow blasts (35% on d1 to 17% on d 42 in an AML pt; 81% on d1 to 27% on d 21 in an ALL pt). However, no objective responses by International Working Group criteria were observed. The median number of treatment cycles was 1 (range 1–5), with 10 pts receiving more than one cycle of treatment. Eight pts were treated with dinaciclib 70 mg/m2 starting in cycle 2. Toxicity: Treatment related AE's occurring in >30% of pts included diarrhea, nausea, vomiting, anemia, elevated AST, fatigue, leukopenia, hypocalcemia, and hypotension. The most common CTCAE v3 treatment-related grade 3 and 4 toxicities, occurring in 3 or more pts, were anemia, leukopenia, febrile neutropenia, thrombocytopenia, fatigue, increased AST, and tumor lysis syndrome (TLS). Laboratory evidence of tumor lysis in cycle 1, using the Cairo-Bishop criteria, was seen in 6 pts in addition to 3 pts with clinical TLS (JCO 2008;26:2767). Hyperacute TLS requiring hemodialysis occurred in one pt with AML, who died of acute renal failure. Subsequently, all pts were aggressively managed to prevent and treat TLS (hospitalization, hydration, allopurinol, rasburicase, oral phosphate binder administration, and early management of hyperkalemia). An additional 9 pts died on study, 8 pts from leukemia progression and 1 pt from intracranial bleed due to disease-related thrombocytopenia. Pharmacodynamics: Pre-treatment, 4 and 24 hrs post end-of-infusion samples of circulating leukemic blasts were obtained from 1 AML and 3 ALL pts. By Western blot, post-treatment decrease in Mcl-1 and increase in PARP cleavage were seen in all 4 pts at 4 hrs post-treatment, confirming that in vivo inhibition of CDKs was achieved, but recovery of Mcl-1 at 24 hrs was observed in all 4 pts, suggesting that inhibition was lost at 24 hrs. Decline in p-Rb was observed in 1 pt, while 2 pts had almost undetectable p-Rb levels at baseline. Conclusion: Dinaciclib showed anti-leukemia activity in this heavily pre-treated patient population. TLS was a notable toxicity, but was manageable in most pts with aggressive prophylaxis, monitoring and treatment. Early blast recovery and short duration of nadir observed on this study, combined with PK data showing a short t1/2 (1.5-3.3 hours) for dinaciclib and PD data demonstrating rapid reexpression of Mcl-1, support either use of longer infusion schedules (currently explored in solid tumors) or more frequent drug administration. Further exploration of dinaciclib dose and schedules in AML and ALL is planned. Disclosures: Gojo: Merck & Co.: Research Funding. Off Label Use: SCH 727965 (dinaciclib) is an investigational drug. Padmanabhan:Schering-Plough: Consultancy; Merck & Co.: Research Funding. Small:Merck & Co.: Employment, Equity Ownership. Zhang:Merck & Co.: Employment. Sadowska:Merck & Co.: Research Funding. Bannerji:Merck & Co.: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2610-2610 ◽  
Author(s):  
Swaroop Vakkalanka ◽  
Srikant Viswanadha ◽  
Robert Niecestro ◽  
Peter Sportelli ◽  
Michael Savona

Abstract Abstract 2610 Background: Acute leukemia, characterized by the presence clonal hematopoietic cells in peripheral blood and bone marrow, comprises approximately 40% of newly diagnosed leukemias. First line treatment for acute leukemias with multi-agent cytotoxic chemotherapy is usually associated with significant toxicity. Advances in therapy have been slow, and nearly all effective therapies lead to prolonged marrow suppression and toxicities associated with subsequent cytopenias. Herein, we describe the biological and pharmacokinetic properties of TGR-1202, a novel small molecule PI3Kδ inhibitor with scope to be developed as a safe and effective therapy for acute myeloid (AML) and lymphoblastic (ALL) leukemia. Material & Methods: Activity of TGR-1202 against individual isoforms of the PI3K enzyme was determined via enzyme, cellular, and whole blood based assays. Potency of the compound was confirmed via leukemic cell viability and Annexin V/PI staining besides testing for inhibition of pAkt, a downstream kinase regulating cell survival and growth. These assays were conducted with cell lines (CCRF-CEM, HL-60, and MOLT-4) and patient derived cells. Anti-tumor efficacy of the compound was studied in vivo with the subcutaneous MOLT-4 xenograft model. Lastly, ADME and pharmacokinetic properties of the molecule were determined. Results: TGR-1202 demonstrated significant potency against PI3Kδ (22.2 nM) with several fold selectivity over the α (>10000), β (>50), and γ (>48) isoforms. Additionally, the compound inhibited B-cell proliferation (24.3 nM) and FcεR1 induced CD63 expression in human whole blood basophils (68.2 nM) indicating specificity towards the delta isoform. Viability testing demonstrated that the compound caused a dose-dependent inhibition in growth of immortalized as well as patient-derived AML and ALL cells. Reduction in viability was accompanied by a reduction in pAKT (>50% @ 0.3–1 μM) along with a significant induction in apoptosis in both cell lines (CCRF-CEM, HL-60, and MOLT-4) and patient samples. In tumor xenografts, oral administration of 150 mg/kg RP5264 salt over a 25-day period resulted in significant inhibition (>50%) of MOLT-4 tumor growth in mice. Pharmacokinetic studies across species indicated good oral absorption (>40% bioavailability for mice, rat, and dog) with favorable plasma concentrations (3–10 μM @ 20 mg/kg for mice, rat, and dog) relevant for efficacy. In addition, early toxicological evaluation of the molecule indicated a MTD > 500 mg/kg over a 14-day treatment period in Balb/c mice. Conclusions: TGR-1202, primarily, through its activity at the δ isoform of PI3K, has activity in both myeloid and lymphoid acute leukemia cell lines and primary patient tumors. Further evaluation of this molecule in the treatment of AML and ALL is justified, and current testing of TGR-1202 in various leukemia cell lines and within a variety of primary leukemias is ongoing. Disclosures: Vakkalanka: Rhizen Pharmaceuticals S A: Employment, Equity Ownership. Viswanadha:Incozen Therapeutics: Employment. Niecestro:TG Therapeutics, Inc.: Consultancy, Equity Ownership. Sportelli:TG Therapeutics, Inc.: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4104-4104 ◽  
Author(s):  
Christopher Brooks ◽  
Vincent Macri ◽  
Arnaldo Albini ◽  
Ivan Bergstein ◽  
Eric Rowinsky

Abstract Background Hypereosinophilic syndrome (HES), a rare myeloproliferative disorder characterized by a persistently elevated eosinophil count, results in damage to the heart, lungs, peripheral nervous system, and other organs. An acquired (non-familial) form of HES is particularly aggressive and debilitating. Acquired forms of HES are subclassified as secondary (reactive), idiopathic, and clonal HES, the latter often transitioning into chronic eosinophilic leukemia (CEL), or hypereosinophilic leukemia, which can result in myocardial fibrosis and congestive heart failure. Patients may respond to corticosteroids, the monoclonal antibodies mepolizumab and alemtuzumab, and the tyrosine kinase inhibitor imatinib, which is registered for HES patients who express the FIP1L1-PDGFRA fusion protein. However, several of the aforementioned agents also induce severe toxicity. Since eosinophils ubiquitously express the IL-3R, SL-401, a novel IL-3R-targeted therapeutic, which is comprised of IL-3 conjugated to a truncated diphtheria toxin, represents a rational and selective agent for development in hypereosinophilic disorders. Methods Expression of the IL-3R (CD123) on a human eosinophilic leukemia cell line (EOL-1) was determined by flow cytometry. Cells were washed with phosphate-buffered saline (PBS) and stained with anti-CD123 PE (BD Biosciences) and control IgG for 20 minutes at 4oC and then washed with PBS again. Stained cells were acquired using the LSR II (BD) cytometer and data were analyzed using Flow Jo (Tree Star). To analyze patient samples, PBMCs were prepared and stained using a similar method and then analyzed using Cytopaint software. The sensitivity of the cells to SL-401 was assessed using a CellTiter Glo in vitro cytotoxicity assay. A CD123 positive leukemia cell line (TF-1), which is known to be sensitive to SL-401, was used as a positive control. The cells were cultured in the presence of absence of SL-401 for 48 hours and assessed for viability at concentrations ranging from 5x10-6 to 21 µg/ml (8.7x10-5 to 368 nM). Results Primary eosinophils, elevated in number and CD16 negative, were harvested from a patient with HES and found to be positive for IL-3R. EOL-1 cells, similarly, were found to express high levels of IL-3R, with greater than 98% of cells expressing the receptor compared to isotype control. Based on the IL-3R expression pattern, the sensitivity of EOL-1 cells to SL-401 was then tested. Cells were shown to be highly sensitive to SL-401 after 48-hour incubation in a concentration-dependent manner, with IC50 values of 1, 0.6, and 0.47 pM from triplicate experiments (mean: 0.69 pM). Cell viability was also reduced by 96% at 48 hours post-treatment with a picomolar concentration of SL-401 (350 pM). Conclusion These results indicate SL-401 possesses potent in vitro anti-cancer activity against CEL, which expresses high levels of the IL-3R. Importantly, SL-401 exhibited potent activity against these cells at concentrations that were significantly lower (>10-fold) than peak plasma concentrations achieved in clinical studies. These findings, together with the need for novel clinical strategies to treat CEL and HES, warrant further exploration of SL-401 for the treatment of patients with hypereosinophilic diseases. Disclosures: Brooks: Stemline Therapeutics: Employment, Equity Ownership. Macri:Stemline Therapeutics, Inc., New York, NY USA : Employment. Bergstein:Stemline Therapeutics: Employment, Equity Ownership, Patents & Royalties. Rowinsky:Stemline Therapeutics: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 191-191
Author(s):  
Richard W. Scott ◽  
Michael J. Costanzo ◽  
Katie B. Freeman ◽  
Robert W. Kavash ◽  
Trevor M. Young ◽  
...  

Abstract Abstract 191 A series of salicylamides, fully synthetic cationic foldamers designed to disrupt the binding of the pentasaccharide unit of heparin to antithrombin III, were found to be potent neutralizers of the activity of unfractionated heparin (UFH) and low molecular weight heparins (LMWHs). A compound from this series, PMX-60056, is currently in human clinical trials for neutralization of UFH and LMWHs. PMX-60056 potently neutralizes UFH and LMWHs but is not as efficacious versus fondaparinux (FPX). The goal of the present research was to 1) identify back-up compounds to optimize activity against the LMWHs and FPX and 2) mitigate the hemodynamic effects commonly associated with protamine and observed clinically with PMX-60056 in the absence of heparin. Compounds were first tested for their ability to neutralize the anticoagulant activity of enoxaparin (ENX), tinzaparin or FPX in an in vitro amidolytic assay for factor Xa activity. While only minor improvements were observed in the neutralization of ENX and tinzaparin, compounds were identified which had 6 to 40 fold increase in activity against FPX (EC50s of 0.09 – 0.58 uM) in comparison to PMX-60056 (EC50 3.64 uM). Activated partial thromboplastin time (aPTT) assays demonstrated that these compounds maintained activity against heparin in a plasma based clotting assay. Rotation thromboelastometry (ROTEM) was used to show that these compounds are able to neutralize heparin and ENX in human whole blood, restoring normal coagulation profiles. As an initial test for safety, compounds were tested in hemolysis and cytotoxicity assays using isolated human erythrocytes, a transformed human liver cell line (HepG2 cells) and a mouse fibroblast cell line (NIH3T3). Lead back-up compounds were not cytotoxic (or hemolytic) at >100 fold concentrations over their EC50 concentrations in the anti-coagulation assays, indicating a high selectivity index between toxicity and efficacy. Five compounds were selected for further studies based on their in vitro profiles. The in vivo efficacy of these compounds was evaluated in a rat coagulation model for neutralization of ENX (2 mg/kg). Three minutes following IV dosing with ENX, either saline, protamine or one of the five salicylamide test compounds was administered. Blood was collected before dosing with ENX, and at 1, 3, 10, and 60 min after dosing, for aPTT and factor Xa analysis. Three of the five salicylamides (PMX640, PMX686 and PMX747) were more efficacious than protamine; with PMX640 and PMX686 neutralizing 91 – 100% and PMX747 neutralizing 78–100% of the ENX anti-factor Xa activity over the entire 60 minute time course. In a second in vivo model, PMX747 and PMX686 (2 mg/kg) completely neutralized the prolonged bleeding times in a rat tail bleeding model caused by treatment with 2 mg/kg ENX. Significantly, with protamine at a 5 mg/kg dosage, only partial restoration was obtained. Protamine routinely causes a transient decrease in blood pressure upon dosing, and hemodynamic effects have also been observed with PMX-60056 in human subjects in the absence of heparin. To address this issue, structural features that have successfully reduced hemodynamic liabilities in other cationic compounds were incorporated into the design of the back-up salicylamides. The effect of compounds on blood pressure and heart rate was measured via arterial catheters in rats following IV administration of protamine, PMX-60056, or test agents. As expected, in rats treated with a low dose of UFH (50 u/kg) and high dosages of antagonist, both protamine and PMX-60056 displayed transient or prolonged blood pressure reductions at 8 and 16 mg/kg, respectively. However, the lead back-up salicylamides, PMX640, PMX686 and PMX747 had little to no effect on blood pressure at these same dosages. In conclusion, we have discovered compounds in the salicylamide series that have greater efficacy versus LMWHs and that have significantly reduced hemodynamic liabilities in rats as compared to protamine. Furthermore, these compounds potently neutralize FPX activity in vitro; exceeding the activity of protamine and our clinical lead salicylamide, PMX-60056, by up to 40 fold. Thus we have been able to optimize the salicylamide series, identifying compounds that offer the potential to greatly improve upon the current clinical heparin antagonist, protamine, in respect to both activity against LMWHs and side effect profile. Disclosures: Scott: PolyMedix Inc.: Employment, Equity Ownership. Costanzo:PolyMedix Inc.: Employment, Equity Ownership. Freeman:PolyMedix Inc.: Employment, Equity Ownership. Kavash:PolyMedix Inc.: Employment, Equity Ownership. Young:PolyMedix, Inc.: Employment, Equity Ownership. DeGrado:PolyMedix, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Jeske:PolyMedix, Inc.: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 407-407
Author(s):  
Vera Grossmann ◽  
Alexander Kohlmann ◽  
Claudia Haferlach ◽  
Tamara Alpermann ◽  
Melanie Wild ◽  
...  

Abstract Abstract 407 CpG methylation is an epigenetic modification that is important for cellular development. The DNMT3A gene, located on chromosome 2p23.3, encodes for a DNA methyltransferase and plays a central role in de novo CpG methylation. Recently, DNMT3A has been reported to be mutated in 22% of AML and 8% of MDS (Ley et al., N Engl J Med, 2010; Walter et al., Leukemia, 2011). Further, DNMT3A mutations were observed to be associated with a short overall survival in both diseases, respectively. In order to determine the role of DNMT3A mutations in leukemia we investigated two different entities by next-generation sequencing: 145 AML patients and 83 cases harboring a T-cell acute lymphoblastic leukemia (T-ALL). We applied an amplicon based deep-sequencing assay (454 Life Sciences, Branford, CT) in combination with the 48.48 Access Array technology (Fluidigm, South San Francisco, CA). The peripheral blood or bone marrow samples were obtained from untreated patients. The AML cohort was restricted to cases with normal karyotype (CN-AML). 87/145 (60%) cases were specifically selected to be wild-type for NPM1, FLT3-ITD, CEBPA, and MLL-PTD, whereas 58/145 (40%) samples were mutated in NPM1 (n=33) or double-mutated in NPM1 and FLT3-ITD (n=25). In our cohort of AML cases without mutations in NPM1, FLT3-ITD, CEBPA, and MLL-PTD, we observed a DNMT3A mutation frequency of 17.2% (15/87 cases). The DNMT3A mutation rate in the NPM1 mutated/FLT3 wild-type cases (16/33, 48.5%, P=0.001) and NPM1/FLT3-ITD mutated cases (19/25, 76%, P<0.001) was significantly higher, confirming the association of DNMT3A mutations with NPM1 and FLT3-ITD mutations that had been reported previously (Ley et al.). Interestingly, also in the cohort of T-ALL we detected patients that carried a DNMT3A mutation (16/83, 19.3%), which is very similar to the mutation frequency in AML, and has not been described yet. To further address the biology of DNMT3A mutations in acute leukemias we combined the AML and T-ALL cohorts and identified in total 31 distinct missense mutations in 65 patients (49 AML, 16 T-ALL). Most frequently, amino acid R882 located in exon 23 was mutated (n=29 cases). In addition, we identified 7 frame-shift alterations, 5 nonsense and 2 splice-site mutations. Moreover, 9 of the 65 mutated cases had two independent mutations. Focusing on AML, only three (6.1%) of the 49 DNMT3A-mutated cases were observed to harbor two different mutations concomitantly. In contrast, in the cohort of T-ALL we detected two different mutations in 6/16 (37.5%, P=0.003) cases. Further, in the cohort of AML, no homozygous mutation was detected, however, in the T-ALL group, two cases harbored a homozygous mutation. Therefore, only 3/49 AML (6.1%) cases, but 8/16 T-ALL (50%) cases showed biallelic mutation status (P<0.001). With respect to overall survival, no association was seen in the complete cohort of CN-AML cases (n=145). After limiting this cohort to the cases without mutations in NPM1, FLT3-ITD, CEBPA and MLL-PTD (n=87), an inferior survival was observed for DNMT3A-mutated patients as compared to DNMT3A wild-type patients (n=15 vs. n=72; alive at 2 years: 27.9% vs. 56.6%; P=0.048). Remarkably, also in the cohort of T-ALL a worse survival for patients with DNMT3A mutations was seen which has not been reported thus far (n=13 vs. n=64; alive at 1 years: 28.6% vs. 80.9%; P=0.001). Subsequently, we were interested whether gain-of-function mutations of the DNMT3A gene were associated with trisomy 2 and acquired uniparental disomy (aUPDs) of the short arm of chromosome 2 where DNMT3A is located. As such, we investigated 9 cases harboring a trisomy 2 (AML n=4, MDS n=4, and CMML n=1) and one MDS patient harboring an aUPD 2p, as confirmed by SNP microarray analyses (SNP Array 6.0, Affymetrix, Santa Clara, CA). Not all, but 3/9 cases with trisomy 2 harbored a DNMT3A mutation (one AML, MDS, and CMML case each), suggesting that duplication of DNMT3A mutations can enhance the effect of the mutation. Moreover, the single case with aUPD 2p also showed a mutation, further suggesting that LOH leading to loss of the wild-type DNMT3A may be another mechanism of disease leading to progression of leukemia. In conclusion, we here report on a high mutation rate of DNMT3A in both AML and T-ALL and independently confirmed an inferior overall survival in these two entities, respectively. This indicates a significant role of DNMT3A alterations in myeloid as well as in lymphoid neoplasms. Disclosures: Grossmann: MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Alpermann:MLL Munich Leukemia Laboratory: Employment. Wild:MLL Munich Leukemia Laboratory: Employment. Weissmann:MLL Munich Leukemia Laboratory: Employment. Eder:MLL Munich Leukemia Laboratory: Employment. Dicker:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3502-3502
Author(s):  
Aniruddha J Deshpande ◽  
Liying Chen ◽  
Maurizio Fazio ◽  
Amit U. Sinha ◽  
Kathrin M Bernt ◽  
...  

Abstract Abstract 3502 The t(6;11)(q27;q23) produces a chimeric MLL-AF6 oncogene, and is a recurrent chromosomal rearrangement observed in patients with diverse hematologic malignancies such as acute myelogenous leukemia (AML), as well as both B-cell and T-cell acute lymphoblastic leukemias (ALL). The presence of an MLL-AF6 translocation predicts a particularly poor prognosis. Of particular biological interest, the MLL-AF6 translocation is the most common fusion event in which MLL fuses to a predominantly cytoplasmic protein. Very little is known about the molecular mechanisms of transformation mediated by the MLL-AF6 fusion oncogene, forestalling the development of specific therapeutic strategies for t(6;11)(q27;q23) positive leukemias. Recent studies suggest that the histone methyltransferase DOT1L could be an important therapeutic target in MLL-rearranged leukemias. We sought to assess whether MLL-AF6 mediated transformation is also dependent on aberrant H3K79 methylation using genomic, genetic and pharmacological approaches. First, we performed chromatin immuno-precipitation using H3K79me2 specific antibodies followed by next generation sequencing (ChIP-seq) on murine MLL-AF6 leukemias as well as on ML2, the human myelomonocytic leukemia cell line bearing the MLL-AF6 fusion gene. We observed that in both murine and human MLL-AF6 leukemia cells, MLL-fusion target genes display markedly high levels of H3K79 dimethylation as compared to other highly expressed genes. We then investigated whether MLL-AF6-induced transformation was dependent on aberrant H3K79 methylation through genetic or pharmacologic inhibition of the Dot1l histone methyltransferase. Lineage negative/Sca-1 positive/Kit positive (LSK) cells from mice bearing homozygous Dot1l floxed alleles were immortalized by retroviral expression of the MLL-AF6 fusion gene. Cre-recombinase mediated excision of Dot1l from MLL-AF6 transformed bone marrow cells resulted in a significant reduction in H3K79 dimethylation at the promoters of the MLL-target genes Hoxa9, Hoxa10 and Meis1, with a concomitant decrease in their expression. Dot1l excision significantly diminished the clonogenic capacity, abrogated blast colony formation in methylcellulose based medium, and enhanced differentiation of MLL-AF6 transformed cells. We then sought to assess whether EPZ004777, a recently described specific small molecule inhibitor of DOT1L could show efficacy against murine and human MLL-AF6 transformed cells. Dot1l inhibition using EPZ004777 significantly diminished H3K79 dimethylation globally (as assessed by immunoblotting) as well as on MLL-target genes (as assessed by ChIP-qPCR) using H3K79me2 specific antibodies. Importantly, EPZ004777 treatment significantly impaired the proliferation of both murine MLL-AF6 transformed cells as well as the ML2 cell line, whereas the proliferation rates of Hoxa9-Meis1 transformed cells as well as the human MLL-germline cell line HL60 were unaffected despite a similar decrease in H3K79me2 levels. EPZ004777 treatment induced cell cycle arrest as well as increased apoptosis in MLL-AF6 positive, but not control leukemia cells, demonstrating a selective activity of the DOT1L inhibitor EPZ004777 on MLL-AF6 transformed cells. In summary, we demonstrate that the MLL-AF6 oncoprotein requires continued activity of the histone methyltransferase DOT1L for aberrant epigenetic activation of downstream target oncogenes. More studies are needed to understand the mechanisms by which DOT1L is recruited to MLL-target genes by the MLL-AF6 fusion, since AF6 is not believed to normally associate with DOT1L. Nevertheless, the demonstration that H3K79 methylation is important for MLL-AF6 mediated transformation indicates that patients bearing the t(6;11)(q27;q23) translocation may benefit from therapeutic agents targeting aberrant H3K79 methylation. Disclosures: Olhava: Epizyme: Employment. Daigle:Epizyme, Inc.: Employment. Richon:Epizyme, Inc.: Employment, Equity Ownership. Pollock:Epizyme Inc.: Employment, Equity Ownership. Armstrong:Epizyme: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4726-4726
Author(s):  
David W. Rusnak ◽  
Sharon K. Rudolph ◽  
Afshin Safavi ◽  
Connie L. Erickson-Miller

Abstract Abstract 4726 The thrombopoietin receptor agonists (TPO-RA), romiplostim and eltrombopag, are presently indicated for the treatment of certain patient groups with immune thrombocytopenia purpura. In a clinical study with romiplostim in patients with low-/intermediate-1 risk myelodysplastic syndromes (MDS), cases of transient increases in blast cell counts were observed and cases of MDS disease progression to acute myeloid leukemia (AML) were reported. In the present study, we evaluated the impact of romiplostim, eltrombopag, and recombinant human thrombopoietin (TPO) on the proliferation of 5 human AML and 1 TPO-dependent megakaryoblastic cell line. The cell lines evaluated include the TPO-dependent cell line, N2C TPO; the TPO-R positive AML lines, HEL92.1.7 and OCI-AML-3; and the TPO-R negative AML cell lines, HL60, THP-1, and NOMO-1. All cells were exposed to 11-point dose response curves of the 3 agents at concentrations sufficient to generate a full stimulatory response in the N2C TPO cell line. Cells were exposed to concentrations of romiplostim and eltrombopag that met or exceeded the reported Cmax achieved for each agent in high-dose clinical trials and were 3- (eltrombopag) to 30-fold (romiplostim) above trough levels from the same clinical trials. Neither romiplostim nor TPO treatment resulted in detectable stimulation or inhibition of leukemia cell growth at concentrations up to 10 μg/mL. Treatment with eltrombopag up to 40 μg/mL caused inhibition of all AML cell lines with mean IC50 values ranging from 6.4 to 13.5 μg/mL. These IC50 values reflect concentrations that are 3- to 6-fold below the Cmax of a 300 qd dose of eltrombopag (40.5 μg/mL) and at concentrations as low as 2-fold below Ctau levels (12.4 μg/mL). Cmax exceeded the IC90 for these AML cell lines, which ranged from 18.5 to 27.9 μg/mL. No stimulation of AML growth was evident through the range of the eltrombopag dose response curve on any of the cell lines evaluated. The results of this study confirm earlier in vitro studies (Will 2009, Erickson-Miller 2010) showing inhibitory effects of eltrombopag on leukemic cell lines and support clinical studies to evaluate a potential anti-leukemic effect of higher doses of eltrombopag in patients with AML. Disclosures: Rusnak: GlaxoSmithKline: Consultancy, Equity Ownership, Patents & Royalties. Off Label Use: Eltrombopag is an oral TPO agonist indicated for chronic ITP being studied in MDS/AML. Rudolph:GlaxoSmithKline: Consultancy, Equity Ownership. Erickson-Miller:GlaxoSmithKline: Employment, Equity Ownership, Patents & Royalties, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3160-3160 ◽  
Author(s):  
Emily Rychak ◽  
Derek Mendy ◽  
Karen Miller ◽  
Jim Leisten ◽  
Rama Krishna Narla ◽  
...  

Abstract Over expression of the PI3 kinase/mTOR/AKT pathway has been well documented in MM patient biopsies and human MM cell lines, suggesting this pathway plays a key role in the survival and proliferation of malignant plasma cells. Rapamycin and the rapalogs are allosteric inhibitors of the mTORC1 complex (consisting of mTOR, raptor, mLST8 and PRAS40), inducing mainly cytostatic effects but not cell death. Inhibition of mTORC1 prevents a negative feedback loop to the mTORC2 complex (consisting of mTOR, Rictor, mLST8 and Sin 1) leading to the phosphorylation of AKT. Phosphorylated AKT is a key inducer of anti-apoptosis mechanisms and cell cycle progression, which may explain the limited results of the rapalogs in the clinic. Recently developed mTOR kinase inhibitors (i.e., CC-223) target both mTORC1 and mTORC2 complexes in order to inhibit tumor growth and importantly, induce cell death. Here we evaluate the effects of CC-223 on a panel of MM cell lines, in combination with current standard of care agents in MM (the corticosteroid, dexamethasone [DEX] and the IMiD® immunomodulatory drugs, lenalidomide [LEN] and pomalidomide [POM]), as well as in the context of LEN resistance. Single agent CC-223 was shown to inhibit cell proliferation in a panel of 10 MM cell lines achieving IC50 values between 0.1-1 µM following 5 days of treatment. CC-223 also reduced cell viability reaching IC50 values between 0.4-1 µM in 5 out of 10 MM cell lines tested. CC-223 induced concentration-dependent G1 phase arrest within 24h of treatment followed by an induction of cell death by 48h. The anti-MM tumor activity of CC-223 (0.3-10 mg/kg) was further tested in SCID mice with xenotransplants of NCI-H929 grown to approximately 100-150 mm3 in size. A dose-dependent tumor growth inhibition and tumor growth delay was seen with once daily dosing of CC-223. Combination of CC-223 with standard of care therapy compounds was also evaluated in vitro. The combination of CC-223 and DEX demonstrated synergistic effects on the inhibition of cell proliferation in 6 MM cell lines (combination index: 0.0002-0.38) tested over 5 days. CC-223 also had synergistic effects on the same panel of MM cell lines when combined with LEN (combination index: 0.05-0.8). Acquisition of drug resistance in patients receiving standard of care therapies is still one of the major clinical problems in MM. POM, the next generation of IMiD® immunomodulatory agents, has shown clinically meaningful results in patients that are resistant or have relapsed to their drug regimens, including LEN. We have recently developed in vitro cellular models of LEN-resistance using the H929 MM cell line. H929 cells with acquired resistance to LEN (H929 R10-1, R10-2, R10-3 and R10-4) were shown to have one copy number loss of cereblon compared to their matched LEN-sensitive control (H929 D1). In addition to this, protein expression analysis identified that these resistant cell lines also gained the activation of signaling pathways such as PI3K/AKT/mTOR, MEK/MAPK as well as anti-apoptotic factors. For example, S473 AKT phosphorylation was highly elevated in LEN-resistant cell lines which correlated with loss of PTEN protein expression (H929 R10-3 and R10-4). Interestingly, regardless of PI3K/AKT/mTOR pathway status, all LEN-sensitive and resistant H929 cells responded to CC-223 treatment with a strong inhibition of cell proliferation (H929 D1 IC50 0.2 µM, and H929 R10 1-4 IC50 0.2-0.35 µM) and to a lesser effect, induction of cell death, over a 5 day period. Similar to the panel of MM cell lines, G1 arrest occurred after 24h treatment and cell death (Sub-G1) was increased by 72h of treatment. CC-223 treatment reduced S473 pAKT and p-4EBP1 after 1h while total AKT and 4EBP1 remained unchanged in both the sensitive and resistant MM cell lines. Combination treatment of LEN-sensitive and resistant H929 cells with CC-223 and POM had synergistic inhibitory effects on cell proliferation (combination index: 0.35-0.7) and cell viability (combination index: 0.15-0.42). In conclusion, the mTOR kinase inhibitor, CC-223 potently inhibited MM cell proliferation by inducing G1 arrest and cell death in a panel of MM cell lines and reduction of tumor volume in vivo. The combination of LEN, POM or DEX with CC-223 had synergistic effects on MM cell proliferation and viability. Therefore, CC-223 in combination with other standard of care agents could become an important clinical tool for the treatment of MM in the future. Disclosures: Rychak: Celgene Corporation: Employment, Equity Ownership. Mendy:Celgene: Employment, Equity Ownership. Miller:Celgene Corporation: Employment, Equity Ownership. Leisten:Celgene Corporation: Employment, Equity Ownership. Narla:Celgene Corporation: Employment, Equity Ownership. Raymon:Celgene Corporation: Employment, Equity Ownership. Chopra:Celgene: Employment, Equity Ownership. Lopez-Girona:Celgene: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 603-603 ◽  
Author(s):  
Raoul Tibes ◽  
Steven M. Kornblau ◽  
William E. Pierceall ◽  
Ryan Lena ◽  
Yi Hua Qiu ◽  
...  

Abstract Hypomethylating agents have changed treatment and outcomes in MDS and are active in AML patients. However a significant number of patients do not respond to 5-Azacytidine or Decitabine and there is no clinically validated assay that predicts response to 5-Azacytidine (5-Aza) or Decitabine (DAC). Clinical parameters and recently TET2 mutations have been identified as genetic predictors of response to 5-Aza. Several recent papers report on the possible predictive value of anti-apoptotic proteins, for example BCL2L10. In previous genome-scale RNA-interference (RNAi) screens anti-apoptotic BCL-2 family members, most potently BCL-XL, were identified as top targets whose down-regulation sensitize to 5-Aza. Results were confirmed with the BCL-XL and BCL-2 inhibitor ABT-737, as well as the BCL-2-specific inhibitor ABT-199, both of which sensitized myeloid cells to 5-Aza. Although it is expected that interfering with anti-apoptotic genes would sensitize to hypomethylating similar to cytotoxics, few of the other >900 genes from our RNAi sensitizer screens, including few of the 571 kinases, sensitized to 5-Aza as potently as inhibition of BCL-XL. Thus BCL-2 family members constitute an especially potent context to modulate the activity of 5-Aza. To assess if protein expression of the top targets BCL-XL, BCL-2 or MCL-1 correlate with and may explain a preferential sensitization, 577 primary AML samples were examined by Reverse Phase Protein Array (RPPA). There was substantial overlap of expression across and within FAB subgroups and cytogenetics, and expression of neither of these genes/proteins could explain the observed effects. This may be expected due to functional redundancies amongst the different anti-apoptotic BCL-2 family members, as well as distinct, yet overlapping binding affinities between anti- and pro-apoptotic BCL-2 proteins and BH3 peptides. Thus, we next aimed to functionally interrogate the overall balance of pro- and anti-apoptotic BCL-2 family members, also described as “primedness” by BH3 profiling. This assay uses peptides derived from pro-apoptotic BH3-only proteins to determine the capacity of cells to initiate apoptosis in response to pro-apoptotic BH3 molecules [anti-apoptotic BCL-2 molecules like BCL-XL and BCL-2 bind and inhibit BH3-only molecules]. This assay is a broad functional readout that incorporates many parameters including the consequences of varying BCL2L10 expression. To establish a proof-of-concept that the functional interrogation of specific apoptotic thresholds may be an optimal readout for 5-Aza response, we first assessed a broad panel of 13 AML-derived cell lines by BH3 profiling and in parallel 5-Aza drug dose response experiments. Several BH3 profiling metrics, including NOXA plus BIM, significantly correlated with 5-Aza sensitivity in vitro (Figure 1). Next, to correlate actual clinical responses to 5-Aza with BH3 profiling, specimens from 28 AML, MDS and MDS/MPN overlap patients treated with 5-Aza or DAC-based regimens and for whom clinical outcome was available, were assayed in BH3 assays. In the clinic, the best BH3 metrics were combined values from NOXA and BIM peptides similar to cell lines. NOXA plus BIM discriminated clinical responses defined as achieving any response (sensitive) versus a patient being resistance/refractory to 5-Aza/DAC based regimens with statistical significance (Mann-Whitney two-tailed p = 0.001). This was true for the entire group of patients (5-Aza- and DAC- regimens) with a Receiver Operating Characteristic (ROC) of an AUC=0.875, with a further increase for patients treated only with 5-Aza based regimens with an AUC=0.95.Figure 1BH3 metrics distinguish cell lines with higher EC 50 (> 2uM) from those with lower EC50 (generally < 1uM).Figure 1. BH3 metrics distinguish cell lines with higher EC 50 (> 2uM) from those with lower EC50 (generally < 1uM). In conclusion, due to significant expression overlap and functional redundancies of the BCL-2 family proteins, expression does not correlate with 5-Aza clinical or in vitro responses. However, BH3 profiling as a general functional readout of apoptotic primedness, significantly discriminated responses in patients as well as in vitro. Thus, BH3 profiling incorporates the entirety of pro- and anti-apoptotic molecules (including BCL2L10) and is promising to predict responses to hypomethylating agents. We propose to prospectively validate BH3 profiling as a predictive biomarker assay for 5-Aza or DAC based regimens. Disclosures: Pierceall: Eutropics: Employment, Equity Ownership. Lena:Eutropics: Employment, Equity Ownership. Cardone:Eutropics: Employment, Equity Ownership. Elashoff:Eutropics: Employment. Blake:Noel Blake: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3739-3739 ◽  
Author(s):  
May S.K. Sutherland ◽  
Changpu Yu ◽  
Martha Anderson ◽  
Kim Emmerton ◽  
Weiping Zeng ◽  
...  

Abstract Long-term survival rates for acute myeloid leukemia (AML) patients remain poor, highlighting the need for further treatment options. AML cells express the myeloid marker CD33, making them amenable to CD33-targeted therapy. SGN-CD33A is a novel anti-CD33 antibody-drug conjugate (ADC) composed of a humanized antibody conjugated to a highly potent DNA-binding pyrrolobenzodiazepine (PBD) dimer drug via a protease-cleavable dipeptide linker. An engineered cysteine on each heavy chain attaching the PBD dimer to the antibody allows uniform drug loading of approximately two PBD dimers per antibody. Upon binding to CD33 on the cell surface, SGN-CD33A is internalized, the linker is cleaved by proteases in the lysosomes, and the released drug forms DNA crosslinks, resulting in cell death. SGN-CD33A is active as a single agent against a broad panel of primary AML samples and in preclinical models of AML that are characteristically resistant to chemotherapy (multi-drug-resistant, MDR-positive) (Sutherland et al. Blood 2013). In the present study, we tested the activity of SGN-CD33A in cytotoxicity assays in combination with therapies commonly used in the treatment of myeloid malignancies including cytarabine (Ara-C) and the hypomethylating agents, 5-azacytidine (vidaza) or 5-aza-2-deoxcytidine (decitabine). Significant synergism in tumor cell killing, as assessed by the Chou-Talalaly Combination Index (CI), was observed when MDR-positive AML cell lines, KG-1 and TF1-a, were treated simultaneously with the combination of SGN-CD33A and Ara-C (CI < 0.7) or SGN-CD33A and a hypomethylating agent (CI < 0.7). Consistent with these observations, mouse xenograft experiments were conducted with AML cell lines, and demonstrated improved antitumor activity with the combinations compared to either agent alone. In the subcutaneous MDR-positive TF1-a model of AML, a single low dose of SGN-CD33A (30 mcg/kg) in combination with Ara-C significantly reduced tumor burden compared to either agent alone or to the nonbinding control ADC groups (p< 0.0001). Significant reductions in tumor growth were also observed in subcutaneous MDR-positive TF1-a or KG-1 murine models of AML treated with SGN-CD33A in combination with hypomethylating agents. Whereas a single low dose of SGN-CD33A or the hypomethylating agents decitabine or vidaza delayed tumor growth, the combination delivered greater antitumor activity than the individual agents alone. These findings demonstrate that SGN-CD33A can be combined with therapies that are commonly used in treating myeloid malignancies to deliver significantly improved antitumor activity in preclinical drug-resistant models of AML. Disclosures Sutherland: Seattle Genetics: Employment, Equity Ownership. Yu:Seattle Genetics: Employment, Equity Ownership. Anderson:Seattle Genetics: Employment, Equity Ownership. Emmerton:Seattle Genetics: Employment, Equity Ownership. Zeng:Seattle Genetics: Employment, Equity Ownership. O'Meara:Seattle Genetics, Inc.: Employment, Equity Ownership. Kennedy:Seattle Genetics, Inc.: Employment, Equity Ownership. Ryan:Seattle Genetics: Employment, Equity Ownership. Benjamin:Seattle Genetics: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document