MEK1/2 Inhibition By MEK162 Is Effective Against Chronic Lymphocytic Leukaemia Cells Under Conditions That Mimic Stimulation of B-Cell Receptor-Mediated Signaling

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3330-3330 ◽  
Author(s):  
Kyle Crassini ◽  
William S Stevenson ◽  
Stephen P. Mulligan ◽  
Oliver Giles Best

Abstract BACKGROUND Chronic Lymphocytic Leukemia (CLL) is characterised by the clonal expansion of apoptosis resistant B-lymphocytes. However, in vitro and in the absence of pro-survival factors primary CLL cells undergo spontaneous apoptosis. B-cell receptor (BCR) signalling plays a major role in the survival and proliferation of CLL cells, which is highlighted by the clinical efficacy of the Btk and PI3-kinase inhibitors, ibrutinib and idelalisib. Mitogen activated protein kinase (MAPK) is an important mediator of signals downstream of both Btk and PI3-kinase but few studies have shown that inhibitors of MEK1/2, a critical component in the MAPK pathway, have any potential benefit for therapy of CLL. METHODS We sought to investigate the potential of the MEK1/2 inhibitor MEK162 against CLL cells in vitro. To mimic the tonic BCR stimulation experienced in vivo, primary CLL cells were stimulated using an immobilised antibody to IgM or were treated with PMA, a less specific B-cell activator which promotes protein kinase C-dependent MAPK-ERK1/2 signaling. Sensitivity to MEK162 and effects on MAPK-ERK1/2 pathway activity were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and western blot analyses respectively. RESULTS MEK162 treatment of CLL cells cultured in media alone resulted in a modest but significant (P < 0.01) reduction in cell viability; 20µM MEK162 reduced the proportion of viable cells remaining after 48 h to 77.40 +/- 7.81 % relative to vehicle-treated controls. In contrast, BCR stimulation through IgM ligation promoted cell survival 3.2 +/- 1.01 fold and sensitised CLL cells to MEK162; 20µM MEK162 reduced the proportion of viable cells by 56.28 +/- 2.37 % (P < 0.001 relative to control). A similar effect was observed in response to PMA stimulation; cell viability increased 1.78 +/- 0.15 fold and was reduced by 59.55 +/- 10.33 % (P < 0.001 relative to control) following treatment with 20µM MEK162 (Figure 1). At concentrations > 0.05 µM MEK162 was significantly (P < 0.05) more effective against CLL cells stimulated with either anti-IgM or PMA than against cells cultured in media alone. By western blotting we observed low levels of MAPK-ERK1/2 activity in cells cultured in media alone, which we suggest may contribute to the spontaneous apoptosis of these cells and the low degree of sensitivity to MEK162 under these conditions. We confirmed that stimulation with either IgM or PMA results in activation of MAPK-ERK1/2 and show that this response can be effectively blocked using MEK162. The effects of anti-IgM and PMA on cell survival and response to MEK162 were independent of ZAP-70 expression or ATM/TP53 functional status. CONCLUSIONS Our data illustrate the important role of MAPK-ERK1/2 activity in BCR-mediated CLL cell survival and suggest that MEK162 may have potential for CLL therapy. These data highlight the importance of employing appropriate culture conditions in order to make accurate assessments concerning the efficacy of novel agents for the treatment of CLL. Figure 1. Stimulation with IgM or PMA sensitises B-CLL cells to MEK1/2 inhibition by MEK162. Figure 1. Stimulation with IgM or PMA sensitises B-CLL cells to MEK1/2 inhibition by MEK162. Disclosures Mulligan: Roche: Consultancy, Honoraria, Research Funding, Speakers Bureau; Sanofi Aventis: Research Funding; Janssen: Consultancy, Honoraria, Speakers Bureau; Celgene: Consultancy, Honoraria.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1867-1867
Author(s):  
Scott R Best ◽  
Taylor Rowland ◽  
Cody Paiva ◽  
Nur Bruss ◽  
Stephen E Spurgeon ◽  
...  

Abstract Introduction: Despite the promise of B-cell receptor-associated kinase inhibitors (BCRi) in CLL, resistance to these agents is inevitable. Ubiquitin-proteasome systems are altered in cancer, leading to destabilization of tumor suppressors, overexpression of proto-oncogenes (e.g., MYC), and impaired DNA repair. Neoplastic B cells exhibit a state of heightened cellular stress and are thereby susceptible to endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The UPR is activated in CLL cells upon sIgM signaling and inhibited by ibrutinib. Proteasome inhibitors demonstrate clinical activity in certain types of B-cell neoplasia but are inactive in CLL. Here, we investigated an alternative approach to harness the pro-apoptotic UPR in CLL by using TAK-243, a first-in-class small molecule UAE inhibitor. Methods: Peripheral blood cells were obtained from patients with CLL (N=20) and isolated using Ficoll-Hypaque techniques. TAK-243 was obtained from Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited (Cambridge, MA). TAK-243 efficacy was assessed in CLL cells and 10 DLBCL (diffuse large B-cell lymphoma) cell lines. Results: TAK-243 induced ER stress and the UPR in CLL cells, followed by rapid apoptosis within 2 hours. Following 24-hour incubation, we established an IC50 of ~50 nM (Annexin V+ cells) in CLL cells. By contrast, primary B cells and T cells were less sensitive to TAK-243. Given the importance of tumor microenvironment in CLL cell survival, we evaluated the effect of TAK-243 in a CD40L-expressing stromal co-culture model. Whereas CD40L-stimulated CLL cells were resistant to BCRi, they were fully sensitive to UAE inhibition. TAK-243 had a similar IC50 (~50 nM) across DLBCL cell lines, independent of cell of origin. Treatment with TAK-243 rapidly disrupted ubiquitin conjugation and degradation of proteins controlled by the UPS in CLL cells and DLBCL cell lines. UPR induction occurred within 2 hours, as shown by activation of eIF2α (in both CLL and DLBCL cells) and oligomerization and autophosphorylation of PERK (in DLBCL cells). After 4 hours, neoplastic B cells exhibited late apoptotic phase of the UPR: transcriptional induction of CHOP, GADD34, and NOXA. These events were accompanied by upregulation of pro-apoptotic BH3-only proteins, stabilization of Mcl-1 and, ultimately, cleavage of caspase-3 and PARP. TAK-243 inhibited NFκB pathway, as shown by accumulation of IκBα, a negative pathway regulator. The extent of the UPR in CLL cells varies depending on the initiating signal. For example, B-cell receptor crosslinking induced expression of CHOP and GRP78 in CLL cells, but only weak activation of PERK and no IRE1-dependent processing of XBP1 (Krysov S, et al. Blood. 2014). Targeting UAE in CLL cells induced robust activation of eIF2α, upregulation of CHOP, GADD34 as well as NOXA mRNA, indicating high sensitivity to this pathway. TAK-243 induced a more rapid UPR and exhibited lower IC50 compared with the proteasome inhibitor bortezomib in CLL and DLBCL cells. While both drugs induced autophagy as shown by LC3 processing, only bortezomib treatment led to p62 degradation, suggesting that autophagy was inefficient in response to TAK-243 due to lack of ubiquitin conjugation. Our findings were confirmed in a mouse lymphoma xenograft model. OCI-LY3 cells were inoculated subcutaneously in the right flank of NSG mice and treatment with TAK-243 (10 or 20 mg/kg IV twice weekly) or vehicle control began when tumors reached 10 mm in size. Treatment led to reduced tumor progression, induction of ER stress, and decreased cell proliferation and survival. Conclusions: The UAE inhibitor TAK-243 induces ER stress and promotes apoptosis in CLL cells in vitro and restricts lymphoma growth in vivo. TAK-243 exhibited greater in-vitro cytotoxicity in lymphoma cells compared to bortezomib. Targeting UAE is a novel approach to disrupt the UPS which may hold promise in therapy of CLL and other B-cell malignancies. Disclosures Spurgeon: Bristol Myers Squibb: Research Funding; Gilead Sciences, Inc.: Consultancy, Research Funding; Oncternal: Research Funding; Acerta: Research Funding; Genentech: Research Funding; Janssen: Research Funding; Pharmacyclics: Consultancy, Research Funding; MEI Pharma: Consultancy. Berger:Takeda Pharmaceuticals International Co.: Employment. Danilov:TG Therapeutics: Consultancy; Aptose Biosciences: Research Funding; Astra Zeneca: Consultancy; Genentech: Consultancy, Research Funding; Bayer Oncology: Consultancy, Research Funding; Verastem: Consultancy, Research Funding; Gilead Sciences: Consultancy, Research Funding; Takeda Oncology: Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1122-1122
Author(s):  
Amalia Vlad ◽  
Pierre-Antoine Deglesne ◽  
Remi Letestu ◽  
Nathalie Chevallier ◽  
Fanny Baran-Marszak ◽  
...  

Abstract B cell receptor (BCR) mediated survival plays a central role in disease progression of CLL. We have previously shown that BCR engagement allowed the identification of two groups of patients with a strong correlation between in vitro cell survival response capacity and clinical stage or prognostic factors. The aim of this study was to determine the implication of BCR stimulation in the accumulation of CLL cells in the enlarged lymph nodes of progressive cases. Therefore, we investigated the in vitro migratory capacity of CLL cells and the level of expression of microenvironment interacting molecules upon BCR stimulation. Surface expression of two membrane proteins: CXCR4 and CD62L were dramatically reduced in 40% of CLL cases after BCR engagement. CXCR4/CXCL12 axis and the L-selectin (CD62L) are critical for trafficking of B cells into lymph node, germinal center organization as well as lymphocyte exit from the lymph node. Peripheral blood mononuclear cells obtained from 27 untreated patients were purified and stimulated with immobilized anti-IgM for 48h. Presence of CXCR4 and CD62L at the cell surface was then measured by flow cytometry in CD19-positive cells. The CXCL12-dependant migratory capacity of B-CLL cells was analysed using a Transwell chemotaxis assay before and after BCR stimulation. BCR stimulation induced over 90% decrease of both CXCR4 and CD62L membrane expression in 11/27 cases. Importantly, this strong down-regulation of CXCR4 and CD62L was restricted to progressive cases with lymphadenopathy and unfavourable prognostic markers (unmutated IgVH, expression of ZAP70, high level of proliferation markers). These cases also showed marked increase of in vitro cell survival upon BCR engagement. Conversely, in the 6/27 cases corresponding to stable stage A patients with favourable prognostic markers, and absence of BCR mediated in vitro survival enhancement, no decrease of CXCR4/CD62L expression upon BCR stimulation was observed. We demonstrated that the down-regulation of CXCR4 from cell surface was associated with the internalization of the receptor mainly through clathrin-mediated endocytosis. CXCR4 down-regulation was associated with a reduced capacity of the cells to migrate in response to CXCL12 gradient. Indeed, migration was not affected in the 6 stable cases. Finally, the 10/27 remaining cases exhibited an intermediate down-regulation of CXCR4 and CD62L. The remaining level of expression of CXCR4 was strikingly correlated to CD62L level in all cases(y= 0.99x + 4.44; R2=0.893). This matching variation of both surface molecules reflects the cellular heterogeneity of response to BCR engagement in a given patient. In conclusion, our results show that BCR engagement induces a strong down-regulation of CXCR4 and CD62L, and the subsequent decrease of migratory capacity of the cells in progressive CLL cases only. These experiments strongly suggest that BCR signalling capacity is linked to the down-regulation of cell surface markers that favour a reduced lymphocyte trafficking and the maintenance of a proliferative cellular pool within the lymph nodes.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1109-1109
Author(s):  
Takahiko Yasuda ◽  
Fumihiko Hayakawa ◽  
Shingo Kurahashi ◽  
Tomoki Naoe

Abstract Abstract 1109 Plasma cell differentiation is initiated by antigen stimulation of B cell receptor (BCR). Until BCR stimulation, BLIMP1, a master regulator of plasma cell differentiation, is suppressed by PAX5, a key transcriptional repressor to maintain B cell identity. After BCR stimulation, upregulation of BLIMP1 and subsequent suppression of PAX5 by BLIMP1 are observed and thought to be the trigger of plasma cell differentiation; however, the trigger that derepresses BLIMP1 expression is yet to be revealed. Here, we demonstrated PAX5 phosphorylation by ERK1/2, the main component of BCR signal, in vitro and in vivo. The sites of PAX5 phosphorylation were identified by PCR mutagenesis assay. In luciferase reporter assays, transcriptional repression on BLIMP1 promoter by PAX5 was canceled by PAX5 phosphorylation. Furthermore, transcriptional repression by phosphorylation-defective mutant of PAX5 was attenuated by CA-MEK1 co-expression to a significantly lesser extent than that by wild-type PAX5, indicating its resistance to ERK1/2 signal-dependent cancelation of the transcriptional repression (Figure A). Finally, BCR stimulation induced strong ERK1/2 activation, phosphorylation of endogenous PAX5 (Figure B), and upregulation of BLIMP1 mRNA expression in B cells. These phenomena were inhibited by U0126, MEK1 inhibitor. These data imply that PAX5 phosphorylation by BCR signal is the initial event in plasma cell differentiation (Figure C). Disclosures: Naoe: Kyowa-Hakko Kirin.: Research Funding; Dainipponn-Sumitomo Pharma.: Research Funding; Chugai Pharma.: Research Funding; Novartis Pharma.: Honoraria, Speakers Bureau; Zenyaku-Kogyo: Research Funding; Otsuka Pharma.: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3928-3928
Author(s):  
Wei Ding ◽  
Tait D. Shanafelt ◽  
Connie Lesnick ◽  
Traci Sassoon ◽  
Charla Secreto ◽  
...  

Abstract Abstract 3928 Background: Accumulating data support the critical role of PI3K/Akt in CLL B cell receptor (BCR) mediated signal transduction, cell proliferation and survival. In addition recent preclinical and clinical studies indicate that specific PI3K blockade results in robust preclinical and clinical efficacy in CLL. In our model system of CLL B cell-stromal cultures which feature their interaction, platelet derived growth factor (PDGF) present in CLL culture medium drives VEGF production through PI3K/Akt activation in stromal cells (Blood. 2010. 116:2984). Indeed Akt was found to be activated in leukemic cells during the CLL-stroma interaction (Leuk Res. 2008. 32:1565). Therefore, we hypothesized that Akt inhibition should promote CLL B cell apoptosis and abrogate BCR mediated cytokine production. MK2206 is an orally bioavailable highly specific allosteric Akt inhibitor. It has been tested in patients with refractory solid tumors and was demonstrated to be safely administered in a phase I trial. Therefore the goal of this study was to test the preclinical efficacy of MK2206 on both the survival and the BCR mediated cytokine production of CLL leukemic B cells. Methods: Peripheral blood mononuclear cells isolated from CLL patients (n=37) were treated with escalating concentrations of MK2206 (1–16 μM) for 24 hours, 48 hours or 72 hours. The levels of leukemic B cell viability were tested using an (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. The potential impact (antagonistic/additive/synergistic) of Bendamustine in combination with MK2206 was also tested by using the MTT assay. We used the Calcusyn system to calculate the effect of drug interactions. The combination index (CI) as calculated by the program usually indicates synergy when ≤ 0.8 and indicates additive outcomes when between 0.8–1.2. A CI >1.2 indicates antagonism. Downstream signals of Akt activation in CLL B cells were evaluated by testing their expression of Mcl-1, 4EBP1 and p70S6K using immunoblot. The impact of Akt inhibition by MK2206 on cytokine production in response to B-cell receptor ligation with anti-IgM was also tested using a multiplex cytokine analysis (Invitrogen) in a time-course experiment. Results: MK2206 treatment induced concentration- and time-dependent apoptosis in CLL leukemic cells. At 72 hours, the IC50 of MK2206 in the experiments using CLL leukemic cells in vitro is ∼8 mM. MK2206 incubation at 1 or 5 mM cultured with CLL B cells over a 48-hour period abolished of Akt and p70S6K phosphorylation while native PARP was cleaved into the 85 kD polypeptide fragment. However, the expression level of the upstream signal molecule, PI3K, was not changed. Among the CLL patients tested (n = 37), we did not find any difference in sensitivity to MK2206 induced apoptosis based on critical prognostic factors of CD38, ZAP-70, IGHV and del(17p) status. Importantly, we detected synergistic or additive activity between MK2206 and Bendamustine in 11 tested CLL samples when these combinations were used to treat CLL cells in vitro for 72hrs. Thus the median CI value for this group of patients was 0.8 (0.1 – 1.1). Six were found to have CI ≤ 0.8 and five fell within the additive CI values (0.8 – 1.2). Production of immune or chemotactic cytokines (e.g. CCL3, CCL4, MCP-1, IL-1Ra, IL-8 and IL-2R) at 24 hour incubation increased significantly above baseline when CLL cells were stimulated anti-IgM. Akt inhibition with MK2206 selectively abrogated upregulation of CCL3, CCL4, MCP-1 and IL-2R production, but not for IL-8 or IL-1Ra secretion. MK2206 also abolished BCR mediated Akt activation and decreased Erk activation. Conclusion: MK2206, a robust and selective Akt inhibitor, induced significant in vitro apoptosis of CLL B-cells in vitro. Preclinical evidence of a synergistic effect between MK2206 and Bendamustine was also observed independent of prognostic risk. MK2206 abolished BCR mediated Akt activation and selectively abrogates BCR mediated production of cytokines that may promote apoptotic resistance. These findings support the use of MK2206 in treating CLL and indeed we have initiated a phase I/II trial of MK2206 in combination with Bendamustine and Rituximab for relapsed CLL patients(N1087, October 2011). Acknowledgments: This study was funded by the NCI-K23, NCCTG and CLL Global Foundation. Disclosures: Shanafelt: Cephalon: Research Funding; Genentech: Research Funding. Kumar:Genzyme: Research Funding; Novartis: Research Funding; Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Honoraria. Kay:Celgene: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1716-1716 ◽  
Author(s):  
Matthew D Blunt ◽  
Jack Parnell ◽  
Marta Larrayoz ◽  
Lindsay Smith ◽  
Rachel Dobson ◽  
...  

Abstract The emergence of B cell receptor (BCR) kinase inhibitors has proved effective for the treatment of a number of B-cell malignancies including chronic lymphocytic leukemia (CLL). BTK and PI3K inhibitors have clear efficacy in suppressing tumor progression but have not been curative. A number of patients have developed resistance to these drugs following mutation of the BTK or PLCγ2 gene. Whilst, other patients are unable to tolerate these drugs due to adverse events or progress whilst on therapy for unknown reasons. Thus the development of novel drugs which are still effective once other BCR-kinases inhibitors become ineffective is of paramount importance. Spleen tyrosine kinase (Syk) is essential for B cell receptor signalling pathways as well as a variety of other surface receptors such as MHCII, FC receptors and integrins, all of which have been shown to play a role in CLL biology. Importantly, Syk inhibition has been shown to overcome resistance to ibrutinib, identifying Syk inhibition as a promising strategy to treat these patients. Furthermore, we have previously shown that IL-4 is found in CLL lymph nodes and can promote resistance to ibrutinib and idelalisib by restoring αIgM induced calcium flux and phosphorylated ERK (ASH 2014, abstract #3299). IL-4 signalling is mediated through the JAK/STAT signalling pathways via JAK1 and JAK3, therefore simultaneous inhibition of both Syk and JAK1/3 may be therapeutically beneficial over BCR kinase inhibitors alone. Cerdulatinib (PRT062070) is a dual JAK/Syk inhibitor in a phase I open label dose escalation study and is currently demonstrating clinical activity in patients with relapsed/refractory B cell malignancies including CLL. Our group has now demonstrated in vitro that cerdulatinib, at plasma concentrations achievable in patients, can induce apoptosis of CLL cells in a concentration and time dependent manner with a mean IC50 of 3µM and 1µM at 48 and 72h respectively, defined by annexin V/PI and cleavage of caspase 3 and poly ADP ribose polymerase (PARP). Apoptosis was caspase dependent since treatment with the pan caspase inhibitor ZVAD.fmk significantly inhibited cerdulatinib induced cell death at 24h. Cerdulatinib induced apoptosis coincided with an increase in pro-apoptotic proteins Noxa and Puma and a decrease in the anti-apoptotic protein Mcl-1. Cerdulatinib significantly inhibited IL-4 induced phosphorylation of STAT6 at 300nM (p=.005), BCR induced phosphorylation of AKTS473 with soluble (p=.008) and bead immobilised (BI) (p=.025) αIgM at 30nM and phosphorylation of AKTT308 with BI αIgM at 300nM (p=.008). Furthermore, in patients with CLL, it is thought that CD40L and IL-4 are key factors, which promote survival of CLL cells in proliferation centres within the lymph node microenvironment. Therefore, we cultured CLL cells with a vehicle control or IL-4\CD40L, prior to treatment with cerdulatinib. Cerdulatinib alone induced similar levels of apoptosis irrespective of IL-4/CD40L treatment, suggesting cerdulatinib may be able to overcome microenvironmental signals and target cells within the lymph node. Next we explored the possibility of augmenting cerdulatinib induced apoptosis by simultaneous inhibition with the Bcl-2\Bcl-XL inhibitor ABT-199. In vitro in the presence of IL-4/CD40L, ABT-199 synergised with cerdulatinib to induce significantly greater cell death than with either agent alone. Therefore these data provide in vitro evidence for the use of cerdulatinib in clinical trials for the treatment of CLL as either a single agent or in combination with other therapies such as ABT-199. Disclosures Strefford: Roche: Research Funding. Davies:Seattle Genetics: Research Funding; Takeda: Honoraria. Coffey:Portola Pharmaceuticals Inc: Employment, Equity Ownership, Research Funding. Steele:Portola Pharmaceuticals: Other: Travel bursary to ASH 2015; Janssen: Other: Travel bursary to EHA 2015.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-29
Author(s):  
Elana Thieme ◽  
Vi Lam ◽  
Nur Bruss ◽  
Fei Xu ◽  
Stephen E Kurtz ◽  
...  

Introduction: Activated B cell receptor (BCR) signaling is a hallmark of NHL. BCR-associated kinases LYN, SYK, BTK and PI3K activate pro-survival signaling pathways including MEK/ERK, AKT/mTOR, and NFκB. While targeting BTK (ibrutinib, acalabrutinib) and PI3K (idelalisib, duvelisib) has shown efficacy in CLL, clinical responses fall short in aggressive NHL, necessitating the development of novel approaches to suppress BCR signaling. CG-806 is a BTK/cluster-selective kinase inhibitor currently under investigation in phase 1 clinical trials for patients with hematological malignancies. CG-806 targets both WT BTK (IC50 ~ 8 nM) and the BTKC481S (IC50 ~ 2.5 nM; www.aptose.com). Here we investigate the anti-tumor effects of CG-806 in mantle cell lymphoma (MCL) and diffuse large B cell lymphoma (DLBCL). Methods: CG-806 was provided by Aptose Biosciences, Inc. (San Diego, CA). DLBCL and MCL cell lines were assayed for apoptosis/proliferation, metabolic phenotype (Seahorse), mitochondrial mass and mitophagy. Ibrutinib (ibr) resistance was induced by exposure over 6 months. Primary peripheral blood mononuclear cells were incubated for 24 h in media conditioned by stromal cells engineered to express CD40L or BAFF prior to drug treatment. Two MCL PDX models were used (chemo-resistant and ibr-resistant). MCL cells were injected into the tail vein of NSG mice and tracked weekly by flow cytometry (CD5+ CD19+ CD45+). Upon MCL detection in the peripheral blood, mice began daily treatment with 30.8 or 308 mg/kg CG-806 or vehicle control via oral gavage until moribund. Splenocytes were harvested 1 h after the final drug treatment. Results: CG-806 potently inhibited proliferation of both parental and ibr-resistant MCL cell lines (Mino, JeKo-1) with IC50&lt;0.01 μM at 72 h. DLBCL cell lines (U2932, OCI-LY3 OCI-LY19) demonstrated moderate sensitivity to CG-806 (IC50 0.3-1 μM), while SU-DHL10 was highly sensitive (IC50&lt;0.01 µM). Treatment with CG-806, but not ibrutinib, induced apoptosis of primary MCL cells in CD40L- or BAFF-expressing stromal co-cultures. Following anti-IgM crosslinking of primary cells, treatment with CG-806 decreased phosphorylation of SYK, BTK, AKT and ERK, indicating disrupted BCR signaling. Treatment with CG-806 increased respiratory reserve capacity but did not impact the basal oxygen consumption rate in both parental and ibr-resistant MCL cell lines. Basal extracellular acidification rate (ECAR) was increased following CG-806 treatment, indicating heightened glycolytic activity. Furthermore, CG-806-treated cells demonstrated potent induction of mitophagy accompanied by a reduction in mitochondrial mass. CG-806 slowed expansion of circulating MCL cells and reduced proliferation of spleen-resident MCL cells in both chemo- and ibr-resistant MCL PDX models. CG-806 and ibrutinib extended survival of chemoresistant PDX mice without evidence of toxic events. Treatment with CG-806 led to decreased phosphorylation of SYK, BTK, and AKT but also upregulated expression of BCL2 and BCLX. RNA-seq analysis of spleen-resident cells revealed downregulation of NFκB targets and JAK/STAT signaling in ibr-resistant PDX mice treated with CG-806. This was accompanied by enrichment of metabolic pathways (oxidative phosphorylation, fatty acid metabolism) and MYC targets. Next, we evaluated CG-806 for synthetic lethality in a functional in vitro screening assay using a panel of 189 small molecule inhibitors that target a variety of distinct signaling pathways activated in cancer (Tyner et al, 2018). Consistent with the above observations, synergy was observed between CG-806 and inhibitors of metabolic enzymes (teleglenastat, perhexiline maleate) and BH3-mimetics targeting BCL2/X proteins (venetoclax, AZD4320). Conclusions: Our data demonstrate preliminary efficacy of CG-806 in MCL and DLBCL in vitro and in MCL DPX models. CG-806 treatment led to metabolic reprograming towards glycolysis and induced mitophagy. BCL2 family proteins may be implicated in resistance to CG-806. These results provide rationale for further investigation of CG-806 in aggressive NHL. Disclosures Tyner: Array: Research Funding; AstraZeneca: Research Funding; Constellation: Research Funding; Genentech: Research Funding; Incyte: Research Funding; Janssen: Research Funding; Petra: Research Funding; Seattle Genetics: Research Funding; Syros: Research Funding; Takeda: Research Funding; Gilead: Research Funding; Agios: Research Funding; Aptose: Research Funding. Danilov:Pharmacyclics: Consultancy; Astra Zeneca: Consultancy, Research Funding; Verastem Oncology: Consultancy, Research Funding; Takeda Oncology: Research Funding; Gilead Sciences: Research Funding; Bayer Oncology: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; TG Therapeutics: Consultancy; Nurix: Consultancy; Celgene: Consultancy; Aptose Biosciences: Research Funding; Bristol-Myers Squibb: Research Funding; Rigel Pharmaceuticals: Consultancy; Karyopharm: Consultancy; BeiGene: Consultancy; Abbvie: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4142-4142
Author(s):  
Stavroula Ntoufa ◽  
Nikos Papakonstantinou ◽  
Despoina Papazoglou ◽  
Maria Tsagiopoulou ◽  
Sarka Pospisilova ◽  
...  

Abstract Alterations in the expression of TP63, a TP53 gene family member, are known to critically affect tumorigenesis though the gene is almost never mutated. In cancer, the following two TP63 isoforms have been extensively studied with contrasting/opposite functions: DNp63, known to promote oncogenesis, and TAp63, which instead has been shown to promote apoptosis. Conflicting information is available regarding the role of TP63 in chronic lymphocytic leukemia (CLL), in particular its effects on cell death (pro-apoptotic or anti-apoptotic?). In a previous DNA methylation profiling study of aggressive CLL subgroups with unmutated B-cell receptor immunoglobulin (BcR IG), we identified TP63 among the differentially methylated and expressed genes. In more detail, TP63 was overexpressed and hypomethylated in stereotyped subset #8 (IGHV4-39/IGKV1(D)-39; IgG-switched), while the opposite was seen for subset #6 (IGHV1-69/IGKV3-20); a finding that might be clinically relevant since subset #8 displays the highest risk for Richter's transformation among all CLL. Given recent evidence that the increased propensity for RT in subset #8 might be associated with intense B-cell receptor (BcR) signaling capacity, here we investigated potential links between BcR stimulation, TP63 expression and CLL cell survival. To this end, we studied primary leukemic cells negatively isolated prior to treatment from 14 cases assigned to subset #6 (n=5), subset #8 (n=4) or non-subset CLL cases with unmutated BcR IG (U-CLL, n=5). RT-PCR analysis detected mRNA of the TAp63 isoform only, whereas the DNp63 isoform was not expressed in any case. As revealed by Western blotting analysis, BcR stimulation for 21 hours with anti-IgM (in subset #6 and non-subset cases) or anti-IgG (exclusively in subset #8) had differential effects on TP63 expression in the different CLL subgroups analyzed. More specifically, whereas TP63 levels remained unaltered in subset #6, a significant up-regulation (Fold=2.8; p<0.05) was seen in subset #8 cases and, in contrast, downregulation was observed in non-subset cases (Fold=-1.6; p<0.05). Next, we investigated the functional impact of TP63 expression on CLL cell viability at 48 hours after BcR stimulation by flow cytometry analysis, using Annexin V and Propidium iodide staining. As expected, no changes were seen in stimulated versus unstimulated (control) subset #6 CLL cells. In contrast, TP63 upregulation after BcR stimulation of subset #8 cases (n=4) was followed by significantly augmented CLL cell survival (Fold=1.6; p<0.05), whereas the opposite was seen in non-subset U-CLL cases (Fold=-1.5; p<0.05), where p63 downregulation was associated with reduced CLL cell survival (p<0.001). In order to investigate whether the observed effects on cell viability were regulated by TP63, we downregulated TP63 expression in primary cells from 5 CLL cases using TP63 -specific siRNA. This treatment led to a significant (Fold=-1.8; p<0.05) reduction in cell viability, further supporting a pro-survival function of TP63. In conclusion, we show that TP63 expression can be regulated by BcR stimulation, but the observed effect differs and can be opposite in CLL subgroups with distinct immunogenetic features. In particular, we highlight p63 as a novel pro-survival factor in CLL subset #8, thus identifying another player in the complex pathophysiology of this very aggressive subset with a high risk for Richter's transformation. Disclosures Ghia: Janssen Pharmaceuticals: Research Funding. Stamatopoulos:Janssen Pharmaceuticals: Research Funding; Gilead Sciences: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4349-4349
Author(s):  
Yuichiro Inagaki ◽  
Fumihiko Hayakawa ◽  
Yuki Kojima ◽  
Takanobu Morishita ◽  
Naoto Imoto ◽  
...  

Abstract Pax5 is an essential transcription factor to maintain B cell identity. Pax5 is expressed in stages from pro-B to mature B cells and promotes the B cell differentiation program by transcriptional activation of many B cell receptor (BCR)-related genes such as CD19, CD79a, and BLNK. On the contrary, it inhibits plasma cell differentiation by suppressing the expression of BLIMP1 and XBP-1, transcription factors essential for plasma cell differentiation. After BCR stimulation by antigen, upregulation of BLIMP1 and XBP-1 and subsequent suppression of PAX5 by BLIMP1 were observed and thought to be the trigger of plasma cell differentiation. We previously demonstrated that serine phosphorylation of PAX5 by ERK1/2, a main component of BCR signal, attenuated the BLIMP1 suppression by PAX5 and that the PAX5 phosphorylation might be the initial event for plasma cell differentiation (Yasuda T et al, J Immunol. 2012; 188: 6127-34). Here, we investigated additional PAX5 phosphorylation by BCR signal and found that another BCR signal component, Syk, caused PAX5 phosphorylation in vitro (Figure A). We identified the tyrosines that were phosphorylated by Syk in vitro by making phosphorylation-defective mutants, and confirmed that Syk phosphorylated PAX5 at the same sites in vivo (Figure B). In the luciferase reporter assays, PAX5 tyrosine phosphorylation by Syk attenuated the BLIMP1 suppression by PAX5, similarly to its serine phosphorylation by ERK1/2, and both phosphorylations co-operatively worked for it (Figure C). Furthermore, we demonstrated that B cell receptor stimulation with anti-IgM antibody induced Syk and ERK1/2 activation, tyrosine and serine phosphorylation of endogenous Pax5, and upregulation of Blimp1 mRNA. These results suggested that PAX5 phosphorylations by Syk and ERK1/2 co-operatively work for the cancelation of transcriptional repression of Blimp1 by PAX5 after BCR activation by antigen. This might be a trigger of plasma cell differentiation. Our findings give a new insight into the regulation of the terminal differentiation of B cells. Figure 1 Figure 1. Disclosures Naoe: Zenyaku Kogyo: Research Funding; Dainippon Sumitomo Pharma: Research Funding; Kyowa Hakko Kirin Co. LTD: Research Funding; Chugai Pharmaceutical Co. LTD: Research Funding; Novartis Pharma,: Research Funding; Bristol-Myers Squibb: Research Funding; Otsuka Pharmaceutical Co. LTD: Research Funding; FUJIFILM Corporation: Research Funding. Kiyoi:Zenyaku Kogyo: Research Funding; Dainippon Sumitomo Pharma: Research Funding; Kyowa Hakko Kirin Co. LTD.: Research Funding; Chugai Pharmaceutical Co. LTD: Research Funding; Bristol-Myers Squibb: Research Funding; FUJIFILM Corporation: Research Funding.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4389-4395 ◽  
Author(s):  
Freda K. Stevenson ◽  
Federico Caligaris-Cappio

Abstract The finding that chronic lymphocytic leukemia (CLL) consists of 2 clinical subsets, distinguished by the incidence of somatic mutations in the immunoglobulin (Ig) variable region (V) genes, has clearly linked prognosis to biology. Antigen encounter by the cell of origin is indicated in both subsets by selective but distinct expression of V genes, with evidence for continuing stimulation after transformation. The key to distinctive tumor behavior likely relates to the differential ability of the B-cell receptor (BCR) to respond. Both subsets may be undergoing low-level signaling in vivo, although analysis of blood cells limits knowledge of critical events in the tissue microenvironment. Analysis of signal competence in vitro reveals that unmutated CLL generally continues to respond, whereas mutated CLL is anergized. Differential responsiveness may reflect the increased ability of post-germinal center B cells to be triggered by antigen, leading to long-term anergy. This could minimize cell division in mutated CLL and account for prognostic differences. Unifying features of CLL include low responsiveness, expression of CD25, and production of immunosuppressive cytokines. These properties are reminiscent of regulatory T cells and suggest that the cell of origin of CLL might be a regulatory B cell. Continuing regulatory activity, mediated via autoantigen, could suppress Ig production and lead to disease-associated hypogammaglobulinemia. (Blood. 2004;103:4389-4395)


Sign in / Sign up

Export Citation Format

Share Document