Phase II Study of the Cyclin-Dependent Kinase (CDK) Inhibitor Dinaciclib (SCH 727965) In Patients with Advanced Acute Leukemias

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3287-3287 ◽  
Author(s):  
Ivana Gojo ◽  
Alison Walker ◽  
Maureen Cooper ◽  
Eric J Feldman ◽  
Swaminathan Padmanabhan ◽  
...  

Abstract Abstract 3287 Background: Dinaciclib is a potent and selective inhibitor of the CDKs 1, 2, 5, and 9 that has demonstrated anti-tumor activity against both myeloid and lymphoid leukemia cell lines in vitro and human tumor xenografts in vivo. Methods: A randomized, multicenter, open-label phase 2 study of dinaciclib 50 mg/m2 administered by 2-hour i.v. infusion once every 21 days was initiated with the goal of assessing its efficacy and safety in patients (pts) with advanced acute myeloid (AML, ≥60 years old) or lymphoid (ALL, ≥18 years old) leukemia. AML pts were randomized between dinaciclib and gemtuzumab ozogamicin (GO) with cross-over to dinaciclib if no response to GO, while ALL pts only received dinaciclib. Intra-patient dose escalation of dinaciclib to 70 mg/m2 in cycle 2 was allowed. Twenty-six pts were treated on study (20 AML, 6 ALL). Data on 14 AML (2 cross-over from GO) and 6 ALL pts treated with dinaciclib are presented. Their median age was 70 (range 38–76) years and 70% were male. Sixteen pts were refractory and 4 pts had relapsed after a median of one (range 1–4) chemotherapy regimens. Four AML pts had complex karyotypes (≥3 abnormalities), 2 monosomy 7, 2 trisomy 8, 1 der (1:7)(q10;p10), 1 trisomy 21, 1 deletion 9q, and 3 had normal karyotype. Two ALL pts had t(9;22). Response: Anti-leukemia activity was observed in 60% of pts. Ten of 13 pts with circulating blasts (7/7 AML and 3/6 ALL) had >50% and 6 pts (4 AML, 2 ALL) >80% decrease in the absolute blast count (ABC) within 24 hours of the first dinaciclib dose. An additional pt had a 29% decrease in ABC. The median pre-treatment ABC was 1085 (range 220–9975) and the median ABC nadir was 169 (range 0–1350). The median duration of blast nadir was 6 days (range 2–23). A representative graph from an AML patient (below) shows a rapid decrease of circulating blasts and WBC after treatment, followed by a gradual recovery. Two patients had >50% reduction of marrow blasts (35% on d1 to 17% on d 42 in an AML pt; 81% on d1 to 27% on d 21 in an ALL pt). However, no objective responses by International Working Group criteria were observed. The median number of treatment cycles was 1 (range 1–5), with 10 pts receiving more than one cycle of treatment. Eight pts were treated with dinaciclib 70 mg/m2 starting in cycle 2. Toxicity: Treatment related AE's occurring in >30% of pts included diarrhea, nausea, vomiting, anemia, elevated AST, fatigue, leukopenia, hypocalcemia, and hypotension. The most common CTCAE v3 treatment-related grade 3 and 4 toxicities, occurring in 3 or more pts, were anemia, leukopenia, febrile neutropenia, thrombocytopenia, fatigue, increased AST, and tumor lysis syndrome (TLS). Laboratory evidence of tumor lysis in cycle 1, using the Cairo-Bishop criteria, was seen in 6 pts in addition to 3 pts with clinical TLS (JCO 2008;26:2767). Hyperacute TLS requiring hemodialysis occurred in one pt with AML, who died of acute renal failure. Subsequently, all pts were aggressively managed to prevent and treat TLS (hospitalization, hydration, allopurinol, rasburicase, oral phosphate binder administration, and early management of hyperkalemia). An additional 9 pts died on study, 8 pts from leukemia progression and 1 pt from intracranial bleed due to disease-related thrombocytopenia. Pharmacodynamics: Pre-treatment, 4 and 24 hrs post end-of-infusion samples of circulating leukemic blasts were obtained from 1 AML and 3 ALL pts. By Western blot, post-treatment decrease in Mcl-1 and increase in PARP cleavage were seen in all 4 pts at 4 hrs post-treatment, confirming that in vivo inhibition of CDKs was achieved, but recovery of Mcl-1 at 24 hrs was observed in all 4 pts, suggesting that inhibition was lost at 24 hrs. Decline in p-Rb was observed in 1 pt, while 2 pts had almost undetectable p-Rb levels at baseline. Conclusion: Dinaciclib showed anti-leukemia activity in this heavily pre-treated patient population. TLS was a notable toxicity, but was manageable in most pts with aggressive prophylaxis, monitoring and treatment. Early blast recovery and short duration of nadir observed on this study, combined with PK data showing a short t1/2 (1.5-3.3 hours) for dinaciclib and PD data demonstrating rapid reexpression of Mcl-1, support either use of longer infusion schedules (currently explored in solid tumors) or more frequent drug administration. Further exploration of dinaciclib dose and schedules in AML and ALL is planned. Disclosures: Gojo: Merck & Co.: Research Funding. Off Label Use: SCH 727965 (dinaciclib) is an investigational drug. Padmanabhan:Schering-Plough: Consultancy; Merck & Co.: Research Funding. Small:Merck & Co.: Employment, Equity Ownership. Zhang:Merck & Co.: Employment. Sadowska:Merck & Co.: Research Funding. Bannerji:Merck & Co.: Employment, Equity Ownership.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1049-1049
Author(s):  
Joseph A. Jakubowski ◽  
Chunmei Zhou ◽  
David S. Small ◽  
Kenneth J. Winters ◽  
D. Richard Lachno ◽  
...  

Abstract Abstract 1049 Introduction: Evidence suggests that platelets are activated in sickle cell disease (SCD) and this appears to increase further during painful crises caused by vascular occlusions from sickled red blood cells. Antiplatelet therapy may be useful in reducing the frequency and severity of acute pain episodes and reducing the risk of thrombotic complications. Prasugrel, an ADP receptor antagonist, irreversibly inhibits the P2Y12 ADP receptor, blocking ADP-stimulated platelet activation and aggregation and reducing downstream procoagulant activities. Here we present the first evaluation of prasugrel's effects on markers of in vivo platelet activation and of coagulation in subjects with SCD. Methods: Twenty-six adult subjects were enrolled and 25 completed the study: 12 with SCD and 13 well-matched healthy controls. Subjects were examined before and after 12±2 days of treatment with oral prasugrel (5.0 mg/day for subjects weighing <60 kg and 7.5 mg/day for subjects weighing ≥60 kg). Markers of platelet activation and coagulation included whole-blood platelet-monocyte and -neutrophil aggregates, and whole blood platelet-associated P-selectin and platelet CD40L, all measured by flow cytometry and presented as percent (%) of marker positive cells. Plasma soluble (s) P-selectin, CD40L, and plasma prothrombin fragment 1.2 (F1.2) were evaluated by ELISA. Results: Results from the biomarkers are presented in the table. Prior to prasugrel administration (baseline), subjects with SCD had significantly higher levels of the following biomarkers compared to healthy subjects: Platelet-monocyte aggregates, platelet-neutrophil aggregates, platelet CD40L, and plasma F1.2. In addition, subjects with SCD had numerically higher values of sCD40L, as well as platelet-associated and sP-selectin. Prasugrel treatment resulted in numerical decreases in levels of all biomarkers (with the exception of platelet-associated CD40L for control subjects), most notably in SCD subjects with elevated baseline levels. Prasugrel was safe and well tolerated with no serious adverse events observed during the study. No subject discontinued the study due to an adverse event (AE) and the majority of AEs were mild. No subjects with SCD reported any bleeding-related AEs. Conclusion: In this study, compared to healthy controls, baseline elevation of several platelet-activation and coagulation markers among adult subjects with SCD is consistent with that seen in previous studies of both children and adults with SCD. The decrease in platelet activation biomarkers following 12 days of prasugrel treatment in subjects with SCD suggests prasugrel interrupts SCD-related platelet activation in vivo and raises the possibility that prasugrel may modulate the frequency and/or severity of painful crises associated with SCD. These data support additional studies of the safety and efficacy of prasugrel in the treatment of vascular complications associated with SCD. Disclosures: Jakubowski: Eli Lilly and Company: Employment, Equity Ownership. Off Label Use: This abstract discusses prasugrel treatment in patients with sickle cell disease. Please see USPI for most up-to-date information. Zhou:Eli Lilly and Company: Employment, Equity Ownership. Small:Eli Lilly and Company: Employment, Equity Ownership. Winters:Eli Lilly and Company: Employment, Equity Ownership. Lachno:Eli Lilly and Company: Employment, Equity Ownership. Frelinger:Takeda: Research Funding; Daiichi Sankyo Company, Ltd. and Eli Lilly and Company: Consultancy, Research Funding; GLSynthesis: Research Funding. Howard:Daiichi Sankyo Company, Ltd. and Eli Lilly and Company: Research Funding. Payne:Eli Lilly and Compnay: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 580-580
Author(s):  
Mark Wunderlich ◽  
Mahesh Shrestha ◽  
Lin Kang ◽  
Eric Law ◽  
Vladimir Jankovic ◽  
...  

Abstract Abstract 580 Generating a large number of pure, functional immune cells that can be used in human patients has been a major challenge for NK cell-based immunotherapy. We have successfully established a cultivation method to generate human NK cells from CD34+ cells isolated from donor-matched cord blood and human placental derived stem cells, which were obtained from full-term human placenta. This cultivation method is feeder-free, based on progenitor expansion followed by NK differentiation supported by cytokines including thrombopoietin, stem cell factor, Flt3 ligand, IL-7, IL-15 and IL-2. A graded progression from CD34+ hematopoietic progenitor cells (HSC) to committed NK progenitor cells ultimately results in ∼90% CD3-CD56+ phenotype and is associated with an average 10,000-fold expansion achieved over 35 days. The resulting cells are CD16- and express low level of KIRs, indicating an immature NK cell phenotype, but show active in vitro cytotoxicity against a broad range of tumor cell line targets. The in vivo persistence, maturation and functional activity of HSC-derived NK cells was assessed in NSG mice engineered to express the human cytokines SCF, GM-CSF and IL-3 (NSGS mice). Human IL-2 or IL-15 was injected intraperitoneally three times per week to test the effect of cytokine supplementation on the in vivo transferred NK cells. The presence and detailed immunophenotype of NK cells was assessed in peripheral blood (PB), bone marrow (BM), spleen and liver samples at 7-day intervals up to 28 days post-transfer. Without cytokine supplementation, very few NK cells were detectable at any time-point. Administration of IL-2 resulted in a detectable but modest enhancement of human NK cell persistence. The effect of IL-15 supplementation was significantly greater, leading to the robust persistence of transferred NK cells in circulation, and likely specific homing and expansion in the liver of recipient mice. The discrete response to IL-15 versus IL-2, as well as the preferential accumulation in the liver have not been previously described following adoptive transfer of mature NK cells, and may be unique for the HSC-derived immature NK cell product. Following the in vivo transfer, a significant fraction of human CD56+ cells expressed CD16 and KIRs indicating full physiologic NK differentiation, which appears to be a unique potential of HSC-derived cells. Consistent with this, human CD56+ cells isolated ex vivo efficiently killed K562 targets in in vitro cytotoxicity assays. In contrast to PB, spleen and liver, BM contained a substantial portion of human cells that were CD56/CD16 double negative (DN) but positive for CD244 and CD117, indicating a residual progenitor function in the CD56- fraction of the CD34+ derived cell product. The BM engrafting population was higher in NK cultures at earlier stages of expansion, but was preserved in the day 35- cultured product. The frequency of these cells in the BM increased over time, and showed continued cycling based on in vivo BrdU labeling 28 days post-transfer, suggesting a significant progenitor potential in vivo. Interestingly, DN cells isolated from BM could be efficiently differentiated ex vivo to mature CD56+CD16+ NK cells with in vitro cytotoxic activity against K562. We speculate that under the optimal in vivo conditions these BM engrafting cells may provide a progenitor population to produce a mature NK cell pool in humans, and therefore could contribute to the therapeutic potential of the HSC-derived NK cell product. The in vivo activity of HSC-derived NK cells was further explored using a genetically engineered human AML xenograft model of minimal residual disease (MRD) and initial data indicates significant suppression of AML relapse in animals receiving NK cells following chemotherapy. Collectively, our data demonstrate the utility of humanized mice and in vivo xenograft models in characterizing the biodistribution, persistence, differentiation and functional assessment of human HSC-derived cell therapy products, and characterize the potential of HSC-derived NK cells to be developed as an effective off-the-shelf product for use in adoptive cell therapy approaches in AML. Disclosures: Wunderlich: Celgene Cellular Therapeutics: Research Funding. Shrestha:C: Research Funding. Kang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Law:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Jankovic:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Zhang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Herzberg:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Abbot:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Hariri:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Mulloy:Celgene Cellular Therapeutics: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3930-3930 ◽  
Author(s):  
Christine R Klaus ◽  
Scott R. Daigle ◽  
Dorothy Iwanowics ◽  
L. Danielle Johnston ◽  
Carly A Therkelsen ◽  
...  

Abstract EPZ-5676 is a small molecule inhibitor of the histone methyltransferase DOT1L that is currently under clinical investigation as a potential therapy for acute leukemias bearing MLL-rearrangements. Gene knockout and small molecule inhibitor studies have demonstrated that DOT1L is required for MLL-fusion protein–mediated leukemogenesis in model systems. In preclinical studies EPZ-5676 promoted cell killing of acute leukemia lines bearing MLL translocations in vitro while sparing those without MLL gene translocations and also caused sustained tumor regressions in a rat xenograft model of MLL-rearranged leukemia [Daigle et al. Blood 2013]. To support potential future clinical scenarios, we evaluated the activity of EPZ-5676 in combination with current standard of care agents for acute leukemias as well as other chromatin modifying drugs in cell proliferation assays with three human acute leukemia cell lines; Molm-13 (MLL-AF9 expressing acute myeloid leukemia (AML)), MV4-11 (MLL-AF4 expressing acute biphenotypic leukemia cell line) and SKM-1 (non-MLL-rearranged AML). We established a high density combination platform suitable for testing the anti-proliferative activity of a complete titration matrix of two agents with multiple replicate points to enable generation of statistically meaningful results. This platform was used to evaluate the anti-proliferative effects of EPZ-5676 combinations tested in a co-treatment model in which the second agent was added along with EPZ-5676 at the beginning of the assay, or in a pre-treatment model in which cells were incubated for several days in the presence of EPZ-5676 prior to the addition of the second agent. The drug combination analysis was performed using the Chou-Talalay method [Chou TC Pharmacological Reviews 2006]. Graphs representing values of combination index (CI) versus Fractional effect (Fa) known as Fa-CI plots were generated and synergy was evaluated. Drug synergy was statistically defined by CI values less than 1, antagonism by CI >1 and additive effect by CI equal to 1. We found that EPZ-5676 acts synergistically with the AML standard of care agents cytarabine or daunorubicin in Molm-13 and MV4-11 MLL-rearranged cell lines. However, in the non-rearranged SKM-1 cell line EPZ-5676 had no effect alone and did not act synergistically with cytarabine or daunorubicin. Moreover, a persistent combination benefit was observed even when EPZ-5676 was washed out prior to the addition of the standard of care agents (Figure 1), suggesting that EPZ-5676 sets up a durable altered chromatin state that enhances the effect of chemotherapeutic agents in MLL-rearranged cells. We are currently exploring the mechanism of action of this synergy in more detail.Figure 1. Fa-CI plots show that EPZ-5676 and cytarabine act synergistically to induce an antiproliferative effect in the Molm-13 cell line in a pre-treatment model. (A) Ten-day continuous dosing of EPZ-5676 with addition of cytarabine at day 7 showed a range of fractional effects with CI values <1 denoting synergy. (B) EPZ-5676 was removed at day 7 prior to the addition of cytarabine showing durable combination benefit.Figure 1. Fa-CI plots show that EPZ-5676 and cytarabine act synergistically to induce an antiproliferative effect in the Molm-13 cell line in a pre-treatment model. (A) Ten-day continuous dosing of EPZ-5676 with addition of cytarabine at day 7 showed a range of fractional effects with CI values <1 denoting synergy. (B) EPZ-5676 was removed at day 7 prior to the addition of cytarabine showing durable combination benefit. Our evaluation of EPZ-5676 in conjunction with other chromatin modifying drugs also revealed a consistent combination benefit including synergy with DNA hypomethylating agents. In summary, our results indicate that EPZ-5676 is highly efficacious as a single agent and is synergistic with other anticancer agents including AML standard of care drugs and DNA hypomethylating agents in MLL-rearranged cells. Disclosures: Klaus: Epizyme, Inc.: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Daigle:Epizyme, Inc.: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Iwanowics:Epizyme, Inc.: Employment, Equity Ownership, Stock Options Other. Johnston:Epizyme, Inc: Employment, Equity Ownership, Stock Options Other. Therkelsen:Epizyme, Inc.: Employment, Equity Ownership, Stock Options Other. Smith:Epizyme, Inc.: Employment, Equity Ownership, Stock Options Other. Moyer:Epizyme, Inc.: Employment, Equity Ownership, Stock Options Other. Copeland:Epizyme Inc. : Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties; Mersana: Membership on an entity’s Board of Directors or advisory committees. Olhava:Epizyme, Inc: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Porter Scott:Epizyme, Inc: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Pollock:Epizyme Inc.: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Raimondi:Epizyme, Inc: Employment, Equity Ownership, Patents & Royalties, Stock Options Other.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 873-873 ◽  
Author(s):  
David L. Porter ◽  
Michael Kalos ◽  
Noelle V. Frey ◽  
Stephan A Grupp ◽  
Alison W. Loren ◽  
...  

Abstract Background Patients (pts) with relapsed, and/or refractory (R/R) CLL have a poor prognosis with few effective treatment options. We have shown that infusion of autologous T cells genetically modified to express a chimeric antigen receptor (CAR) consisting of an external anti-CD19 domain, with the CD3ζ and 4-1BB signaling domains (CTL019 cells), can mediate potent anti-tumor effects in pts with advanced, relapsed refractory CLL. In our initial pilot study, doses of 1.7-50, x 108 mononuclear cells, corresponding to 0.14-5.9 x 108genetically modified cells, were given as a split dose infusion on days 0, 1 and 2 to 14 pts with R/R CLL and overall response rate (PR plus CR) was 57%. The majority of responses were sustained, and associated with marked expansion and long-term persistence of transduced cells. Notably, there was no obvious dose:reponse or dose:toxicity effect noted over a wide range of cell doses. To better define an optimal CTL019 cell dose, we are performing a randomized phase II study of 2 doses of CTL019 cells in pts with R/R CLL. Methods Pts with R/R CLL are randomly assigned to receive either 5x108 vs. 5x107transduced CTL019 cells, with the rationale that both doses induced CRs in pts on our initial pilot trial. In the initial stage, 12 evaluable pts will be treated in each arm and in stage 2, an additional 8 pts will be treated with the selected dose level. Pts have to have relapsed or persistent disease after at least 2 previous treatments and progress within 2 years of their last therapy. All pts receive lymphodepleting chemotherapy ending 3-5 days before T cell infusion. Cell infusions are given as a single dose. Results As of 7/15/2013, 27 pts have been enrolled; T cells did not adequately expand in 3, 1 patient was not eligible after screening, and 10 pts have been treated including 7 men and 3 women with a median age of 63 yrs (range 59-76). 5 pts had a mutation of p53. All pts had active disease at the time of CTL019 cell infusion. Lymphodepleting chemotherapy was Fludarabine/cyclophosphamide (8), pentostatin/cyclophosphamide (1), or bendamustine (1). 4 pts have been randomized to the higher dose level (5 x 108 CTL019 cells) and 6 pts have been randomized to the lower dose level (5 x 107CTL019 cells). There were no significant infusional toxicities. Median follow-up as of July 15, 2013 was 3 mo (1.3-5) for all pts and 3.3 mo (1.3-4) for responding pts. 2 pts have achieved a CR and 2 pts achieved PR, both with clearance of CLL from the blood and marrow and >50 reduction in adenopathy, for an overall response rate of 40%. In other recipients of CTL019 cells, we have observed ongoing improvement in adenopathy over time implying there can be a continued anti-tumor response. No responding patient has progressed. Seven of 10 pts experienced a delayed cytokine release syndrome (CRS) manifested by symptoms that included high fevers, nausea, myalgias and in some cases, capillary leak, hypoxia, and hypotension, typically correlated with peak CTL019 cell expansion. We have noted that the CRS accompanying CTL019 therapy has been associated with marked increases of serum IL6 and can be rapidly reversed with the IL6-receptor antagonist tocilizumab. The CRS required intervention in 2 pts, one who responded and one who did not respond to CTL019. Treatment was initiated for hemodynamic or respiratory instability and was effective in reversing signs and symptoms of CRS in both pts. A preliminary analysis through July 15, 2013 does not yet suggest a dose:response or dose:toxicity relationship. 2 of 4 recipients of the higher dose CTL019 responded, and 2 of 6 recipients at the lower dose level responded. The 7 pts who experienced a CRS included all 4 responding pts and 3 pts who did not respond. The CRS occurred in 3/4 recipients of higher dose CTL019 cells and 4/6 of recipients of lower dose CTL019 cells. CTL019 expansion in-vivo and persistence over the follow up period was noted in all responding pts. Conclusions In this ongoing dose optimization study of CTL019 cells, 4 of the first 10 pts treated have responded within 3 months. With short follow-up, as yet there is no suggestion that there is a dose:response or dose:toxicity relationship at the dose ranges being studied. These cells can undergo robust in-vivo expansion and from other studies (ASH 2013) can persist for at least 3 yrs. This trial confirms that CTL019 cells can induce potent responses for pts with advanced, relapsed and refractory CLL. Disclosures: Porter: Novatis: IP and potential royalties with COI managed according to policies of the University of Pennsylvania, IP and potential royalties with COI managed according to policies of the University of Pennsylvania Patents & Royalties, Research Funding; Genentech: Spouse employment, Spouse employment Other. Off Label Use: CTL019 cells to treat CLL. Kalos:Novartis corporation: CART19 technology, CART19 technology Patents & Royalties; Adaptive biotechnologies: Member scientific advisory board , Member scientific advisory board Other. Grupp:Novartis: Research Funding. Chew:Novartis: Patents & Royalties. Shen:Novartis Pharmaceuticals: Employment, Equity Ownership. Wood:Novartis Pharmaceuticals: Employment, Equity Ownership. Litchman:Novartis Pharmaceuticals Corporation: Employment, Equity Ownership. Zheng:Novartis: Patents & Royalties. Levine:Novartis: cell and gene therapy IP, cell and gene therapy IP Patents & Royalties. June:Novartis: Patents & Royalties, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3059-3059 ◽  
Author(s):  
Dan T. Vogl ◽  
Anas Younes ◽  
Keith Stewart ◽  
Keith William Orford ◽  
Mark Bennett ◽  
...  

Abstract Background: Malignant cells alter metabolism in order to enable their highly anabolic state. In addition to a massive increase in glycolysis, malignant cells frequently become dependent on glutamine to feed the TCA cycle and provide key building blocks for cell growth and proliferation. CB-839 is a first-in-class potent and selective inhibitor of glutaminase (GLS), the first step in glutamine metabolism, that has broad in vitro and in vivo anti-tumor activity in solid and heme malignancies, including multiple myeloma. GLS inhibition with CB-839 induces apoptosis and/or growth arrest in multiple myeloma and lymphoma cell lines and is synergistic with pomalidomide and lenalidomide in vitro and as well as in multiple myeloma xenograft models in vivo. Methods: CX-839-002 is an ongoing Ph1 evaluation of escalating doses of CB-839 in patients with relapsed/refractory multiple myeloma (MM) or non-Hodgkins lymphoma (NHL) with the primary objective of assessing the safety profile and selecting a recommended Phase 2 dose (RP2D). Pharmacokinetics (PK) was monitored on Days 1 and 15. Initially, CB-839 was given three times daily (TID) without food, but based on PK and safety data generated across three Ph1 studies in patients with solid and heme malignancies, the drug is now being given twice daily (BID) with meals. Results: Safety data are available for a total of 14 patients (9 MM, 4 follicular lymphoma, 1 diffuse large B cell lymphoma) that have enrolled to date during the dose escalation (100-400 mg TID and 600 mg BID). The patients have received a median of 7 prior lines of systemic therapy. CB-839 has been well tolerated with only three subjects experiencing a Gr3/4 AEs considered possibly related to study drug and there have been no discontinuations due to AEs. A similar tolerability profile has been observed across three Ph1 studies for CB-839. With a total of 119 pts treated with CB-839 across the three studies, Gr3/4 drug-related AEs have occurred in 16 subjects (13%) and 4.3% of discontinuations were due to AEs. Reversible, asymptomatic elevations in transaminases have been the primary Gr3 AEs, occurring primarily on the TID schedule in 6/59 (10.2%) pts; only one occurred among 60 pts (1.7%) receiving the BID regimen. BID dosing with 600 mg was determined to be the RP2D and combination studies with pomalidomide and dexamethasone have been initiated. The half-life of CB-839 is ~4 hr, exposure increases with dose, and trough concentrations generally remain above the target threshold of 200 ng/mL for patients receiving the RP2D. Six of 8 MM pts that received ≥ 400 mg TID achieved steady state (D15) trough concentrations above the PK target threshold while 0 of 5 pts that received ≤ 250 mg TID achieved the PK threshold. Pharmacodynamic assessment of GLS activity in MM patients was consistent with a broader PK/PD assessment (across all 3 Ph1 studies), which established clear exposure-dependent inhibition of the target in peripheral blood platelets 4 hr after the first dose of CB-839, with >90% inhibition being maintained for most patients at the RP2D. Preliminary efficacy data include confirmed stable disease in 4 of 9 evaluable MM patients. Updated efficacy data and correlative studies on clinical samples will also be presented. The first pt treated with the combination of CB-839 and pomalidomide/dexamethasone (Pd) during dose escalation received 400 mg CB-839 BID, pomalidomide at 4 mg/day (D1-21) and dexamethasone at 40 mg on Days 1, 8, 15 and 22 of each 28-day cycle. This pt had a 71% decreased in urine M-protein and an 83% reduction in serum free light chain after the first 2 cycles of treatment. This pt had 11 prior lines of therapy but not pomalidomide and had two stem cell transplants and was progressing rapidly prior to study entry. The pt has tolerated the combination well and is continuing on study. Conclusions: CB-839 has been well tolerated at and above doses that produced robust inhibition of GLS in blood platelets and in tumors. Dosing BID with food has improved the PK profile and mitigated the frequency and severity of LFT elevations, which was the primary safety signal using TID dosing. Strong preclinical combination data, an excellent clinical safety profile, and initial data with CB-839 combined with Pd provide a strong rationale for continued development of CB-839 this combination in pts with relapsed/refractory multiple myeloma. Disclosures Vogl: Constellation Pharmaceuticals: Research Funding; Calithera Biosciences: Research Funding; Celgene Corporation: Consultancy; Acetylon Pharmaceuticals, Inc.: Research Funding; Millennium Pharmaceuticals: Research Funding; GSK: Research Funding. Younes:Celgene: Honoraria; Curis: Research Funding; Sanofi-Aventis: Honoraria; Seattle Genetics: Honoraria, Research Funding; Novartis: Research Funding; Janssen: Honoraria; Takeda Millenium: Honoraria; Bristol Meyer Squibb: Honoraria; Bayer: Honoraria; Incyte: Honoraria; Johnson and Johnson: Research Funding. Orford:Calithera Biosciences: Employment, Equity Ownership. Bennett:Calithera Biosciences: Employment, Equity Ownership. Siegel:Celgene Corporation: Consultancy, Speakers Bureau; Amgen: Speakers Bureau; Takeda: Speakers Bureau; Novartis: Speakers Bureau; Merck: Speakers Bureau. Berdeja:Curis: Research Funding; Acetylon: Research Funding; Novartis: Research Funding; Janssen: Research Funding; Takeda: Research Funding; BMS: Research Funding; Array: Research Funding; MEI: Research Funding; Abbvie: Research Funding; Celgene: Research Funding; Onyx: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1587-1587
Author(s):  
Giulia Agnello ◽  
Susan Alters ◽  
Joseph Tyler ◽  
Jinyun Liu ◽  
Peng Huang ◽  
...  

Abstract Cancer cells experience higher intrinsic oxidative stress than their normal counterparts and acquire adaptive antioxidant mechanisms to maintain redox balance. This increased antioxidant capacity has been correlated to malignant transformation, metastasis and resistance to standard anticancer drugs. This enhanced antioxidant state also correlates with cancer cells being more vulnerable to additional oxidative insults, therefore disruption of adaptive antioxidant mechanisms may have significant therapeutic implications. Hematological malignancies including Chronic Lymphocytic Leukemia (CLL), Acute Lymphocytic Leukemia (ALL), Acute Myeloid Leukemia (AML) and Multiple Myeloma (MM) are critically dependent on the cellular antioxidant glutathione (GSH), consistent with the higher intrinsic oxidative stress. L-cysteine is the rate-limiting substrate for GSH biosynthesis and adequate levels of cysteine are critical to maintain the intracellular homeostasis of GSH. CLL and a subset of ALL cells have been reported to rely on the stromal supply of cysteine to increase the synthesis of GSH in order to maintain redox balance, which in turn promotes cell survival and fosters drug resistance. One approach to target this cancer specific dependency is by therapeutic depletion of amino acids via enzyme administration; a clinically validated strategy for the treatment of ALL. Aeglea BioTherapeutics Inc. has developed a bioengineered cysteine and cystine degrading enzyme (Cyst(e)inase, AEB3103) and evaluated its therapeutic efficacy against hematological malignancies in in vitro, ex vivo and in vivo pre-clinical studies. The TCL1-TG:p53 -/- mouse model exhibits a drug resistant phenotype resembling human CLL with unfavorable cytogenetic alterations and highly aggressive disease progression. AEB3103 greatly decreased the viability of TCL1-TG:p53 -/- cells cultured in vitro, whereas the CLL therapeutic, fludarabine, showed minimal cytotoxic effects. In vivo treatment of TCL1-TG:p53 -/- mice with AEB3103 resulted in an increase in median survival time (7 months, p<0.0001) compared to the untreated control group (3.5 months, p<0.001) and a fludarabine treated group (5.3 months, p<0.001). These results indicate a superior therapeutic effect of AEB3103 compared to fludarabine. Additionally, evaluation of AEB3103 in in vitro 2D cultures of patient-derived CLL and MM cells, and in ex vivo 3D cultures of cells derived from ALL and AML PDx models resulted in significant cell growth inhibition with therapeutically relevant IC50 values. Collectively these results demonstrate the sensitivity of hematological malignancies to modulation of GSH levels via AEB3103-mediated cyst(e)ine depletion. Disclosures Agnello: Aeglea BioTherapeutics: Employment. Alters:Aeglea BioTherapeutics: Employment, Equity Ownership. Tyler:Aeglea BioTherapeutics: Employment, Equity Ownership. Huang:Aeglea BioTherapeutics: Research Funding. Stone:Aeglea Biotherapeutics: Consultancy, Equity Ownership, Research Funding; University of Texas at Austin: Employment, Patents & Royalties: I am an inventor of technology related to this abstract. Georgiou:Aeglea Biotherapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Lowe:Aeglea BioTherapeutics: Employment, Equity Ownership. Rowlinson:Aeglea BioTherapeutics: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4047-4047 ◽  
Author(s):  
Jianbiao Zhou ◽  
Jessie Yiying Quah ◽  
Jing Yuan Chooi ◽  
Sabrina Hui-Min Toh ◽  
Yvonne Ng ◽  
...  

Abstract Background: Differentiation therapies achieve remarkable success in acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia (AML). However, clinical benefits of differentiation therapies are negligible in non-APL AML, which accounts for the majority of AML cases. Dihydroorotate dehydrogenase (DHODH) regulates the fourth step of the de novo pyrimidine synthesis pathway. DHODH is a key therapeutic target for auto-immune diseases and cancer, particularly differentiation of AML. ASLAN003 is a novel, potent small molecule DHODH inhibitor being developed in AML by ASLAN Pharmaceuticals. Methods: We investigated activity of ASLAN003 in AML cell lines and primary bone marrow (BM) cells (NUS Leukemia Tissue Bank) from patients with AML (N = 14) or myelodysplastic syndromes (MDS) (N = 6) and healthy control (N = 1). We performed CTG assay, FACS analysis of cell viability and myeloid markers, wright-giemsa staining, NBT reduction assay, and qRT-PCR analysis of key lineage transcription factors to evaluate the effects of ASLAN003 on cell growth, differentiation, apoptosis, and gene expression changes in vitro. Two AML cell lines and 1 leukemic patient derived xenograft (PDX) line (NUS Leukemia Tissue Bank) were studied in NSG xenograft mice. Mice were administrated with vehicle control or ASLAN003 50 mg/kg by oral gavage once daily. Results: ASLAN003 inhibited leukemic cell growth of THP-1, MOLM-14 and KG-1 with IC50 of 152, 582 and 382 nM, respectively, at 48 h. Treatment of these leukemia cells with ASLAN003 for 96 h consistently resulted in remarkable increase of CD11b (p < 0.001) and displayed morphologic changes of terminal differentiation and positivity for NBT reduction. ASLAN003 was active in differentiation with an EC50 of 28, 85, and 56 nM, in these 3 lines, respectively. ASLAN003 induced approximately 2-fold higher CD11b+ cells than Brequinar (BRQ), another DHODH inhibitor. Addition of uridine rescued differentiation and improved cell viability in ASLAN003 treated-cells, implying on-target specificity of ASLAN003. Mechanistically, ASLAN003 induced differentiation through induction of myeloid lineage transcription factor Runx1, Pu.1, Gif1 and repression of HoxA9, Gata1. The response of primary BM cells to ASLAN003 was classified into 3 categories: sensitive if any of myeloid markers CD11b, CD14, CD13 or CD33 increased ≥ 15%; moderate: ≥ 5%, but < 15%; resistant: < 5%. Among AML samples, we observed 6 (43%) sensitive cases, 6 (43%) moderate cases and 2 (14%) resistant cases. Three (50%) MDS samples displayed sensitive response and 3 cases (50%) showed moderate response. The healthy control sample was resistant to ASLAN003. Importantly, ASLAN003 promoted differentiation and cell death of myeloid cells in one relapsed AML case. Morphologic analysis and NBT assay demonstrated the features of neutrophil differentiation in selected ASLAN003-treated primary AML blasts. For in vivo experiments, significantly prolonged survival was seen in ASLAN003-treated groups when compared to vehicle control group in both MOLM-14 (p = 0.031) and THP-1 (p < 0.001) xenograft models. ASLAN003 substantially reduced disseminated tumors and leukemic infiltration into liver in xenografted mice. The human CD45+ cells were significantly reduced in BM, peripheral blood, spleen and liver, with significantly increased differentiation of AML cells (CD11b and CD14 positive cells) in BM of treated mice in both models (p < 0.01). We also evaluated the therapeutic efficacy of ASLAN003 in one PDX line, AML-14. At the end of experiments (day 77 post treatment), all PDX mice were alive in both control and ASLAN003 group. The leukemic burden was significantly lower in ASLAN003-treated PDXs than in vehicle-treated PDXs (p = 0.04). Overall, these data demonstrate potent in vivo efficacy of ASLAN003 in inducing myeloid differentiation of blast cells and the drug appears highly tolerable even after prolonged administration. Conclusion: ASLAN003 is a novel, highly potent DHODH inhibitor that induces terminal differentiation, inhibits cell growth and promotes cell death of AML blasts, including relapsed AML blasts. ASLAN003 prolongs survival and shows therapeutic effects in mice bearing different AML cell lines and reduces leukemic burden in an AML PDX model. Currently, ASLAN003 efficacy is being evaluated in a Phase IIa clinical trial in patients with AML (NCT03451084; Ting, ASH abstract 2018). Disclosures Seet: ASLAN Pharmaceuticals: Employment, Equity Ownership. Ooi:ASLAN Pharmaceuticals: Employment, Equity Ownership. Lindmark:ASLAN Pharmaceuticals: Employment, Equity Ownership. McHale:ASLAN Pharmaceuticals: Employment, Equity Ownership. Chng:Amgen: Consultancy, Honoraria, Other: Travel, accommodation, expenses; Aslan: Research Funding; Merck: Research Funding; Janssen: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Takeda: Consultancy, Honoraria, Other: Travel, accommodation, expenses; Celgene: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3835-3835 ◽  
Author(s):  
Michael Fitzgerald ◽  
Yueying Cao ◽  
Bret Bannerman ◽  
Zhi Li ◽  
Olga Tayber ◽  
...  

Abstract Abstract 3835 Poster Board III-771 Introduction The first generation proteasome inhibitor VELCADE® (bortezomib) is indicated for the treatment of patients with multiple myeloma (MM), a form of plasma cell malignancy (PCM). MLN9708 is our novel proteasome inhibitor that selectively and reversibly binds to, and potently inhibits the b5 site of the 20s proteasome in preclinical studies. We have recently demonstrated that MLN9708 significantly prolongs tumor-free survival of double transgenic iMycCa/Bcl-XL mice, a genetically-engineered mouse model of de novo PCM. Here we describe the in vivo evaluation of cell lines derived from double transgenic iMycCa/Bcl-XL mice and the antitumor activity of MLN9708 in a disseminated mouse model of iMycCa/Bcl-XL PCM. Materials MLN9708 immediately hydrolyzes to MLN2238, the biologically active form, upon exposure to aqueous solutions or plasma. MLN2238 was used for all preclinical studies described below. Double transgenic iMycCa/Bcl-XL mice develop de novo PCM, in which neoplastic plasma cell development is driven by the targeted expression of the oncoprotein Myc and anti-apoptotic Bcl-XL (J. Clin. Invest. 113:1763-1773, 2004). DP54 and DP42 are plasma cell tumor cell lines isolated from the bone marrow and lymph nodes, respectively, of syngeneic mice previously inoculated with iMycCa/Bcl-XL tumors (Cancer Res. 67:4069-4078, 2007). In vitro, DP54 and DP42 cells express both the Myc and Bcl-XL transgenes, various plasma cell and B-cell markers including CD38, CD138 and B220, and have gene expression profiles very similar to human MM. Methods Cell viability studies were performed to determine the antiproliferative effects of MLN2238 in DP54 and DP42 cells in vitro. To evaluate DP54 and DP42 cells in vivo, these cells were aseptically inoculated into the tail vein of NOD-SCID mice. Progressions of the resultant PCM were monitored and tumor burdens were evaluated by magnetic resonance imaging (MRI), ex vivo mCT imaging, and histopathology. Mouse plasma samples were collected at the end of the studies and levels of immunoglobulin were assessed. To establish a preclinical disseminated mouse model of iMycCa/Bcl-XL PCM, freshly dissociated DP54-Luc cells (constitutively expressing firefly luciferase under a mouse Ig-k promoter) were aseptically inoculated into the tail vein of NOD-SCID mice. Once tumor growth has been established, mice were randomized into treatment groups and then treated with vehicle, bortezomib (at 0.7mg/kg intravenously [IV] twice weekly [BIW]) or MLN2238 (at 11 mg/kg IV BIW) for 3 consecutive weeks. Tumor burden was measured by bioluminescent imaging. Results In vitro, both DP54 and DP42 cells were sensitive to MLN2238 treatment (LD50 values of 14 and 25 nM, respectively). In vivo, NOD-SCID mice rapidly succumbed to PCM after being inoculated with DP54 and DP42 cells (25 and 14 days post-inoculation, respectively), where the disease was accompanied by marked elevation of plasma immunoglobulins. MRI scans revealed the presence of multiple lesions and several abnormalities were found including: cranial deformation, bowel distortion, splenomegaly and renal edema. Tumor infiltrates, ranging from minor to extensive, were identified in multiple organ compartments (brain<kidney<liver<lymph nodes<spleen<bone marrow) by histopathological analysis. Ex vivo mCT imaging has also revealed signs of bone erosion in the cranial sagittal sutures. Dissemination of DP54-Luc cells after tail vein inoculations was detected by in vivo bioluminescent and confirmed by ex vivo imaging where luminescent tumor nodules were identified in the spleen, kidneys, liver, intestine, lymph nodes, spinal bone and cranium. To assess the antitumor activity of MLN2238, an efficacy study was performed using the DP54-Luc disseminated model. Tumor burden (bioluminescence), skeletal malformation (mCT) and overall survival after treatment with bortezomib and MLN2238 will be presented. Conclusion The DP54-Luc disseminated mouse model of double transgenic iMycCa/Bcl-XL PCM recapitulated several key features of human MM and provided real-time assessment of novel MM therapy preclinically. MLN9708 is currently in human clinical development for both hematological and solid tumor indications. Disclosures: Cao: Milllennium: Employment, Equity Ownership. Bannerman:Milllennium: Employment. Li:Milllennium: Employment. Bradley:Milllennium: Employment, Equity Ownership, Research Funding. Silverman:Milllennium: Employment. Janz:Milllennium: Research Funding. Van Ness:Milllennium: Research Funding. Kupperman:Milllennium: Employment. Manfredi:Milllennium: Employment. Lee:Milllennium: Employment, Equity Ownership.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3914-3914
Author(s):  
Sriram Balasubramanian ◽  
Mint Sirisawad ◽  
Susanne Steggerda ◽  
Wangsen Cao ◽  
Charles Lowenstein ◽  
...  

Abstract Abstract 3914 Inhibitors of histone deacetylases (HDACs) are currently in clinical testing for treating various cancers, and two have been recently approved by the US FDA for treating cutaneous T-cell lymphoma. Here we describe novel anti-inflammatory properties of the HDAC inhibitor PCI-24781 which is in clinical trials for multiple indications including lymphoma (Evens et al., Blood 114: 2726, ASH 2009 Annual Meeting Abstracts). Cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a) have been shown to be involved in human inflammatory disorders, and an anti-IL-6 treatment was recently approved for rheumatoid arthritis (RA). Therefore, the effect of PCI-24781 on cytokine production by lipopolysaccharide (LPS)-stimulated human peripheral mononuclear blood cells (PBMC) as well as isolated monocytes was studied at the RNA expression level by microarrays and Taqman, and at the protein level by ELISA. PCI-24781 potently inhibits the production and secretion of several pro-inflammatory cytokines, including IL-6, TNF-a and interleukin-1beta (IL-1b), at both RNA and protein levels. In murine RAW macrophages as well, PCI-24781 inhibited LPS-stimulated IL-6 secretion at 20nM. PCI-24781 was most effective when given with or before LPS, but was still effective when given an hour after LPS. Similarly, PCI-24781 greatly attenuated in vivo pro-inflammatory cytokine production in LPS-treated Balb/c mice; the IC50 for IL-6 inhibition was < 5 mg/kg. Both the in vitro and in vivo IC50s for IL-6 inhibition are considerably less than the concentrations required to inhibit growth and induce apoptosis in tumor cells (0.2-0.5mM) and in xenograft models (60-80 mg/kg). The mechanism by which these cytokines are controlled involves attenuation of the LPS receptor TLR4 signaling at multiple levels, including acetylation of targets such as MKP-1 and NF-kB subunit p65 in the downstream MAPK and NF-kB pathways; other factors include reduced expression of proteasome, IKK and other NF-kB subunits. Interestingly, we observed a large reduction in levels of NOS2, which causes hypotension during sepsis by producing the inflammatory mediator nitric oxide (NO). Therefore the activity of PCI-24781 was tested in a model of sepsis where mice were treated with a lethal dose of 100 mg/kg LPS, an endotoxin known to be a major mediator of sepsis in humans. PCI-24781 was injected twice, first 16 h before LPS and then 2 h before LPS, in groups of 10 mice each. Control mice that did not receive any PCI-24781 all died within 2 days after LPS (mortality 100%). Pretreatment with PCI-24781 led to dose-dependent increase in survival with 60% of the mice surviving past 6 days with 2 doses of 50mg/kg PCI-24781. These data show that the HDAC inhibitor PCI-24781 protects mice from lethal endotoxemia. Thus, taken together, our data suggest that PCI-24781 has potent anti-inflammatory activities and may be useful to treat inflammatory disorders including RA and sepsis in humans. Disclosures: Balasubramanian: Pharmacyclics: Employment, Equity Ownership. Sirisawad:Pharmacyclics: Employment, Equity Ownership. Steggerda:Pharmacyclics: Employment, Equity Ownership. Cao:Pharmacyclics: Research Funding. Lowenstein:Pharmacyclics: Research Funding. Buggy:Pharmacyclics: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 67-67 ◽  
Author(s):  
Stephan A Grupp ◽  
Noelle V. Frey ◽  
Richard Aplenc ◽  
David M Barrett ◽  
Anne Chew ◽  
...  

Abstract Background CARs combine a single chain variable fragment (scFv) of an antibody with intracellular signaling domains into a single chimeric protein. We previously reported on CTL019 cells expressing a CAR with intracellular activation plus costimulatory domains. Infusion of these cells results in 100 to 100,000x in vivo proliferation, durable anti-tumor activity, and prolonged persistence in pts with B cell tumors, including 1 sustained CR in a patient with ALL (Grupp, et al. NEJM 2013). We now report on outcomes and longer follow up from our pilot studies treating 20 pts (16 children and 4 adults) with relapsed, refractory ALL. Methods T cells were lentivirally transduced with a CAR composed of anti-CD19 scFv/4-1BB/CD3ζ, activated/expanded ex-vivo with anti-CD3/anti-CD28 beads, and then infused into pts with relapsed or refractory CD19+ ALL. 17/20 pts received lymphodepleting chemotherapy the week prior to CTL019 infusion. The targeted T cell dose range was 107 to 108 cells/kg with a transduction efficiency (TE) of 11-45%. On the adult protocol, the target dose was 5 x 109 total cells split over 3 days with a TE of 6-31%. 11 pts had relapsed ALL after a prior allogeneic SCT. T cells were collected from the pt, regardless of prior SCT status, and not from allo donors. All pts s/p allo SCT had to be 6 mos s/p SCT with no GVHD or GVHD treatment. Results 16 children median age 9.5 y (5-22y) and 4 adults median age 50y (26-60y) with CD19+ ALL were treated. One child had T cell ALL aberrantly expressing CD19. 14/16 pediatric pts had active disease or +MRD after chemotherapy on the day prior to CTL019 cell infusion, while 2 were MRD(-). 3 of 4 adults had active disease prior to lymphodepleting chemotherapy, while 1 was in morphologic CR. Lymphodepleting chemotherapy varied with most receiving a Cytoxan-containing regimen the week prior to CTL019. A median of 3.7x106 CTL019 cells/kg (0.7-18x106/kg) were infused over 1-3 days. There were no infusional toxicities >grade 2, although 5 pts developed fevers within 24 hrs of infusion and did not receive planned subsequent infusions of CTL019 cells. 14 patients (82%) achieved a CR, including the patient with CD19+ T ALL, 3 did not respond, and 3 are pending evaluation. 11/17 evaluable pts have ongoing BM CR with median follow up 2.6 mo (1.2-15 mo). Three patients with a CR at 1 month have subsequently relapsed, 1 with CD19(-) disease. Median follow-up as of August 1, 2013 was 2.6 mo (1-15 mo) for all pts. All responding pts developed some degree of delayed cytokine release syndrome (CRS), concurrent with peak T cell expansion, manifested by fever, with variable degrees of myalgias, nausea, anorexia. Some experienced transient hypotension and hypoxia. Detailed cytokine analysis showed marked increases from baseline values of IL6 and IFNγ (both up to 1000x), and IL2R, with mild or no significant elevation in systemic levels of TNFα or IL2. Treatment for CRS was required for hemodynamic or respiratory instability in 7/20 patients and was rapidly reversed in all cases with the IL6-receptor antagonist tocilizumab (7 pts), together with corticosteroids in 4 pts. Although T cells collected from the 11 pts who had relapsed after allo SCT were generally 100% of donor origin, no GVHD has been seen. Persistence of CTL019 cells detected by flow cytometry and/or QPCR in pts with ongoing responses continued for 1-15 months after infusion, resulting in complete B cell aplasia during the period of CTL019 persistence. Pts have been treated with IVIg without any unusual infectious complications. One child who entered a CR subsequently developed MDS with a new trisomy 8 in ALL remission and has gone to SCT, and 1 child developed a single leukemia cutis lesion at 6 mo, still BM MRD(-). Conclusions CTL019 cells are T cells genetically engineered to express an anti-CD19 scFv coupled to CD3ζ signaling and 4-1BB costimulatory domains. These cells can undergo robust in-vivo expansion and can persist for 15 mo or longer in pts with relapsed ALL. CTL019 therapy is associated with a significant CRS that responds rapidly to IL-6-targeted anti-cytokine treatment. This approach has promise as a salvage therapy for patients who relapse after allo-SCT, and collection of tolerized cells from the recipient appears to have a low risk of GVHD. CTL019 cells can induce potent and durable responses for patients with relapsed/refractory ALL. Multicenter trials are being developed to test this therapy for ALL in the phase 2 setting. Disclosures: Grupp: Novartis: Research Funding. Chew:Novartis: Patents & Royalties. Levine:Novartis: cell and gene therapy IP, cell and gene therapy IP Patents & Royalties. Litchman:Novartis Phamaceuticals: Employment, Equity Ownership. Rheingold:Novartis: Research Funding. Shen:Novartis Pharmaceuticals: Employment, Equity Ownership. Wood:Novartis Pharmaceuticals: Employment, Equity Ownership. June:Novartis: Patents & Royalties, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document