Membrane Remodeling By Pathogenic Antibodies Underlies Monocyte Activation in Heparin-Induced Thrombocytopenia

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2244-2244
Author(s):  
Izabella Andrianova ◽  
Vincent M Hayes ◽  
Daria Madeeva ◽  
Rustem I. Litvinov ◽  
Douglas B. Cines ◽  
...  

Abstract Heparin induced thrombocytopenia (HIT) is an iatrogenic antibody-mediated disorder with a paradoxically high propensity for thrombosis. We have shown previously that human HIT IgGs and the HIT-like monoclonal antibody (MAb) KKO bind to platelet factor 4 (PF4) complexed with glycosaminoglycans (GAGs) on the surface of platelets and monocytes, initiating cell activation in vitro, thrombocytopenia in a transgenic mouse model, and thrombus formation in a laser microvascular injury model in vivo even in the absence of exogenous heparin. Monocytes bind PF4 and HIT Ab more readily than platelets because they express higher affinity GAGs, heparan sulfate and dermatan sulfate, in addition to chondroitin sulfate found on both cell types. To study changes in the structure of the monocytes that accompany HIT, we used scanning electron microscopy, confocal microscopy and flow cytometry to characterize the morphology and function of isolated human monocytes and mouse transgenic Fcg receptor IIA positive (FcγRIIA+) or wt (FcγRIIA-) monocytes in the absence or presence of platelets. We show by scanning electron microscopy that upon binding of pathogenic HIT Abs to PF4/GAG complexes on FcgRIIA expressing monocytes, they initiate profound remodeling of the cell membrane. Addition of 100 μg/ml recombinant human PF4 in the absence of HIT Abs initiates the activation process with the appearance of 177 ± 53 nm "knobs" on the surface of 70% of monocytes. Subsequent addition of the HIT-like monoclonal antibody KKO at 50 μg/ml dramatically alters the cellular surface with the appearance of large 701 ± 208 nm membrane "blebs" that were not seen on FcγRIIA-mouse monocytes. These large, membrane-associated structures likely engage FcγRIIA, clustering them in proximity to cell-bound immune complexes, which promotes cell activation that leads to thrombosis. These blebs increase in size over time and are then shed from the cells as monocyte-derived microparticles, which self-aggregate. As a result of shedding of these blebs, the monocytes lose much of their typical ruffled surface (only 67% of monocytes maintain ruffles in the presence of PF4 plus KKO, compared to 97% of control monocytes) and appear smoother, sometimes with pores indicating degranulation. In the presence of platelets, monocytes exposed to PF4 and KKO formed heterocellular aggregates in addition to these subcellular changes. In contrast to KKO, addition of the non-pathogenic MAb RTO not only did not induce blebbing, but largely inhibited PF4-induced changes in the monocyte surface. This suggests that RTO might prevent monocyte activation by interfering with PF4 tetramerization. Structural analysis of the shed microparticles by microscopy revealed that they had an average diameter of 356 ± 307 nm, with many larger particles and aggregates. Flow cytometry confirmed that the shed particles contain cell membrane lipids and receptors. Confocal microscopy showed uniform binding of labeled PF4 to the monocyte cell membrane followed by rapid clustering into large complexes after the addition of KKO, but not RTO. These studies affirm the centrality of cell surface PF4/GAG complexes in the pathogenesis of HIT and provide quantitative morphometric characteristics of the changes in the monocyte membrane structure. We propose that PF4 released from activated platelets binds to the surface of GAG-expressing monocytes in vivo, forming clusters of PF4/GAG complexes that likely promote antibody binding and cause monocyte activation through FcγRIIA along with large-scale remodeling of the cell membrane and shedding of procoagulant microparticles. Disclosures No relevant conflicts of interest to declare.

Author(s):  
M.J.C. Hendrix ◽  
D.E. Morse

Atrial septal defects are considered the most common congenital cardiac anomaly occurring in humans. In studying the normal sequential development of the atrial septum, chick embryos of the White Leghorn strain were prepared for scanning electron microscopy and the results were then extrapolated to the human heart. One-hundred-eighty chick embryos from 2 to 21 days of age were removed from their shells and immersed in cold cacodylate-buffered aldehyde fixative . Twenty-four embryos through the first week post-hatching were perfused in vivo using cold cacodylate-buffered aldehyde fixative with procaine hydrochloride. The hearts were immediately dissected free and remained in the fixative a minimum of 2 hours. In most cases, the lateral atrial walls were removed during this period. The tissues were then dehydrated using a series of ascending grades of ethanol; final dehydration of the tissues was achieved via the critical point drying method followed by sputter-coating with goldpalladium.


Author(s):  
Christina V. Haden ◽  
Donald A. Jordan ◽  
Pamela M. Norris

A novel and inexpensive bucky gel electrode has been investigated for use as the electrode substrate for deposition of polypyrrole. The electroactive polymer membrane was successfully deposited and the surface morphology studied using scanning electron microscopy. Given the properties of the bucky gel electrode and its ability to conduct ions, this work establishes the first step towards a semi-solid ion-gating system to be used in further applications.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57405 ◽  
Author(s):  
Bohumil Maco ◽  
Anthony Holtmaat ◽  
Marco Cantoni ◽  
Anna Kreshuk ◽  
Christoph N. Straehle ◽  
...  

2018 ◽  
Vol 49 (3) ◽  
pp. 1151-1167 ◽  
Author(s):  
Yuhang Sun ◽  
Zixuan Liu ◽  
Dandan Liu ◽  
Jin Chen ◽  
Fang Gan ◽  
...  

Background/Aims: Swine influenza virus (SIV) is a major pathogen of both animals and humans. Afatoxin B1 (AFB1) is one of the most common mycotoxins in feed and food. However, the central contribution of AFB1 to SIV infection remains unclear. Methods: Here, TCID50 assays, fluorescence-based quantitative real-time PCR, western blotting, immunofluorescence staining, histopathological examination, flow cytometry and scanning electron microscopy were performed to investigate the involvement and underlying mechanism of AFB1 in SIV infection in vivo and in vitro using mouse models and porcine alveolar macrophage (PAM) models, respectively. Results: The in vivo study showed that low levels of AFB1 promoted SIV infection and increased its severity, as demonstrated by the increased mRNA expression of viral matrix protein (M); by the increased protein expression of nucleoprotein (NP), matrix protein 1 and ion channel protein; and by animal weight loss, lung index and lung histologic damage. In addition, the increased occurrence of SIV infection accompanied by increases in the level of IL-10 in sera and lungs, in the spleen index and in the number of CD206-positive mouse alveolar macrophages but decreases in the level of TNF-α in sera and lungs, in the thymus index and in the number of CD80-positive mouse alveolar macrophages was observed in SIV-infected mice after low-level AFB1 exposure. The in vitro study showed that low concentrations of AFB1 promoted SIV infection, as demonstrated by the increases in viral titers and viral M mRNA and NP expression levels in SIV-infected PAMs as well as by the number of cells positive for NP protein expression. Furthermore, AFB1 promoted the polarization of SIV-infected PAMs to the M1 phenotype at 8 hpi and to the M2 phenotype at 24 hpi, as measured by the increases in IL-10 expression and in the number of CD206-positive PAMs as well as by the morphological changes observed by scanning electron microscopy. The administration of the immune stimulant lipopolysaccharide (LPS) reversed the switch in PAM polarization from M2 to M1 and thereby counteracted the promotion of influenza virus infection induced by AFB1. Conclusion: Our results are the first to confirm that low-level exposure to AFB1 promotes SIV infection and modulates a switch in macrophage polarization from M1 to M2. The work reported here provides important data that point to a role for AFB1 in SIV infection, and it opens a new field of study.


Blood ◽  
1975 ◽  
Vol 45 (4) ◽  
pp. 581-586 ◽  
Author(s):  
BS Bull ◽  
JD Brailsford

Abstract Red cells moving in a stream of fluid can be arrested by means of a network of fibrin threads. Those cells which fold over a fibrin thread present to view a flat strap-like portion of membrane in which the strain can be easily observed and accurately measured both optically and by scanning electron microscopy. Preliminary results obtained by this method show elastic strains of nearly 300% and indicate that the stress required to produce these large strains is an order of magnitude greater than that reported by other methods.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 770
Author(s):  
Mario Allegra ◽  
Ignazio Restivo ◽  
Alberto Fucarino ◽  
Alessandro Pitruzzella ◽  
Sonya Vasto ◽  
...  

Background: Eryptosis is a physiological, apoptosis-like death of injured erythrocytes crucial to prevent premature haemolysis and the pathological sequalae generated by cell-free haemoglobin. When dysregulated, the process is associated to several inflammatory-based pathologies. 4-Hydroxy-trans-2-nonenal (HNE) is an endogenous signalling molecule at physiological levels and, at higher concentrations, is involved in the pathogenesis of several inflammatory-based diseases. This work evaluated whether HNE could induce eryptosis in human erythrocytes. Methods: Measurements of phosphatidylserine, cell volume, intracellular oxidants, Ca++, glutathione, ICAM-1, and ceramide were assessed by flow cytometry. Scanning electron microscopy evaluated morphological alterations of erythrocytes. Western blotting assessed caspases. PGE2 was measured by ELISA. Adhesion of erythrocytes on endothelial cells was evaluated by gravity adherence assay. Results: HNE in the concentration range between 10–100 µM induces eryptosis, morphological alterations correlated to caspase-3 activation, and increased Ca++ levels. The process is not mediated by redox-dependent mechanisms; rather, it strongly depends on PGE2 and ceramide. Interestingly, HNE induces significant increase of erythrocytes adhesion to endothelial cells (ECs) that are in turn dysfunctionated as evident by overexpression of ICAM-1. Conclusions: Our results unveil a new physiopathological role for HNE, provide mechanistic details of the HNE-induced eryptosis, and suggest a novel mechanism through which HNE could exert pro-inflammatory effects.


Sign in / Sign up

Export Citation Format

Share Document