IL-22 Is an Intestinal Stem Cell Growth Factor, and IL-22 Administration in Vivo Reduces Morbidity and Mortality in Murine GvHD

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 651-651
Author(s):  
Caroline A Lindemans ◽  
Anna Mertelsmann ◽  
Margaret Helen O'Connor ◽  
Jarrod A Dudakov ◽  
Robert Jenq ◽  
...  

Abstract Graft versus host disease (GVHD) remains a major limitation of allogeneic hematopoietic stem cell transplantation (allo-HSCT), and gut GVHD specifically is a major cause of GVHD-related morbidity and mortality. Little is known about regulation of the intestinal stem cell (ISC) compartment in gut GVHD. We have found that Interleukin-22 (IL-22) produced by innate lymphoid cells is important for ISC recovery after transplant. However, the mechanism of action and specific cellular targets of IL-22 leading to ISC recovery are poorly understood. Using clinically modeled LP into C57BL/6 (B6) minor antigen-mismatched HSCT (H-2 into H-2b), we found that daily treatment with recombinant murine (rm)IL-22 (4ug, intraperitoneal injection) starting day seven after transplant led to reduced intestinal pathology from GVHD without altering alloreactive immunity. Both overall GVHD pathology and epithelial apoptosis scores were significantly lower three weeks post-BMT in rmIL-22-treated mice with GVHD compared to PBS-treated controls (p<0.001). We observed that mice treated with rmIL-22 (and no pharmacologic immunosuppression) had increased numbers of Lgr5+ ISCs and significantly greater ISC proliferation (p<0.01). This was not due to IL-22-dependent changes in the ISC niche, as Paneth cell numbers, Paneth cell-derived growth factors (EGF, Wnt3), and stroma-derived growth factors (Rspo3) were all unchanged after IL-22 administration. However, the antimicrobial proteins Reg3β and Reg3γ were both upregulated by qPCR in small intestine (SI) of rmIL-22-treated mice (p<0.01 and p<0.001 respectively), although this did not result in consistent changes in the gut microbial flora. To evaluate direct effects on epithelial regeneration, we performed intestinal organoid culture assays in the presence of IL-22. Organoids generated from SI and large intestine (LI) crypts of wild-type B6 mice demonstrated substantially increased size after seven days of culture with IL-22 (p<0.001, SI, Fig. 1A; p<0.05, LI). Co-culturing crypts with innate lymphoid cells (ILC), potent producers of IL-22 in vivo, led to increased organoid size as well. Furthermore, culture with IL-22 significantly increased organoid budding (new crypt formation), resulting in increased organoid expansion with serial passaging in the presence of IL-22 (1ng/ml) suggesting that IL-22 could directly increase ISC expansion. Indeed, IL-22 culture led to increased organoid EDU incorporation and expansion of Lgr5+ ISCs after culture of SI crypts from Lgr5-GFP reporter mice (p< 0.001, Fig. 1D). Demonstrating a direct effect on ISCs, IL-22 led to STAT3 phosphorylation specifically in Lgr5+ cells and resulted in increased budding of organoids cultured from isolated single SI ISCs after only four days in culture (p<0.01). To investigate the translational potential for use in humans, we tested a human IL-22 dimer/Fc fusion molecule (F-652, Generon Corp., Shanghai) on mouse intestinal crypts and found that F-652 significantly increased the size of SI and LI organoids. Using the LP into B6 allo-HSCT model described above, we found that every other day subcutaneous (SQ) treatment with 100 ug/kg F-652 starting day seven post-BMT led to significant improvement in both clinical GVHD score (P<0.0001) and survival (p<0.05, Fig. 1C). In summary, we found that IL-22 and innate lymphoid cells can bridge immune function and tissue regeneration by acting directly on epithelial stem cells. IL-22 and F-652 therapy may represent a novel approach to promote intestinal recovery in patients with GVHD without increasing post-transplant immunodeficiency. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1921-1921
Author(s):  
Sonia J. Laurie ◽  
Danny W. Bruce ◽  
Hemamalini Bommiasamy ◽  
Melodie P Noel ◽  
Joseph P. Foster ◽  
...  

Though hematopoietic stem cell transplantation (HSCT) is the preferred treatment for a variety of blood malignancies, its use is limited by the development of acute graft-versus-host disease (aGvHD). Type II innate lymphoid cells (ILC2s) are immune cells that play an important role in maintaining mucosal homeostasis, and our lab has previously shown that ILC2s in the gastrointestinal tract (GI) are sensitive to conditioning therapy prior to HSCT. Strikingly, we have demonstrated that the infusion of activated donor ILC2s markedly reduces aGvHD-associated mortality. We therefore wanted to investigate the mechanism of the loss of protective ILC2s from the GI tract. We hypothesized that ILC2s fail to repopulate the gut after HSCT due to inflammatory environmental cues that convert ILC2 precursors to an alternate, ILC1- or ILC3-like fate. Thus, we evaluated the impact of cytokines associated with commitment on murine ILC2s by exposing them to cytokines that may promote differentiation to an ILC1 or ILC3 fate (IL-1b/IL-12/IFN-γ and TGF-b/IL-6/IL-23, respectively). We found ILC2 cells acquired the ability to secrete TNF and IL-17 after in vitro skewing (with these lineage-defining cytokines. To test the ability of these "ex-ILC2" cells to home to other tissues in vivo, GFP-ILC2s were infused into recipients at the time of transplantation. We tracked GFP-ILC2s to the liver and spleen, where they made IFN-g and IL-17 and expressed transcription factors associated with the ILC1 and ILC3 lineages (Figure 1). Next we assessed the ability of cytokines alter ILC2 fate via epigenetic reprogramming by using ChIP-sequencing to evaluate the presence of histone marks that may underlie cellular plasticity. We show that these changes are associated with alterations in epigenetic marks around pioneer, lineage-determining factors. We therefore chose to test a screen of compounds known to modulate a variety of epigenetic targets to ask if they can maintain or convert ILC2s to alternate fates and identified a number of compounds that target bromodomains, methyltransferases, and histonedeacetylases, respectively, that alter the viability and differentiation of ILC2s into an "ex-ILC2"-like phenotype. Preliminary work suggests that maintenance ofG9a expression is able to rescue the loss of ILC2s, which is being tested in vivo. Taken together, these data provide new insights into mechanisms by which innate lymphoid cell precursors are epigenetically regulated, providing novel approaches to treating aGvHD following HSCT. Figure 1 Disclosures Davis: Triangle Biotechnology: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Pattenden:Triangle Biotechnology, Inc.: Equity Ownership, Other: Inventor on intellectual property. Serody:Merck: Research Funding; GlaxoSmithKline: Research Funding.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3480-3490
Author(s):  
SJ Morrison ◽  
E Lagasse ◽  
IL Weissman

We have been unable to reproduce experiments suggesting the existence of three lineage-restricted progenitor populations from mouse bone marrow. Thy1.1loMac-1+B220+ cells were reported to give rise to greatly expanded numbers of myeloid and lymphoid cells, while Thy1.1loMac- 1+B220- and Thy1.1loMac-1-B220+ cells were reported to be highly proliferative myeloid and B-lineage-restricted progenitors, respectively. Both Mac-1+ cell types appear to be much less frequent than previously reported, and we observed no activity consistent with their characterization as committed progenitors of expanded numbers of cells. The original identification of these populations may have resulted from a failure to distinguish bonafide signals from autofluorescent background and nonspecific staining. The progenitor activities originally associated with these populations may have been due to hematopoietic stem cell contamination. This study shows that low levels of Mac-1 are expressed on cells with multipotent progenitor activity. Thy1.1loB220+Mac-1- cells can be purified from bone marrow, but in these experiments they do not give rise to detectable levels of progeny on injection into lethally irradiated mice. Thy1.1loB220+Mac-1- cells appear to be pro-B cells without significant proliferation potential in vivo. The finding that the described populations do not have the reported progenitor activities leaves the pathways of stem cell differentiation open to further study.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 63-63 ◽  
Author(s):  
Johannes L. Zakrzewski ◽  
Adam A. Kochman ◽  
Sidney X. Lu ◽  
Theis H. Terwey ◽  
Theo D. Kim ◽  
...  

Abstract Allogeneic hematopoietic stem cell transplantation (HSCT) is associated with a varying period of immunoincompetence that particularly affects he T cell lineage resulting in significant morbidity and mortality from opportunistic infections. Recent studies have shown that murine T cells and their precursors can be generated from hematopoietic stem cells (HSC) in vitro using a OP9-DL1 coculture system consisting of OP9 bone marrow stromal cells expressing the Notch 1 ligand Delta-like 1 and growth factors (interleukin 7 and fms-like tyrosine kinase-3 ligand). In this study we determined the effects of adoptively transferred in vitro generated T cell precursors on T cell reconstitution after allogeneic HSCT. We selected HSC (Lin- Sca-1hi c-kithi) from bone marrow (BM) of C57BL/6 mice and cultured these cells on a monolayer of OP9-DL1 cells in the presence of growth factors. These HSC expanded 2,000–5,000-fold within 3–4 weeks and consisted of &gt;95% CD4-CD8-double negative (DN) T cell precursors after 16–28 days of culture. We infused these cells (8x106) with T cell depleted (TCD) BM (5x106) or purified HSC into allogeneic recipients using minor antigen mismatched and MHC class I/II mismatched transplant models. Control mice received TCD BM or purified HSC only. Progeny of OP9-DL1 derived T cell precursors were found in thymus and spleen increasing thymic cellularity and significantly improving thymic and splenic donor T cell chimerism. This effect was even more pronounced when purified HSC instead of whole BM were used as allograft. T cell receptor repertoire and proliferative response to foreign antigen (determined by third party MLR) of in vivo differentiated OP9-DL1 derived mature T cells were intact. Administration of in vitro generated T cell precursors did not induce graft-versus-host disease (GVHD) but mediated significant graft-versus-tumor (GVT) activity (determined by in vivo bioluminescence imaging) resulting in a subsequent significant survival benefit. This advantage was associated with better cytokine responses (IL-2, INF-g, TNF-a) in T cells originating from OP9-DL1 derived T cell precursors compared to BM donor derived T cells. We conclude that the adoptive transfer of OP9-DL1 derived T cell precursors significantly enhances post-transplant T cell reconstitution and GVT activity in the absence GVHD.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 481-487 ◽  
Author(s):  
Johanne D. Cashman ◽  
Connie J. Eaves

Self-renewal is considered to be the essential defining property of a stem cell. Retroviral marking, in vitro amplification, and serial transplantation of human cells that can sustain long-term lymphomyelopoiesis in vivo have provided evidence that human hematopoietic stem cell self-renewal occurs both in vitro and in vivo. To investigate whether this process can be manipulated by cytokines, we administered two different combinations of human growth factors to sublethally irradiated nonobese diabetic/severe combined immunodeficient (SCID) mice transplanted with 107 light-density human cord blood cells and then performed secondary transplants to compare the number of transplantable human lymphomyeloid reconstituting cells present 4 to 6 weeks post-transplant. A 2-week course of Steel factor + interleukin (IL)-3 + granulocyte-macrophage colony-stimulating factor + erythropoietin (3 times per week just before sacrifice) specifically and significantly enhanced the numbers of transplantable human lymphomyeloid stem cells detectable in the primary mice (by a factor of 10). Steel factor + Flt3-ligand + IL-6 (using either the same schedule or administered daily until sacrifice 4 weeks post-transplant) gave a threefold enhancement of this population. These effects were obtained at a time when the regenerating human progenitor populations in such primary mice are known to be maximally cycling even in the absence of growth factor administration suggesting that the underlying mechanism may reflect an ability of these growth factors to alter the probability of differentiation of stem cells stimulated to proliferate in vivo.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 481-487 ◽  
Author(s):  
Johanne D. Cashman ◽  
Connie J. Eaves

Abstract Self-renewal is considered to be the essential defining property of a stem cell. Retroviral marking, in vitro amplification, and serial transplantation of human cells that can sustain long-term lymphomyelopoiesis in vivo have provided evidence that human hematopoietic stem cell self-renewal occurs both in vitro and in vivo. To investigate whether this process can be manipulated by cytokines, we administered two different combinations of human growth factors to sublethally irradiated nonobese diabetic/severe combined immunodeficient (SCID) mice transplanted with 107 light-density human cord blood cells and then performed secondary transplants to compare the number of transplantable human lymphomyeloid reconstituting cells present 4 to 6 weeks post-transplant. A 2-week course of Steel factor + interleukin (IL)-3 + granulocyte-macrophage colony-stimulating factor + erythropoietin (3 times per week just before sacrifice) specifically and significantly enhanced the numbers of transplantable human lymphomyeloid stem cells detectable in the primary mice (by a factor of 10). Steel factor + Flt3-ligand + IL-6 (using either the same schedule or administered daily until sacrifice 4 weeks post-transplant) gave a threefold enhancement of this population. These effects were obtained at a time when the regenerating human progenitor populations in such primary mice are known to be maximally cycling even in the absence of growth factor administration suggesting that the underlying mechanism may reflect an ability of these growth factors to alter the probability of differentiation of stem cells stimulated to proliferate in vivo.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2533-2533
Author(s):  
Elizabeth Bulaeva ◽  
Davide Pellacani ◽  
Naoto Nakamichi ◽  
Philip Beer ◽  
Colin Hammond ◽  
...  

Background: Current evidence suggests that genetic and epigenetic abnormalities drive the development of human Acute Myeloid Leukemias (AMLs). However, whether these are sufficient to establish a permanent, self-sustaining AML population, and the potential role of shared perturbed downstream pathways is unknown. We hypothesized that a modest upregulated expression of MYC might play such a role given its commonly increased expression in many AML patients' cells. To test this hypothesis, we assessed the dynamics and types of cells produced in sublethally irradiated NOD-Rag1-/--IL2Rγc-/-(NRG) mice transgenically producing human IL3, GM-CSF and SCF (NRG-3GS mice) following their transplantation with freshly isolated subsets of normal CD34+ cord blood (CB) cells that were first lentivirally transduced with a human MYC cDNA. Results: FACS and Western blot analyses indicated this produced a 2 to 5-fold increase in MYC mRNA and protein levels in MYC-transduced CD34+ CB cells, and 21/22 NRG-3GS mice injected with ≥6,500 of these cells developed a fatal human AML population within 7 weeks. Histological analysis of their bone marrow and spleen cells showed both contained a prominent human CD123+CD33+CD15±CD34-CD14-CD19-CD3- blast population. Additional limiting dilution transplants showed that both the CD34+CD38- cells (enriched for hematopoietic stem cells) and the more differentiated CD34+ GMPs were similarly highly susceptible (at frequencies of 1/14 and 1/46, respectively) and, in both cases, generated progeny that could initiate serially transplantable leukemias with the same phenotypic and transcriptomic features. Comparison to normal CB cells indicated these most closely resembled GMPs, and comparison to pediatric AML patient samples indicated a similarity to myelomonocytic leukemias with enhanced MYC expression. Interestingly, 14 sublethally irradiated NRG mice (the parental strain not producing human 3GS) transplanted with matched aliquots of CD34+ MYC-transduced cells regenerated a normal spectrum of CD19+ lymphoid cells, CD14+ and CD15+ GM cells and readily detectable CD34+ cells for up to 32 weeks of follow-up with no evidence of leukemogenesis. However, transfer of these regenerated human cells into secondary NRG-3GS mice, even after this extended period, enabled their rapid production of a lethal human AML in all 5 mice tested. In contrast, matched aliquots transplanted into 5 NRG recipients produced declining grafts of normal cells. This finding was then exploited to determine which growth factors were responsible for activating the AML program by transplanting NRG mice with CD34+ CB cells transduced with MYC and just a single growth factor, or all 3 as a positive control. In this set of experiments, a lethal human AML was obtained when MYC was paired with human IL3 or GM-CSF (or all 3 together), but not with SCF (or no growth factors). Conclusion: We report here a new in vivo model of MYC-induced human myeloid leukemogenesis that produces a serially transplantable AML closely resembling human pediatric myelomonocytic leukemias with elevated MYC expression. The rapidity, consistency, and high frequency of this transformation process obtained by transducing late granulopoietic as well as early types of normal human CD34+ progenitor cells makes this system highly attractive for future mechanistic and therapeutic testing experiments. The discovery that MYC deregulation alone generates a stable "latent program" that can be rapidly activated by exposure to exogenous growth factors typical of inflammatory states also raises intriguing questions about the potential role of such events in the genesis of AML populations that arise in patients. Disclosures Beer: Karus therapeutics Ltd.: Employment.


2018 ◽  
Vol 115 (14) ◽  
pp. E3173-E3181 ◽  
Author(s):  
Gediminas Greicius ◽  
Zahra Kabiri ◽  
Kristmundur Sigmundsson ◽  
Chao Liang ◽  
Ralph Bunte ◽  
...  

Wnts and R-spondins (RSPOs) support intestinal homeostasis by regulating crypt cell proliferation and differentiation. Ex vivo, Wnts secreted by Paneth cells in organoids can regulate the proliferation and differentiation of Lgr5-expressing intestinal stem cells. However, in vivo, Paneth cell and indeed all epithelial Wnt production is completely dispensable, and the cellular source of Wnts and RSPOs that maintain the intestinal stem-cell niche is not known. Here we investigated both the source and the functional role of stromal Wnts and RSPO3 in regulation of intestinal homeostasis. RSPO3 is highly expressed in pericryptal myofibroblasts in the lamina propria and is several orders of magnitude more potent than RSPO1 in stimulating both Wnt/β-catenin signaling and organoid growth. Stromal Rspo3 ablation ex vivo resulted in markedly decreased organoid growth that was rescued by exogenous RSPO3 protein. Pdgf receptor alpha (PdgfRα) is known to be expressed in pericryptal myofibroblasts. We therefore evaluated if PdgfRα identified the key stromal niche cells. In vivo, Porcn excision in PdgfRα+ cells blocked intestinal crypt formation, demonstrating that Wnt production in the stroma is both necessary and sufficient to support the intestinal stem-cell niche. Mice with Rspo3 excision in the PdgfRα+ cells had decreased intestinal crypt Wnt/β-catenin signaling and Paneth cell differentiation and were hypersensitive when stressed with dextran sodium sulfate. The data support a model of the intestinal stem-cell niche regulated by both Wnts and RSPO3 supplied predominantly by stromal pericryptal myofibroblasts marked by PdgfRα.


Blood ◽  
1995 ◽  
Vol 85 (9) ◽  
pp. 2598-2606 ◽  
Author(s):  
JC van der Loo ◽  
RE Ploemacher

The cobblestone-area forming cell (CAFC) assay permits a direct measurement of the seeding of primitive and more mature murine hematopoietic stem cell subsets by comparing the number of CAFC in the original transplant with the number of CAFC retrieved from bone marrow (BM) and spleen after transplantation. We found no differences in seeding efficiency between the more mature and primitive CAFC subsets, nor between seeding efficiencies of stem cells from low-density (LD) fractions of normal and day-6 post-5-fluorouracil BM. The data show that 18% to 20% of all intravenously transplanted stem cell subsets seed to the BM, whereas 8% to 10% seed to the spleen. In addition, similar seeding efficiencies were found for day-12 spleen colony-forming unit (CFU-S-12) as was determined by retransplantation. Previously, it has been reported that a 2- to 3-hour preincubation of BM with interleukin-3 (IL-3) enhances the in vivo repopulating ability of a graft. To test whether hematopoietic growth factors affected this increased engraftment by enhancing the seeding of the transplanted marrow, we assessed the 16- to 18-hour seeding efficiency of short- and long-term in vivo repopulating stem cell subsets to BM and spleen using the CAFC assay, after preincubation with or without hematopoietic growth factors. A 2- to 3-hour preincubation with IL-3, or a combination of IL-3, IL-12, and steel factor, at 37 degrees C, led to a substantial decrease in seeding compared with control (which was kept on ice) of all hematopoietic subsets measured, both in spleen and BM. In concert with these data, the long-term in vivo repopulating ability of growth-factor incubated BM was also decreased when compared with control. In conclusion, we have been unable to observe a beneficial effect of growth factor preincubation on the repopulating ability of a graft.


Sign in / Sign up

Export Citation Format

Share Document