PGE2 Promotes BM Hematopoietic Stem Cell Retention Via Stromal Lactate Production­­­­, cAMP and CXCL12/CXCR4 Regulation

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 771-771
Author(s):  
Anju Kumari ◽  
Aya Ludin ◽  
Karin Golan ◽  
Orit Kollet ◽  
Elisabeth Niemeyer ◽  
...  

Abstract The CXCR4/CXCL12 axis is essential for retention and protection from DNA damage of quiescent hematopoietic stem cells (HSC) in their bone marrow (BM) niches. Murine CXCR4+ HSC tightly adhere to BM stromal cells which functionally express cell surface CXCL12. Stress induces secretion of CXCL12 by BM stromal cells and its release to the circulation, mediating hematopoietic stem and progenitor cell (HSPC) egress, recruitment and clinical mobilization. Previously, we reported that Prostaglandin E2 (PGE2), highly produced by COX-2+ BM αSMA+ monocyte/macrophages, upregulates surface CXCR4 expression on enriched human CD34+ HSPC and their CXCL12 induced motility via cAMP activation in vitro. PGE2 inhibits intracellular reactive oxygen species (ROS) generation in HSPC and also increases membrane bound CXCL12 expression by BM stromal cells leading to HSC adhesion to their niche supporting cells in vivo, overall contributing to BM stem cell retention. We also found that elevation in cAMP activation promotes CXCL12 secretion from BM stromal cells, and another report has recently shown that lactate signaling via its major receptor HCA-1 inhibits cAMP. Thus, we hypothesized that the major metabolite lactate, cAMP and PGE2 cross-regulate BM stem cell retention by modulating the CXCR4/CXCL12 axis. We found that both hematopoietic stem cells and BM stromal cells functionally express the lactate receptor HCA-1. Stimulation with PGE2 elevated lactate production by BM stromal cells and stimulation with a HCA-1 receptor agonist, or with lactate, both elevated membrane bound expression of CXCL12 on BM stromal cells. Moreover, since cAMP is elevated by PGE2 signaling whereas lactate signaling was shown to inhibit cAMP, we tested the role of cAMP in CXCL12 expression and secretion by BM stromal cells. We found that in vitro the cAMP enhancer forskolin increased CXCR4 expression by HSPC and in vivo forskolin administration reduced membrane bound CXCL12 levels and elevated CXCL12 secretion as expected. Conversely, in vivo forskolin co-administered with lactate, elevated membrane bound CXCL12 levels and reduced CXCL12 secretion, indicating that lactate limits cAMP elevation and promotes surface CXCL12 expression by BM stromal cells. In accordance,inhibition of cAMP under PGE2 stimulation both in vitro and in vivo, augmented membrane bound CXCL12 expression and inhibited CXCR4 upregulation, mimicking the effects of lactate. We found that PGE2 administration in vivo resulted in reduced CXCR4 expression on primitive BM HSPCs however in vitro PGE2 elevated CXCR4 expression on enriched HSPC. Our results suggest that PGE2 signaling in vivo induces secretion of the metabolite lactate by BM stromal cells, increasing membrane bound CXCL12 expression and reducing expression of CXCR4 on HSPC via cAMP inhibition. Importantly, repeated in vivo administration of PGE2, lactate or its receptor HCA-1 agonist (once daily for 2 days), all reduced CXCR4 expression and steady state egress of HSPC to the bloodcirculation. Thus, PGE2 via downstream lactate secretion acts as a BM stem cell retaining factor. In accordance, we found that in vivo inhibition of PGE2 production by repeated (once daily for five days) injections of COX-2 inhibitors, such as Meloxicam led to HSPC mobilization. This mobilization was abrogated by co-administration of lactate, suggesting that in vivo inhibition of meloxicam induced CXCL12 secretion and release by lactate prevents HSPC mobilization. We found that in vivo COX-2 inhibition reduced membrane expression of CXCL12 by BM stromal cells and elevated surface CXCR4 expression by BM HSPC in a ROS dependent manner. Moreover, neutralization of CXCR4 or CXCL12 by specific antibodies, or ROS by its scavenger NAC, all blocked meloxicam induced stem and progenitor cell mobilization. These results reveal that COX-2 inhibition increased BM CXCL12 secretion and its release to the blood, upregulated CXCR4 leading to HSPC mobilization in a ROS and CXCL12 dependent manner. In conclusion, our results reveal that PGE2 enhances both cAMP elevation and lactate secretion by BM stromal cells in the vicinity of hematopoietic stem cells. Lactate acts in an autocrine manner modulating surface CXCL12 expression by BM niche cells and reduced CXCR4 expression by hematopoietic stem cells via inhibition of cAMP, promoting retention and preservation of hematopoietic stem cells in their BM niches. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3866-3866
Author(s):  
Masao Tsukada ◽  
Satoshi Yamazaki ◽  
Yasunori Ota ◽  
Hiromitsu Nakauchi

Abstract Introduction Generation of engraftable hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) has long been thought an ultimate goal in the field of hematology. Numerous in vitro differentiation protocols, including trans-differentiation and forward programming approaches, have been reported but have so far failed to generate fully functional HSCs. We have previously demonstrated proof-of-concept for the in vivo generation of fully functional HSCs from induced PSCs (iPSCs) through teratoma formation (Suzuki et al., 2013). However, this method is time-consuming (taking over two months), HSCs are generated at low frequencies, and additionally require co-injection on OP9 stromal cells and SCF/TPO cytokines. Here, we present optimization of in vivo HSC generation via teratoma formation for faster, higher-efficiency HSC generation and without co-injection of stromal cells or cytokines. Results First, we screened reported in vitro trans-differentiation and forward programming strategies for their ability to generate HSCs in vivo within the teratoma assay. We tested iPSCs transduced with the following dox-inducible TF overexpression vectors: (1) Gfi1b, cFOS and Gata2 (GFG), which induce hemogenic endothelial-like cells from fibroblast (Pereira et al.,2013); (2) Erg, HoxA9 and Rora (EAR), which induce short-term hematopoietic stem/progenitor cell (HSPC) formation during embryoid body differentiation (Doulatov et,al., 2013); and (3) Foxc1, which is highly expressed the CAR cells, a critical cell type for HSC maintenance (Oomatsu et al.,2014). We injected iPSCs into recipient mice, without co-injection of stromal cells or cytokines, and induced TF expression after teratoma formation by dox administration. After four weeks, GFG-derived teratomas contained large numbers of endothelial-like and epithelial-like cells, and importantly GFG-derived hematopoietic cells could also be detected. EAR-teratomas also generated hematopoietic cells, although at lower frequencies. By contrast, hematopoietic cells were not detected in control teratomas or Foxc1-teratomas. Through use of iPSCs generated from Runx1-EGFP mice (Ng et al. 2010), and CUBIC 3D imaging technology (Susaki et al. 2014), we were further able to demonstrate that GFG-derived hematopoietic cells were generated through a haemogenic endothelium precursor. Next, we assessed whether HSPC-deficient recipient mice would allow greater expansion of teratoma-derived HSCs. This was achieved by inducing c-kit deletion within the hematopoietic compartment of recipient mice (Kimura et al., 2011) and resulted in a ten-fold increase in the peripheral blood frequency of iPSC-derived hematopoietic cells. We further confirmed similar increases in iPSC-derived bone marrow cells, and in vivo HSC expansion, through bone marrow transplantation assays. Finally, we have been able to shorten the HSC generation time in this assay by five weeks through use of transplantable teratomas, rather than iPSCs. Conclusions We have demonstrated that GFG-iPSCs induce HSC generation within teratomas, via a hemogenic endothelium precursor, and that use of HSPC-deficient recipient mice further promotes expansion of teratoma-derived HSCs. These modifications now allow us to generate engraftable HSCs without co-injection of stromal cells or cytokines. Additionally, use of transplantable teratomas reduced HSC generation times as compared with the conventional assay. These findings suggest that our in vivo system provides a promising strategy to generate engraftable HSCs from iPSCs. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1189-1197 ◽  
Author(s):  
Hua Tang ◽  
Zhenhong Guo ◽  
Minghui Zhang ◽  
Jianli Wang ◽  
Guoyou Chen ◽  
...  

Abstract Regulatory dendritic cells (DCs) have been reported recently, but their origin is poorly understood. Our previous study demonstrated that splenic stroma can drive mature DCs to proliferate and differentiate into regulatory DCs, and their natural counterpart with similar regulatory function in normal spleens has been identified. Considering that the spleen microenvironment supports hematopoiesis and that hematopoietic stem cells (HSCs) are found in spleens of adult mice, we wondered whether splenic microenvironment could differentiate HSCs into regulatory DCs. In this report, we demonstrate that endothelial splenic stroma induce HSCs to differentiate into a distinct regulatory DC subset with high expression of CD11b but low expression of Ia. CD11bhiIalo DCs secreting high levels of TGF-β, IL-10, and NO can suppress T-cell proliferation both in vitro and in vivo. Furthermore, CD11bhiIalo DCs have the ability to potently suppress allo-DTH in vivo, indicating their preventive or therapeutic perspectives for some immunologic disorders. The inhibitory function of CD11bhiIalo DCs is mediated through NO but not through induction of regulatory T (Treg) cells or T-cell anergy. IL-10, which is secreted by endothelial splenic stroma, plays a critical role in the differentiation of the regulatory CD11bhiIalo DCs from HSCs. These results suggest that splenic microenvironment may physiologically induce regulatory DC differentiation in situ.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 951 ◽  
Author(s):  
Yong Dong ◽  
Chengxiang Xia ◽  
Qitong Weng ◽  
Tongjie Wang ◽  
Fangxiao Hu ◽  
...  

Natural hematopoietic stem cells (HSC) are susceptible and tend to lose stemness, differentiate, or die on culture condition in vitro, which adds technical challenge for maintaining bona fide HSC-like cells, if ever generated, in protocol screening from pluripotent stem cells. It remains largely unknown whether gene-editing of endogenous genes can genetically empower HSC to endure the culture stress and preserve stemness. In this study, we revealed that both NUP98-HOXA10HD fusion and endogenous Nras mutation modifications (NrasG12D) promoted the engraftment competitiveness of HSC. Furthermore, the synergy of these two genetic modifications endowed HSC with super competitiveness in vivo. Strikingly, single NAV-HSC successfully maintained its stemness and showed robust multi-lineage engraftments after undergoing the in vitro culture. Mechanistically, NUP98-HOXA10HD fusion and NrasG12D mutation distinctly altered multiple pathways involving the cell cycle, cell division, and DNA replication, and distinctly regulated stemness-related genes including Hoxa9, Prdm16, Hoxb4, Trim27, and Smarcc1 in the context of HSC. Thus, we develop a super-sensitive transgenic model reporting the existence of HSC at the single cell level on culture condition, which could be beneficial for protocol screening of bona fide HSC regeneration from pluripotent stem cells in vitro.


Stem Cells ◽  
2001 ◽  
Vol 19 (1) ◽  
pp. 46-58 ◽  
Author(s):  
Kikuya Sugiura ◽  
Hiroko Hisha ◽  
Junji Ishikawa ◽  
Yasushi Adachi ◽  
Shigeru Taketani ◽  
...  

2012 ◽  
Vol 21 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Marilaine Fournier ◽  
Charles-Étienne Lebert-Ghali ◽  
Gorazd Krosl ◽  
Janet J. Bijl

Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 860-869 ◽  
Author(s):  
Seiji Fukuda ◽  
Huimin Bian ◽  
Andrew G. King ◽  
Louis M. Pelus

Abstract Mobilized peripheral blood hematopoietic stem cells (PBSCs) demonstrate accelerated engraftment compared with bone marrow; however, mechanisms responsible for enhanced engraftment remain unknown. PBSCs mobilized by GROβ (GROβΔ4/CXCL2Δ4) or the combination of GROβΔ4 plus granulocyte colony-stimulating factor (G-CSF) restore neutrophil and platelet recovery faster than G-CSF–mobilized PBSCs. To determine mechanisms responsible for faster hematopoietic recovery, we characterized immunophenotype and function of the GROβ-mobilized grafts. PBSCs mobilized by GROβΔ4 alone or with G-CSF contained significantly more Sca-1+-c-kit+-lineage− (SKL) cells and more primitive CD34−-SKL cells compared with cells mobilized by G-CSF and demonstrated superior competitive long-term repopulation activity, which continued to increase in secondary and tertiary recipients. GROβΔ4-mobilized SKL cells adhered better to VCAM-1+ endothelial cells compared with G-CSF–mobilized cells. GROβΔ4-mobilized PBSCs did not migrate well to the chemokine stromal derived factor (SDF)-1α in vitro that was associated with higher CD26 expression. However, GROβΔ4-mobilized SKL and c-Kit+ lineage− (KL) cells homed more efficiently to marrow in vivo, which was not affected by selective CXCR4 and CD26 antagonists. These data suggest that GROβΔ4-mobilized PBSCs are superior in reconstituting long-term hematopoiesis, which results from differential mobilization of early stem cells with enhanced homing and long-term repopulating capacity. In addition, homing and engraftment of GROβΔ4-mobilized cells is less dependent on the SDF-1α/CXCR4 axis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 405-405
Author(s):  
Kenichi Miharada ◽  
Göran Karlsson ◽  
Jonas Larsson ◽  
Emma Larsson ◽  
Kavitha Siva ◽  
...  

Abstract Abstract 405 Cripto is a member of the EGF-CFC soluble protein family and has been identified as an important factor for the proliferation/self-renewal of ES and several types of tumor cells. The role for Cripto in the regulation of hematopoietic cells has been unknown. Here we show that Cripto is a potential new candidate factor to increase self-renewal and expand hematopoietic stem cells (HSCs) in vitro. The expression level of Cripto was analyzed by qRT-PCR in several purified murine hematopoietic cell populations. The findings demonstrated that purified CD34-KSL cells, known as highly concentrated HSC population, had higher expression levels than other hematopoietic progenitor populations including CD34+KSL cells. We asked how Cripto regulates HSCs by using recombinant mouse Cripto (rmCripto) for in vitro and in vivo experiments. First we tested the effects of rmCripto on purified hematopoietic stem cells (CD34-LSK) in vitro. After two weeks culture in serum free media supplemented with 100ng/ml of SCF, TPO and 500ng/ml of rmCripto, 30 of CD34-KSL cells formed over 1,300 of colonies, including over 60 of GEMM colonies, while control cultures without rmCripto generated few colonies and no GEMM colonies (p<0.001). Next, 20 of CD34-KSL cells were cultured with or without rmCripto for 2 weeks and transplanted to lethally irradiated mice in a competitive setting. Cripto treated donor cells showed a low level of reconstitution (4–12%) in the peripheral blood, while cells cultured without rmCripto failed to reconstitute. To define the target population and the mechanism of Cripto action, we analyzed two cell surface proteins, GRP78 and Glypican-1, as potential receptor candidates for Cripto regulation of HSC. Surprisingly, CD34-KSL cells were divided into two distinct populations where HSC expressing GRP78 exhibited robust expansion of CFU-GEMM progenitor mediated by rmCripto in CFU-assay whereas GRP78- HSC did not respond (1/3 of CD34-KSL cells were GRP78+). Furthermore, a neutralization antibody for GRP78 completely inhibited the effect of Cripto in both CFU-assay and transplantation assay. In contrast, all lineage negative cells were Glypican-1 positive. These results suggest that GRP78 must be the functional receptor for Cripto on HSC. We therefore sorted these two GRP78+CD34-KSL (GRP78+HSC) and GRP78-CD34-KSL (GRP78-HSC) populations and transplanted to lethally irradiated mice using freshly isolated cells and cells cultured with or without rmCripto for 2 weeks. Interestingly, fresh GRP78-HSCs showed higher reconstitution than GRP78+HSCs (58–82% and 8–40%, p=0.0038) and the reconstitution level in peripheral blood increased rapidly. In contrast, GRP78+HSC reconstituted the peripheral blood slowly, still at a lower level than GRP78-HSC 4 months after transplantation. However, rmCripto selectively expanded (or maintained) GRP78+HSCs but not GRP78-HSCs after culture and generated a similar level of reconstitution as freshly transplanted cells (12–35%). Finally, bone marrow cells of engrafted recipient mice were analyzed at 5 months after transplantation. Surprisingly, GRP78+HSC cultured with rmCripto showed higher reconstitution of the CD34-KSL population in the recipients' bone marrow (45–54%, p=0.0026), while the reconstitution in peripheral blood and in total bone marrow was almost the same. Additionally, most reconstituted CD34-KSL population was GRP78+. Interestingly freshly transplanted sorted GRP78+HSC and GRP78-HSC can produce the GRP78− and GRP78+ populations in the bone marrow and the ratio of GRP78+/− cells that were regenerated have the same proportion as the original donor mice. Compared to cultured cells, the level of reconstitution (peripheral blood, total bone marrow, HSC) in the recipient mice was almost similar. These results indicate that the GRP78 expression on HSC is reversible, but it seems to be “fixed” into an immature stage and differentiate with lower efficiency toward mature cells after long/strong exposure to Cripto signaling. Based on these findings, we propose that Cripto is a novel factor that maintains HSC in an immature state and may be a potent candidate for expansion of a distinct population of GRP78 expressing HSC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 350-350
Author(s):  
Kyung-Hee Chang ◽  
Amitava Sengupta ◽  
Ramesh C Nayak ◽  
Angeles Duran ◽  
Sang Jun Lee ◽  
...  

Abstract In the bone marrow (BM), hematopoietic stem cells and progenitors (HSC/P) reside in specific anatomical niches. Among these niches, a functional osteoblast (Ob)-macrophage (MΦ) niche has been described where Ob and MΦ (so called "osteomacs") are in direct relationship. A connection between innate immunity surveillance and traffic of hematopoietic stem cells/progenitors (HSC/P) has been demonstrated but the regulatory signals that instruct immune regulation from MΦ and Ob on HSC/P circulation are unknown. The adaptor protein sequestosome 1 (Sqstm1), contains a Phox bemp1 (PB1) domain which regulates signal specificities through PB1-PB1 scaffolding and processes of autophagy. Using microenvironment and osteoblast-specific mice deficient in Sqstm1, we discovered that the deficiency of Sqstm1 results in macrophage contact-dependent activation of Ob IKK/NF-κB, in vitro and in vivo repression of Ccl4 (a CCR5 binding chemokine that has been shown to modulate microenvironment Cxcl12-mediated responses of HSC/P), HSC/P egress and deficient BM homing of wild-type HSC/P. Interestingly, while Ccl4 expression is practically undetectable in wild-type or Sqstm1-/- Ob, primary Ob co-cultured with wild-type BM-derived MΦ strongly upregulate Ccl4 expression, which returns to normal levels upon genetic deletion of Ob Sqstm1. We discovered that MΦ can activate an inflammatory pathway in wild-type Ob which include upregulation of activated focal adhesion kinase (p-FAK), IκB kinase (IKK), nuclear factor (NF)-κB and Ccl4 expression through direct cell-to-cell interaction. Sqstm1-/- Ob cocultured with MΦ strongly upregulated p-IKBα and NF-κB activity, downregulated Ccl4 expression and secretion and repressed osteogenesis. Forced expression of Sqstm1, but not of an oligomerization-deficient mutant, in Sqstm1-/- Ob restored normal levels of p-IKBα, NF-κB activity, Ccl4 expression and osteogenic differentiation, indicating that Sqstm1 dependent Ccl4 expression depends on localization to the autophagosome formation site. Finally, Ob Sqstm1 deficiency results in upregulation of Nbr1, a protein containing a PB1 interacting domain. Combined deficiency of Sqstm1 and Nbr1 rescues all in vivo and in vitro phenotypes of Sqstm1 deficiency related to osteogenesis and HSC/P egression in vivo. Together, this data indicated that Sqstm1 oligomerization and functional repression of its PB1 binding partner Nbr1 are required for Ob dependent Ccl4 production and HSC/P retention, resulting in a functional signaling network affecting at least three cell types. A functional ‘MΦ-Ob niche’ is required for HSC/P retention where Ob Sqstm1 is a negative regulator of MΦ dependent Ob NF-κB activation, Ob differentiation and BM HSC/P traffic to circulation. Disclosures Starczynowski: Celgene: Research Funding. Cancelas:Cerus Co: Research Funding; P2D Inc: Employment; Terumo BCT: Research Funding; Haemonetics Inc: Research Funding; MacoPharma LLC: Research Funding; Therapure Inc.: Consultancy, Research Funding; Biomedical Excellence for Safer Transfusion: Research Funding; New Health Sciences Inc: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document