scholarly journals A Multidisciplinary Model Predicts Clinical Response in Relapsed Multiple Myeloma

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 501-501
Author(s):  
Kenneth H. Shain ◽  
Ariosto Silva ◽  
Mark B Meads ◽  
Allison Distler ◽  
Timothy Jacobson ◽  
...  

Abstract The future of cancer treatment lies in personalized strategies designed to specifically recognize, target, and anticipate dynamic tumor subpopulations within an individual in response to drug. Multiple myeloma (MM) is at present an incurable malignancy of bone marrow resident plasma cells with highly variable survival as a consequence of both disease- and host-specific factors. 20% of MM patients, deemed high-risk (HRMM), have shown little benefit in the era of novel agents, with an OS of less than 2 years. Intuitive treatment strategies fail to account for the complexities and evolutionary dynamics of human tumors in the face of drugs. Intuitive treatment fails to adequately account for MM evolutionary dynamics and remains a critical barrier to successful cure or, at least, long-term disease control. Reasons for therapy failure include, but are not limited to, alternation of dominant clones with each line of therapy as a consequence of Darwinian dynamics, genomic instability leading to of tumor heterogeneity, and tumor microenvironment(TME)- mediated drug resistance. We have developed an integrated computational method accounting for phenotypic tumor heterogeneity. This novel ex vivo drug screen approach, termed EMMA (evolutionary mathematical myeloma advisor), predicts patient-specific drug response in silico from fresh bone marrow biopsies within 5 days. This method utilizes longitudinal non-destructive quantification of rate and dose responses of patient-derived MM cells to drugs in an ex vivo 3D reconstruction of the bone marrow microenvironment to provide real-time personalized predictions of treatment success (percent decrease in disease burden at 90 days). The current automated 384-well plate format allows testing of 31 different drugs or combinations against a single patient sample in 5 days. An evolutionary-based computational model uses the drug sensitivity profile obtained ex vivo to detect sub-populations and their contribution to overall clinical drug response. Each drug dose is imaged once every 30 minutes for 96h. This generates 1,920 data points per drug (or combination). From these data we characterize clonal architecture as it relates to drug sensitivity as phenotypic/functional biomarker for each drug or drug combination in each MM patient sample simultaneously. We have examined the predictive accuracy of EMMA in 26 patients to date. The Pearson correlation between ex vivo model predictions and actual tumor burden changes for the 26 patients examined generated the correlation coefficient r=0.87 (P<0.0001). Further, examination of the model predictions in terms of IMWG standards revealed that 23 out of 26 patients showed agreement between model estimation and actual clinical response (88.5% concordance). The remaining 3 patients diverged by one or two stages of response: one patient presented a very good partial response (VGPR, 98.5% reduction) while the model predicted a partial response (PR, 74.5% tumor reduction); the second patient presented a partial response (PR, 74% tumor reduction) while the model predicted a complete response (CR); and the third patient presented stable disease (SD, 12% tumor reduction) and the model predicted a minimal response (MR, 30% tumor reduction). To this end, EMMA generates patient-specific clinical response predictions to individual drugs or regimens with a high degree of clinical accuracy. Beyond testing for clinical drug response, EMMA may also be used to assess dominant cell signaling pathways. We have screened 5 patients with 25 protein kinase inhibitors (PKI) representing known signaling cascades in MM. Using heatmaps representing area under the curve (AUC) of dose-response surfaces (concentration x exposure time), we have observed both common and patient-specific sensitivities to PKIs. Together, these data demonstrate that the combination of a physiological reconstruction of the TME, a non-destructive and non-invasive cell viability assay, and mathematical models, were key to overcome the major limitations of previous predictive chemosensitivity assays. EMMA has the potential to provide precise clinical insight about treatment efficacy in a timely manner and thus become a decision support tool for oncologists based on the ever-changing clonal architecture in the face of therapy. Disclosures Baz: Karyopharm: Research Funding; Celgene Corporation: Research Funding; Millennium: Research Funding; Sanofi: Research Funding.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2487-2487
Author(s):  
Mika Kontro ◽  
Caroline Heckman ◽  
Evgeny Kulesskiy ◽  
Tea Pemovska ◽  
Maxim Bespalov ◽  
...  

Abstract Abstract 2487 Introduction: The molecular drivers of adult AML as well as the determinants of drug response are poorly understood. While AML genomes have recently been sequenced, many cases do not harbor druggable mutations. Treatment options are particularly limited for relapsed and refractory AML. Due to the molecular heterogeneity of the disease, optimal therapy would likely consist of individualized combinations of targeted and non-targeted drugs, which poses significant challenges for the conventional paradigm of clinical drug testing. In order to better understand the molecular driver signals, identify individual variability of drug response, and to discover clinically actionable therapeutic combinations and future opportunities with emerging drugs, we established a diagnostic ex-vivo drug sensitivity and resistance testing (DSRT) platform for adult AML covering the entire cancer pharmacopeia as well as many emerging anti-cancer compounds. Methods: DSRT was implemented for primary cells from adult AML patients, focusing on relapsed and refractory cases. Fresh mononuclear cells from bone marrow aspirates (>50% blast count) were screened in a robotic high-throughput screening system using 384-well plates. The primary screening panel consisted of a comprehensive collection of FDA/EMA-approved small molecule and conventional cytotoxic drugs (n=120), as well as emerging, investigational and pre-clinical oncology compounds (currently n=90), such as major kinase (e.g. RTKs, checkpoint and mitotic kinases, Raf, MEK, JAKs, mTOR, PI3K), and non-kinase inhibitors (e.g. HSP, Bcl, activin, HDAC, PARP, Hh). The drugs are tested over a 10,000-fold concentration range resulting in a dose-response curve for each compound and with combinations of effective drugs explored in follow-up screens. The same samples also undergo deep molecular profiling including exome- and transcriptome sequencing, as well as phosphoproteomic analysis. Results: DSRT data from 11 clinical AML samples and 2 normal bone marrow controls were bioinformatically processed and resulted in several exciting observations. First, overall drug response profiles of the AML samples and the controls were distinctly different suggesting multiple leukemia-selective inhibitory effects. Second, the MEK and mTOR signaling pathways emerged as potential key molecular drivers of AML cells when analyzing targets of leukemia-specific active drugs. Third, potent new ex-vivo combinations of approved targeted drugs were uncovered, such as mTOR pathway inhibitors with dasatinib. Fourth, data from ex-vivo DSRT profiles showed excellent agreement with clinical response when serial samples were analyzed from leukemia patients developing clinical resistance to targeted agents. Summary: The rapid and comprehensive DSRT platform covering the entire cancer pharmacopeia and many emerging agents has already generated powerful insights into the molecular events underlying adult AML, with significant potential to facilitate individually optimized combinatorial therapies, particularly for recurrent leukemias. DSRT will also serve as a powerful hypothesis-generator for clinical trials, particularly for emerging drugs and drug combinations. The ability to correlate response profiles of hundreds of drugs in clinical ex vivo samples with deep molecular profiling data will yield exciting new translational and pharmacogenomic opportunities for clinical hematology. Disclosures: Mustjoki: Novartis: Honoraria; Bristol-Myers Squibb: Honoraria. Porkka:Novartis: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. Kallioniemi:Abbot/Vysis: Patents & Royalties; Medisapiens: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Bayer Schering Pharma: Research Funding; Roche: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1541-1541
Author(s):  
Jeffrey W. Tyner ◽  
Brian J. Druker ◽  
Cristina E. Tognon ◽  
Stephen E Kurtz ◽  
Leylah M. Drusbosky ◽  
...  

Abstract Background: New prognostic factors have been recently identified in AML patient population that include frequent mutations of receptor tyrosine kinases (RTK) including KIT, PDGFR, FLT3, that are associated with higher risk of relapse. Thus, targeting RTKs could improve the therapeutic outcome in AML patients. Aim: To create a digital drug model for dasatinib and validate the predicted response in AML patient samples with ex vivo drug sensitivity testing. Methods: The Beat AML project (supported by the Leukemia & Lymphoma Society) collects clinical data and bone marrow specimens from AML patients. Bone marrow samples are analyzed by conventional cytogenetics, whole-exome sequencing, RNA-seq, and an ex vivo drug sensitivity assay. For 50 randomly chosen patients, every available genomic abnormality was inputted into a computational biology program (Cell Works Group Inc.) that uses PubMed and other online resources to generate patient-specific protein network maps of activated and inactivated pathways. Digital drug simulations with dasatinib were conducted by quantitatively measuring drug effect on a composite AML disease inhibition score (DIS) (i.e., cell proliferation, viability, and apoptosis). Drug response was determined based on a DIS threshold reduction of > 65%. Computational predictions of drug response were compared to dasatinib IC50 values from the Beat AML ex vivo testing. Results: 23/50 (46%) AML patients had somatic mutations in an RTK gene (KIT, PDGFR, FLT3 (ITD (n=15) & TKD (n=4)), while 27/50 (54%) were wild type (WT) for the RTK genes. Dasatinib showed ex vivo cytotoxicity in 9/50 (18%) AML patients and was predicted by CBM to remit AML in 9/50 AML patients with 4 true responders and 5 false positive. Ex vivo dasatinib responses were correctly matched to the CBM prediction in 40/50 (80%) of patients (Table1), with 10 mismatches due to lack of sufficient genomic information resulting in profile creation issues and absence of sensitive loops in the profile. Only 4/23 (17%) RTK-mutant patients and 5/27(19%) RTK-WT patients were sensitive to dasatinib ex vivo, indicating that presence of somatic RTK gene mutations may not be essential for leukemia regression in response to dasatinib. Co-occurrence of mutations in NRAS, KRAS and NF1 seemed to associate with resistance as seen in 10 of the 14 profiles harboring these mutations. Conclusion: Computational biology modeling can be used to simulate dasatinib drug response in AML with high accuracy to ex vivo chemosensitivity. DNA mutations in RTK genes may not be required for dasatinib response in AML. Co-occurrence of NRAS, KRAS and NF1gene mutations may be important co-factors in modulating response to dasatinib. Disclosures Tyner: Leap Oncology: Equity Ownership; Syros: Research Funding; Seattle Genetics: Research Funding; Janssen: Research Funding; Incyte: Research Funding; Gilead: Research Funding; Genentech: Research Funding; AstraZeneca: Research Funding; Aptose: Research Funding; Takeda: Research Funding; Agios: Research Funding. Druker:Third Coast Therapeutics: Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceuticals: Research Funding; Millipore: Patents & Royalties; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Oregon Health & Science University: Patents & Royalties; McGraw Hill: Patents & Royalties; Celgene: Consultancy; MolecularMD: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; GRAIL: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bristol-Meyers Squibb: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Aptose Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Henry Stewart Talks: Patents & Royalties; Patient True Talk: Consultancy; Blueprint Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; ARIAD: Research Funding; Fred Hutchinson Cancer Research Center: Research Funding; Beta Cat: Membership on an entity's Board of Directors or advisory committees; Cepheid: Consultancy, Membership on an entity's Board of Directors or advisory committees; Leukemia & Lymphoma Society: Membership on an entity's Board of Directors or advisory committees, Research Funding; ALLCRON: Consultancy, Membership on an entity's Board of Directors or advisory committees; Aileron Therapeutics: Consultancy; Gilead Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Monojul: Consultancy. Sahu:Cellworks Research India Private Limited: Employment. Vidva:Cellworks Research India Private Limited: Employment. Kapoor:Cellworks Research India Private Limited: Employment. Azam:Cellworks Research India Private Limited: Employment. Kumar:Cellworks Research India Private Limited: Employment. Chickdipatti:Cellworks Research India Private Limited: Employment. Raveendaran:Cellworks Research India Private Limited: Employment. Gopi:Cellworks Research India Private Limited: Employment. Abbasi:Cell Works Group Inc.: Employment. Vali:Cell Works Group Inc.: Employment. Cogle:Celgene: Other: Steering Committee Member of Connect MDS/AML Registry.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 288-288
Author(s):  
Caroline A Heckman ◽  
Mika Kontro ◽  
Tea Pemovska ◽  
Samuli Eldfors ◽  
Henrik Edgren ◽  
...  

Abstract Abstract 288 Introduction: Recent genomic analyses of acute myeloid leukemia (AML) patients have provided new information on mutations contributing to the disease onset and progression. However, the genomic changes are often complex and highly diverse from one patient to another and often not actionable in clinical care. To rapidly identify novel patient-specific therapies, we developed a high-throughput drug sensitivity and resistance testing (DSRT) platform to experimentally validate therapeutic options for individual patients with relapsed AML. By integrating the results with exome and transcriptome sequencing plus proteomic analysis, we were able to define specific drug-sensitive subgroups of patients and explore predictive biomarkers. Methods: Ex vivo DSRT was implemented for 29 samples from 16 adult AML patients at the time of relapse and chemoresistance and from 5 healthy donors. Fresh mononuclear cells from bone marrow aspirates (>50% blast count) were screened against a comprehensive collection of cytotoxic chemotherapy agents (n=103) and targeted preclinical and clinical drugs (n=100, later 170). The drugs were tested over a 10,000-fold concentration range resulting in a dose-response curve for each compound and each leukemia sample. A leukemia-specific drug sensitivity score (sDSS) was derived from the area under each dose response curve in relation to the total area, and comparing leukemia samples with normal bone marrow results. The turnaround time for the DSRT assay was 4 days. All samples also underwent deep exome (40–100×) and transcriptome sequencing to identify somatic mutations and fusion transcripts, as well as phosphoproteomic array analysis to uncover active cell signaling pathways. Results: The drug sensitivity profiles of AML patient samples differed markedly from healthy bone marrow controls, with leukemia-specific responses mostly observed for molecularly targeted drugs. Individual AML patient samples clustered into distinct subgroups based on their chemoresponse profiles, thus suggesting that the subgroups were driven by distinct signaling pathways. Similarly, compounds clustered based on the response across the samples revealing functional groups of compounds of both expected and unexpected composition. Furthermore, subsets of patient samples stood out as highly sensitive to different compounds. Specifically, dasatinib, rapalogs, MEK inhibitors, ruxolitinib, sunitinib, sorafenib, ponatinib, foretinib and quizartinib were found to be selectively active in 5 (31%), 5 (31%), 4 (25%), 4 (25%), 3 (19%), 3 (19%), 2 (13%), 2 (13%), and 1 (6%) of the AML patients ex vivo, respectively. DSRT assays of serial samples from the same patient at different stages of leukemia progression revealed patterns of resistance to the clinically applied drugs, in conjunction with evidence of dynamic changes in the clonal genomic architecture. Emergence of vulnerabilities to novel pathway inhibitors was seen at the time of drug resistance, suggesting potential combinatorial or successive cycles of drugs to achieve remissions in an increasingly chemorefractory disease. Genomic and molecular profiling of the same patient samples not only highlighted potential biomarkers reflecting the ex vivo DSRT response patterns, but also made it possible to follow in parallel the drug sensitivities and the clonal progression of the disease in serial samples from the same patients. Summary: The comprehensive analysis of drug responses by DSRT in samples from human chemorefractory AML patients revealed a complex pattern of sensitivities to distinct inhibitors. Thus, these results suggest tremendous heterogeneity in drug response patterns and underline the relevance of individual ex vivo drug testing in selecting optimal therapies for patients (personalized medicine). Together with genomic and molecular profiling, the DSRT analysis resulted in a comprehensive view of the drug response landscape and the underlying molecular changes in relapsed AML. These data can readily be translated into the clinic via biomarker-driven stratified clinical trials. Disclosures: Mustjoki: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria. Kallioniemi:Roche: Research Funding; Medisapiens: Membership on an entity's Board of Directors or advisory committees. Porkka:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1940-1940 ◽  
Author(s):  
Matthew S. Davids ◽  
Jing Deng ◽  
Jeremy Ryan ◽  
Stacey M. Fernandes ◽  
Jennifer R. Brown ◽  
...  

Abstract BACKGROUND: BH3 profiling is a functional assay that assesses the degree to which cells are primed to die via mitochondrial apoptosis. We previously used this technique to show that pre-treatment CLL cells from patients who responded to frontline chemoimmunotherapy had higher levels of apoptotic priming than cells from refractory patients (Davids et al., Blood, 2012). BH3 profiling also detects dependence on individual anti-apoptotic Bcl-2 family proteins. Recently, ABT-199, a selective, potent, small molecule antagonist of the anti-apoptotic protein Bcl-2, has been found to be highly active in patients with relapsed or refractory CLL, even those with high-risk markers such as del(17p) (Seymour et al., EHA, 2014). Unlike its Bcl-XL/Bcl-2-targeting predecessor navitoclax (ABT-263), ABT-199 spares platelets, which rely on Bcl-XL for survival. We hypothesized that baseline levels of apoptotic priming would be associated with the depth of initial clinical response to ABT-199 in CLL patients. METHODS: Peripheral blood samples were obtained just prior to initial dosing on the phase I, first-in-human study of ABT-199 in relapsed/refractory CLL. Viability was determined by Annexin V–FITC and propidium iodine by FACS. BH3 profiling was performed by exposing gently permeabilized CLL cells to a panel of BH3-domain peptides, fixing the cells, and quantifying apoptotic priming by assessing cytochrome C release by FACS. Platelets from 3 healthy donors were also analyzed. Clinical response was assessed by comparing baseline values to first-re-staging, as follows: peripheral blood: % reduction in absolute lymphocyte count, lymph node: % reduction in the sum of the product of the diameters of the 6 target lesions, and bone marrow: % reduction in morphologic bone marrow intertrabecular space involvement. Linear regression was used to assess clinical responses as continuous variables, and non-parametric Mann-Whitney testing was used for intergroup comparisons. Two-tailed p values were used in all cases. RESULTS: Ex vivo treatment of platelets with navitoclax induced substantial apoptotic priming, whereas minimal baseline priming was unchanged after ex vivo treatment with ABT-199. Baseline blood samples from 14 relapsed/refractory CLL patients on the ABT-199 phase I study were analyzed for viability after ex vivo treatment with ABT-199 and for pre-treatment levels of apoptotic priming. With ex vivo treatment, ABT-199 induced dose-dependent apoptosis, with a median EC50 of 23 nM in CLL cells (n=14); however, the ABT-199 EC50 was not associated with clinical response in blood, lymph node, or bone marrow. In contrast, samples with higher levels of apoptotic priming as measured by BIM BH3 peptide had a significantly deeper response in the bone marrow (Figure 1, n=9, p=0.01) and blood (n=13, p = 0.05), with a trend toward better response in lymph node (n= 14, p = 0.19). Reflecting the observation in the clinic that ABT-199 has an equivalent response rate irrespective of del(17p) status, we found no difference in apoptotic priming in patients with (n=5) or without (n=9) del(17p). Interestingly, although patients who were fludarabine-refractory at study entry (n=8) were highly primed at baseline, they had lower levels of apoptotic priming (median 92% depolarization) than those who were not refractory (n=6) (median 98%) (p=0.04). To provide further validation of the on target effect of ABT-199 on Bcl-2 on CLL mitochondria, we also studied low concentration ABT-199 used like a BH3 peptide in the BH3 profiling assay. We found an excellent correlation between the amount of mitochondrial depolarization caused by ABT-199 and BAD BH3 peptide (Figure 2, n=13, p = 0.0001). CONCLUSIONS: BH3 profiling provides valuable insights into the mechanism of action of the promising Bcl-2 antagonist ABT-199. In contrast to traditional EC50 assays, the pre-treatment level of apoptotic priming predicts initial clinical response to ABT-199 in CLL. An analysis of the association between apoptotic priming and progression free survival is ongoing. With additional validation, BH3 profiling may eventually guide optimal patient selection for Bcl-2 directed therapy, and potentially for other therapies in CLL. Figure 1 Figure 1. Disclosures Davids: Genentech: Consultancy; Infinity Pharmaceuticals: Consultancy. Brown:Sanofi, Onyx, Vertex, Novartis, Boehringer, GSK, Roche/Genentech, Emergent, Morphosys, Celgene, Janssen, Pharmacyclics, Gilead: Consultancy. Letai:Abbvie: Consultancy, Research Funding; Tetralogic: Consultancy, Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 854-854
Author(s):  
Disha Malani ◽  
Ashwini Kumar ◽  
Bhagwan Yadav ◽  
Mika Kontro ◽  
Swapnil Potdar ◽  
...  

Abstract Introduction Most patients with acute myeloid leukemia (AML) are still missing effective options for targeted treatments. Here, we applied individualized systems medicine (ISM) concept1 by integrating deep molecular profiles (genomics, transcriptomics) and ex vivo drug response profiles with 521 oncology drugs in 154 AML patient samples. The aim was to identify new treatment opportunities for molecular subsets of AML patients. When feasible, ISM guided treatment opportunities were applied clinically for AML patient treatment. Serial samples were available to identify molecular alterations in response to targeted drug treatment and to monitor therapeutic success or failure. We also aimed at testing the impact of bone marrow stromal cell conditioned media on drug response profiles in AML patients2. Methods Samples from bone marrow or blood of 122 AML patients and 17 healthy donors were obtained with written consent and ethical approval (239/13/03/00/2010 and 303/13/03/01/2011) from the Hematology Clinic, Comprehensive Cancer Center, Helsinki University Hospital. The ex vivo drug sensitivity and resistance testing (DSRT) assay was performed with 521 approved oncology drugs and investigational oncology compounds as described earlier1. In this study, freshly isolated mononuclear cells were randomly resuspended either in standard mononuclear cell medium (MCM, PromoCell) or in human bone marrow stroma derived conditioned medium (CM) for drug testing. DNA samples from same mononuclear cells were subjected to whole exome and transcriptome sequencing and data were analyzed as described previsously2. Hierarchical clustering and non-parametric rank correlation were performed with drugs and samples. Wilcoxon sign ranked test was applied between wild type and mutated samples to identify significant mutation-drug associations. Results Hierarchical clustering was largely independent of clinical features such as disease status or risk class. A strong drug sub-cluster with a unique response profile was composed of that of the MDM2 antagonist idasanutlin along with BCL-2 inhibitors navitoclax and venetoclax (Figure). BET inhibitors (JQ1, I-BET151, birabresib) and MEK inhibitors (trametinib, selumetinib) were positively correlated with each other suggesting an association between bromodomain mediated epigenetic deregulation and up-regulation of the MEK pathway in a subset of patients. Comparison between patient samples profiled in CM (n=77) vs MCM medium (n=77) indicated higher efficacy of MDM2 modulator idasanutlin in MCM while BET inhibitors responded more strongly in CM. Other differences observed earlier by Karjalainen et al1 between the two media types were also validated. Furthermore, 16 chemorefractory and one diagnostic stage patients were treated with the targeted drugs suggested by this ISM approach. We observed complete remission or leukemia free state in 35% (6/17) of the AML patients given tailored treatment in an observational study. The targeted drugs used for clinical translation included ruxolitinib (in n=4 patients), temsirolimus (n=5), trametinib (n=4), sunitinib (n=7), dasatinib (n=7), sorafeninb (n=4), omacetaxine (n=3) and dexamethasone (n=5). Summary This study highlights the potential of individualized systems medicine (ISM) approach in the identification of effective treatment opportunities for individual patients with AML. Identifying molecular markers for ex vivo drug responses can help to assign treatments to the patient subgroups most likely to respond in clinical trials. Figure Figure. Disclosures Heckman: Orion Pharma: Research Funding; Novartis: Research Funding; IMI2 project HARMONY: Research Funding; Pfizer: Research Funding; Celgene: Research Funding. Porkka: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding.


2020 ◽  
Vol 4 (8) ◽  
pp. 1628-1639
Author(s):  
Zachary J. Walker ◽  
Michael J. VanWyngarden ◽  
Brett M. Stevens ◽  
Diana Abbott ◽  
Andrew Hammes ◽  
...  

Abstract The oncogenic drivers and progression factors in multiple myeloma (MM) are heterogeneous and difficult to target therapeutically. Many different MM drugs have emerged, however, that attack various phenotypic aspects of malignant plasma cells. These drugs are administered in numerous, seemingly interchangeable combinations. Although the availability of many treatment options is useful, no clinical test capable of optimizing and sequencing the treatment regimens for an individual patient is currently available. To overcome this problem, we developed a functional ex vivo approach to measure patients’ inherent and acquired drug resistance. This method, which we termed myeloma drug sensitivity testing (My-DST), uses unselected bone marrow mononuclear cells with a panel of drugs in clinical use, followed by flow cytometry to measure myeloma-specific cytotoxicity. We found that using whole bone marrow cultures helped preserve primary MM cell viability. My-DST was used to profile 55 primary samples at diagnosis or at relapse. Sensitivity or resistance to each drug was determined from the change in MM viability relative to untreated control samples. My-DST identified progressive loss of sensitivity to immunomodulatory drugs, proteasome inhibitors, and daratumumab through the disease course, mirroring the clinical development of resistance. Prospectively, patients’ ex vivo drug sensitivity to the drugs subsequently received was sensitive and specific for clinical response. In addition, treatment with &lt;2 drugs identified as sensitive by My-DST led to inferior depth and duration of clinical response. In summary, ex vivo drug sensitivity is prognostically impactful and, with further validation, may facilitate more personalized and effective therapeutic regimens.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1834-1834 ◽  
Author(s):  
Edmund Lee ◽  
Bret Bannerman ◽  
Michael Fitzgerald ◽  
Jennifer Terkelsen ◽  
Daniel Bradley ◽  
...  

Abstract Abstract 1834 Poster Board I-860 Introduction The clinical success of VELCADE® (bortezomib) for Injection has validated the proteasome as a therapeutic target for the treatment of human cancer. The novel proteasome inhibitor MLN9708 is a potent, reversible, and specific inhibitor of the b5 site of the 20S proteasome identified in preclinical studies. MLN9708 is currently in human clinical development for both hematological and non-hematological malignancies. Here we describe the pharmacodynamic (PD) response of MLN9708 in the murine bone marrow compartment and its strong antitumor activity in an intraosseous xenograft model of plasma cell malignancy. Materials MLN9708 immediately hydrolyzes to MLN2238, the biologically active form, upon exposure to aqueous solutions or plasma. MLN2238 was used for all preclinical studies described below. Methods It has been previously shown that double transgenic iMycCa/Bcl-XL mice develop de novo plasma cell malignancies (J. Clin. Invest. 113:1763-1773, 2004) in which neoplastic plasma cell development is driven by the targeted expression of the transgene Myc (c-myc; myelocytomatosis oncogene) and Bcl-x (Bcl2l1; encodes the oncoprotein Bcl-XL). DP54 is a plasma cell tumor cell line derived from the bone marrow of a syngeneic mouse previously inoculated with an iMycCa/Bcl-XL tumor (Cancer Res. 67:4069-4078, 2007). In vitro, DP54 cells express both the Myc and Bcl-XL transgenes, various plasma cell and B-cell markers including CD38, CD138 and B220, and has gene expression profile very similar to human multiple myeloma. To establish a preclinical intraosseous model of plasma cell malignancy for efficacy studies, freshly dissociated DP54-Luc cells (constitutively expressing firefly luciferase under a mouse Ig-k promoter) were aseptically injected into the bone marrow space of the upper shaft of the right tibia of NOD-SCID mice. Once tumor growth has been established, mice were randomized into treatment groups and then treated intravenously (IV) with vehicle, bortezomib (at 0.8 mg/kg twice weekly [BIW]) or MLN2238 (at 11 mg/kg BIW) for 3 consecutive weeks. Tumor burden was measured by bioluminescent imaging. Results MLN2238 strongly inhibited proteasome activity in the blood and bone marrow compartments of mice (maximum b5 inhibition of 84% and 83%, respectively). In vivo, when DP54 cells were aseptically injected into the bone marrow space of the mouse tibia, signs of bone erosion in the tibia, femur and cranial sagittal sultures (as determined by ex-vivo mCT imaging) were observed which resembled osteolytic lesions frequently seen in human multiple myeloma. Dissemination of DP54-Luc cells after intratibia inoculations were detected by in vivo bioluminescent and confirmed by ex vivo imaging where luminescent tumor nodules were detected in the spleen, kidneys, intestine, lymph nodes and bones including right tibia, spine and cranium. To assess the antitumor activity of MLN2238 in the bone marrow compartment, an efficacy study was performed using the DP54-Luc intraosseous xenograft model of plasma cell malignancy. Tumor burden (bioluminescence), osteolytic lesions (mCT) and overall survival after treatment with bortezomib and MLN2238 will be presented. Conclusion The novel proteasome inhibitor MLN9708 demonstrates strong activity in the bone marrow compartment in vivo. MLN9708 is currently in human clinical development for both hematological and solid tumor indications. Disclosures Lee: Milllennium: Employment, Equity Ownership. Bannerman:Milllennium: Employment. Terkelsen:Milllennium: Employment. Bradley:Milllennium: Employment, Equity Ownership, Research Funding. Li:Milllennium: Employment. Li:Milllennium: Employment. Janz:Milllennium: Research Funding. Van Ness:Milllennium: Research Funding. Manfredi:Milllennium: Employment. Kupperman:Milllennium: Employment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2781-2781
Author(s):  
Wolf-Karsten Hofmann ◽  
Florian Nolte ◽  
Ouidad Benlasfer ◽  
Eckhard Thiel ◽  
Gerhard Ehninger ◽  
...  

Abstract Abstract 2781 Poster Board II-757 Lenalidomide belongs to a proprietary class of immunmodulatory drugs showing therapeutic activity in patients with myelodysplastic syndrome (MDS), in particular in those having the 5q-abnormality, but also in patients not showing this cytogenetical aberration. In 2008, Ebert et al. (PLos Med. 2, e35) could demonstrate that there is a specific gene expression profile in bone marrow cells collected from MDS-patients either with 5q- syndrome as well as MDS-patients having no 5q-abnormality which is strongly correlated with the clinical response to treatment with lenalidomide. Whereas this finding is not of clinical importance in patients with MDS del 5q (overall response 75 %) it may play a pivotal role for prediction of clinical response to lenalidomide in non-del 5q MDS-patients. Therefore, we have studied gene expression profile (HG-U133plus2.0, Affymetrix, Santa Clara, CA) of routinely isolated low-density mononuclear bone marrow cells from 8 patients with IPSS low/int-1 risk MDS having no deletion on chromosome 5 but were subsequently treated with lenalidomide 5 mg/day. All of the patients were transfusion dependent for red blood cells. The median duration of treatment with lenalidomide was 22 weeks. RNA was extracted by Trizol and quality controlled by using a Bioanalyzer 2100 system (Agilent, Waldborn, Germany) to exclude RNA degradation. Microarray hybridization was performed according to the standard Affymetrix protocol. Data were analyzed by Microarray Analysis Suites 5.0 (MAS 5.0; Affymetrix) and GeneSpring (Agilent Technologies, Santa Clara, CA). For clustering analysis we utilized the gene list of 68 discriminating genes as published by Ebert et al. the molecular analysis did clearly separate two groups of patients having specific gene expression profiles according to the responder/non-responder group as published previously. Furthermore, single sample prediction could discriminate three out of 8 patients to be possible responders to lenalidomide but this was not correlated to the clinical course of those patients while on treatment with lenalidomide. However, none of the MDS-patients receiving lenalidomide did show significant clinical response as defined by reduction of transfusion requirement by 50 % or transfusion independence. In conclusion, prediction of response to lenalidomide in non-del 5q patients by gene expression profiling so far remains critical. Prospective analysis of molecular changes including DNA analysis in larger clinical trials using lenalidomide in non-del 5q MDS-patients are required to establish reliable predictive markers in MDS. Disclosures: Hofmann: Celgene: Research Funding. Platzbecker:Celgene: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3876-3876 ◽  
Author(s):  
Andrzej J Jakubowiak ◽  
William Bensinger ◽  
David Siegel ◽  
Todd M. Zimmerman ◽  
Jan M. Van Tornout ◽  
...  

Abstract Abstract 3876 Poster Board III-812 Background Elotuzumab is a humanized monoclonal IgG1 antibody directed against CS1, a cell surface glycoprotein, which is highly and uniformly expressed in multiple myeloma (MM). In mouse xenograft models of MM, elotuzumab demonstrated significantly enhanced anti-tumor activity when combined with bortezomib compared to bortezomib alone (Van Rhee et al., Mol. Cancer Ther., in press, 2009). This phase 1/2 trial will determine the maximum tolerated dose (MTD), overall safety, pharmacokinetics (PK) and clinical response of elotuzumab in combination with bortezomib in patients with relapsed MM following 1-3 prior therapies. Methods The study consists of 4 escalating cohorts of elotuzumab (2.5 mg/kg to 20 mg/kg) administered on Days 1 and 11 and bortezomib (1.3 mg/m2) administered on Days 1, 4, 8 and 11 of a 21-day cycle. Patients with progressive disease at the end of Cycle 2 or 3 also receive oral dexamethasone (20 mg) on Days 1, 2, 4, 5, 8, 9, 11 and 12 of each subsequent cycle. Patients with stable disease or better at the end of 4 cycles will continue treatment for 6 or more cycles unless withdrawn earlier due to unexpected toxicity or disease progression. Key entry criteria: age ≥ 18 years; confirmed diagnosis of MM and documentation of 1 to 3 prior therapies; measurable disease M-protein component in serum and/or in urine; and no prior bortezomib treatment within 2 weeks of first dose. Results To date, a total of 16 MM patients with a median age of 64 years have been enrolled in the study. The median time from initial diagnosis of MM was 3.5 years and patients had received a median of 2 prior MM treatments. Patients have been treated in four cohorts; 3 each in 2.5, 5 and 10 mg/kg elotuzumab cohorts, and 7 in the 20 mg/kg elotuzumab cohort. No dose limiting toxicity (DLT) was observed during the first cycle of the study and the MTD was not established. Five SAEs have been reported in four patients in later treatment cycles; two events, chest pain and gastroenteritis, occurring in one patient, were considered elotuzumab-related. Other SAEs include grade 3 sepsis, vomiting, pneumonia and grade 2 dehydration. The most common AEs reported include Grade 1-3 diarrhea, constipation, nausea, fatigue, thrombocytopenia, neutropenia, anemia and peripheral neuropathy. The best clinical response (EBMT criteria) for the 16 patients who have received at least two cycles of treatment is shown in the table below. Preliminary PK analysis suggests a serum half-life of 10-11 days at higher doses (10 and 20 mg/kg). Preliminary analysis of peripheral blood mononuclear cells and bone marrow of patients on study indicates that objective responses in the study correlate well with complete saturation of CS1 sites by elotuzumab on bone marrow plasma and NK cells. Conclusions The combination of elotuzumab with bortezomib has a manageable adverse event profile and shows promising preliminary efficacy with ≥PR in 44% and ≥MR in 75% of all enrolled patients. Accrual is ongoing in the expanded 20 mg/kg cohort. Updated safety, efficacy, and PK data will be presented at the meeting. Disclosures: Jakubowiak: Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Centocor Ortho Biotech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Exelixis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Off Label Use: Bortezomib in combination with elotuzumab for the treatment of relapsed/refractory multiple myeloma. Bensinger:Millennium: Membership on an entity's Board of Directors or advisory committees. Siegel:Millennium: Speakers Bureau; Celgene: Speakers Bureau. Zimmerman:Millennium: Speakers Bureau; Centecor: Speakers Bureau. Van Tornout:BMS: Employment. Zhao:Facet Biotech: Employment. Singhal:Facet Biotech: Employment. Anderson:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3931-3931
Author(s):  
John Welch ◽  
Haixa Niu ◽  
Geoffrey L. Uy ◽  
Peter Westervelt ◽  
Camille N. Abboud ◽  
...  

Abstract We sought to determine whether bexarotene can be combined with decitabine in elderly and relapsed AML patients. Both drugs have been shown to be well tolerated in acute myeloid leukemia (AML) patients as single agents, and these agents have non-overlapping mechanisms and side-effect profiles; bexarotene activates transcriptional effects of RXRA through hetero- and homodimers, while decitabine is thought to act through DNA hypomethylation. Furthermore, through Affymetrix expression array profiling of 111 AML patients and Nanostring analysis of 7 MDS and AML patients, we observed consistently elevated levels of RXRA relative to RARA, suggesting that a ligand specific for RXR may be more effective to induce AML differentiation than the RARA ligand ATRA. We treated 18 elderly (≥ 60 years old) or relapsed AML patients in 3+3 dose escalating bexarotene cohorts: 100 mg/m2/day, 200 mg/m2/day, 300 mg/m2/day. All patients were treated with decitabine 20 mg/m2IV on days 1-5 of 28 day cycles. All patients were monitored for hypertriglyceridemia and hypothyroidism, and treated accordingly. The average age was 73, the average performance status was 1, an adverse karyotype was observed in 9 patients, and 12 patients had relapsed after prior therapy. Only one patient experienced a dose limiting toxicity (grade 3 fatigue) and 8 patients were treated with the maximum dose (myelosuppression, infection, differentiation syndrome, hypertriglyceridemia, hyperlipidemia, hypothyroidism, nausea, weight loss and reversible electrolyte abnormalities were not considered dose limiting). The overall response rate was 22%: 1 patient achieved complete remission with incomplete count recovery (CRi) and 3 patients achieved blast reduction greater than 50% (partial response, PR). In addition, six patients achieved stable disease (SD). Patients with CRi, PR, or SD completed an average of 4.25 cycles, while other patients completed an average of 1.2 cycles. Of note, 3 patients successfully transitioned to allogeneic transplant following therapy (average age 68). We correlated ex vivo bexarotene sensitivity with clinical response. Bone marrow cells were collected on day 0 and day 3 of bexarotene therapy (during cycle 1, decitabine was administered on day 3 after bone marrow collection) and co-cultured with irradiated MS5 murine stromal cells for 72hrs with or without further bexarotene treatment. We used flow cytometry to compare CD11b expression in cells treated with and without bexarotene ex vivo, and compared expression between samples collected on day 0 vs day 3 (in vivo treatment). Bexarotene increased CD11b expression greater in the 4 responding patients vs non-responders (fold increase in CD11b: ex vivo average 2.1 ± 0.3 vs 1.1 ± 0.1 fold, p < 0.003; and in vivo 1.6 ± 0.3 vs 0.7 ± 0.2 fold, p < 0.03; increase in absolute percentage of CD11b+ cells: ex vivo average 24% ± 2.6% vs 0.7% ± 1%, p < 0.001; and in vivo 13.6% ± 4% vs -3.6% ± 2.2%, p < 0.002). Furthermore, all 4 responding patients demonstrated an equivalent or increased induction of CD11b when treated ex vivo with ATRA compared with bexarotene. These results show that bexarotene, a retinoid which selectively binds to and activates RXRs, but not RARs, can be safely combined with decitabine in relapsed and refractory AML patients. This combination leads to partial response in a subset of patients, is well tolerated, and can bridge elderly patients to allogeneic transplant. Because ex vivo bexarotene treatment identified all patients achieving a PR, further studies should focus on patients who display ex vivo sensitivity. Finally, the mechanism of RXRA-activated differentiation is likely to be through the RXRA/RARA heterodimer, as all 4 patients who responded to bexarotene also responded to ATRA when tested ex vivo. Disclosures: Welch: Eisai: Research Funding. Off Label Use: Bexarotene for the treatment of AML. Abboud:Ariad, Alexion, Novartis, Teva: Honoraria, Speakers Bureau. Stockerl-Goldstein:Celgene : Speakers Bureau; Millennium: Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document