ABT199 and ONC201 in Diffuse Large B Cell Lymphoma Cell Lines

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5129-5129
Author(s):  
Nadia Khan ◽  
Lanlan Zhou ◽  
Jawad Babar ◽  
Joshua Allen ◽  
Richard I. Fisher ◽  
...  

Abstract Background: Diffuse Large B cell lymphoma, the most commonly diagnosed type of non-Hodgkin lymphoma is curable in many cases, despite this, up to 30% of patients will relapse after initial therapy, necessitating salvage chemotherapy and transplantation if feasible. There is a pressing need for novel treatment strategies in highly chemo refractory cases. ONC201 is a small molecule that induces p53-independent cell death in tumor cells while sparing normal cells through a number of putative mechanisms, including inactivation of the pro-survival kinases Akt and ERK. ONC201 is currently entering Phase I/II clinical trials as a monoagent in adult advanced cancers. ONC201 promotes up-regulation of TRAIL gene transcription by inactivating AKT and ERK kinases which leads to translocation of transcription factor Foxo3a into the nucleus. It appears to act on a p53 independent pathway. ABT-199 is a selective, potent and orally bioavailable small molecule that selectively inhibits BCL-2 and triggers apoptosis. The Bcl-2 family of proteins is key regulator of the apoptotic process, comprising proapoptotic and prosurvival proteins. BH3-only proteins (such as Bim) bind to pro-survival proteins and cause increased permeability of mitochondrial membrane, release of cytochrome c and activation of caspases through release of Bax and others. Methods: Cell lines Pfeiffer and Toledo were purchased from ATCC and one patient DLBCL cell specimen from the ascitic fluid was cultured for use in experiments. ABT-199 was purchased from MedKoo Biosciences and ONC201 was provided from Oncoceutics. Cytotoxicity was evaluated by using the CellTiter-Glo Luminescent Cell Viability Assay as per the manufacturerÕs instructions. Cell viability was measured over time in response to treatment with ONC201(1-64μM) and ABT-199(128 nM-4μM). Western Blotting was performed on treated cells with well-established methodologies, with antibodies to c-Myc, Bcl-2, pAKT, pERK. Results: Immunohistochemical Staining Pattern of Cell Lines Table 1. Patient Toledo Pfeiffer Bcl-2 +++ ++ + Bcl-6 + ++ ++ c-Myc +++ ++ + p-ERK + + ++ p-AKT + ++ + Bax ++ NA NA Bim ++ NA NA Mean IC50 Calculated for Cell Lines Table 2. Cell Line Therapeutic Agent ABT199 ONC201 Patient Sample 8 μM 5 nM Toledo 9 μM 28 nM Pfeiffer 6 μM 2 μM SHAPE Conclusion/Discussion: The patient cell line, an ascitic fluid sample of DLBCL was sensitive to both ONC201 and ABT-199 and manifested bright Bcl-2 expression, the target of ABT-199. In this series there was a higher sensitivity to ABT199 in DLBCL cells with higher Bcl-2 expression. ONC201 down regulated pAKT expression, as seen in Western Blots in treated cells, consistent with prior investigation with the agent. We further found that ONC201 synergizes to potentiate cytotoxicity with ABT199, as demonstrated in the cell viability assay for Toledo cell lines (at the 24 hour time point), which were the least sensitive to ONC201 (highest IC50) when given as a single agent. Yet, when combined with increasing doses of ABT199, there was synergistic lymphoma cell kill with a fixed dose of ONC201. Together these results suggest that ONC201 has potential as an antitumor agent in NHL as monoagent and in combination with ABT-199, which may be further explored in phase Ib/II trials. Further analysis in larger patient sample series may elucidate the biomarkers that predict for greater therapeutic sensitivity to these highly potent lymphoma agents. Figure 1. Figure 1. Disclosures Allen: Oncoceutics, Inc: Employment, Equity Ownership. Eldeiry:Oncoceutics, Inc: Equity Ownership.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2574-2574
Author(s):  
Gro Elise Rødland ◽  
Katrine Melhus ◽  
Roman Generalov ◽  
Sania Gilani ◽  
Francesco Bertoni ◽  
...  

The CD37 targeting radioimmunoconjugate 177Lu-lilotomab satetraxetan (Betalutin®) is currently being evaluated as monotherapy in a clinical phase 2b trial for patients with follicular lymphoma (FL) and in a phase 1 trial for patients with diffuse large B-cell lymphoma (DLBCL), as well as in a phase 1b trial in combination with rituximab for patients with relapsed/refractory FL. Herein we have investigated the effect of 177Lu-lilotomab satetraxetan in seven activated B-cell like (ABC) DLBCL cell lines. Although the radioimmunoconjugate showed anti-tumor activity, primary resistance was observed in a subset of cell lines: U-2932 and RIVA. Both cell lines are representative for TP53 deficient Double Expressor (DE) DLBCL. Importantly, resistance was not a consequence of reduced binding of the radioimmunoconjugate to cell surface expressed CD37. Thus, we set out to identify drugs able to overcome the resistance to 177Lu-lilotomab satetraxetan in both resistant ABC-DLBCL cell lines. We performed a viability-based screen combining 177Lu-lilotomab satetraxetan with the 384-compound Cambridge Cancer Compound Library. Drug combinations were scored using Bliss and Chou-Talalay algorithms. We identified and characterized the dual-specific CDK1/2 and AURA/B kinase inhibitor JNJ-7706621 as compound able to revert the resistance to radioimmunotherapy (RIT), alongside topoisomerase and histone deacetylases (HDAC) inhibitors. Kinetic studies of the effect of mono- and combination therapy of U-2932 and RIVA cells with JNJ-7706621 and 177Lu-lilotomab satetraxetan are suggestive of a model in which radiation damage induced G2-arrested lymphoma cells eventually enter mitosis (repair or escape) and mitotic entry, progression and exit are impaired by JNJ-7706621 mediated inhibition of CDK1/2 and AURKA/B. Extended residence-time of cells in mitosis due to chromosome condensation and congression defects as well as spindle and mid-spindle assembly failure is likely pivotal for the increased sensitivity to persistent 177Lu-lilotomab satetraxetan deposited DNA damage, ultimately promoting cytokinesis failure (multinucleation, aneuploidy, increased cell size) and cell death. In conclusion, CD37-targeting 177Lu-lilotomab satetraxetan RIT showed activity in several ABC-DLBCL lymphoma cell lines. CD37-independent RIT-resistance was identified in two cell lines representative of aggressive DE ABC-DLBCLs with inactive TP53, and reversed by subsequent inhibition of CDK1/2 and AURKA/B by JNJ-7706621. These findings may be of potential relevance for ongoing clinical trials of 177Lu-lilotomab satetraxetan in relapsed, ASCT-non-eligible DLBCL, and may also be more generally applicable to other 177Lu-based RITs and alternative radionuclide utilizing targeted therapies. Future pre-clinical investigations are required to elucidate the potential application of CDK1/2 and AURKA/B inhibitors as a strategy to revert RIT resistance in TP53 deficient cancers. Disclosures Rødland: Nordic Nanovector ASA: Patents & Royalties, Research Funding. Melhus:Nordic Nanovector ASA: Employment, Equity Ownership, Patents & Royalties. Generalov:Nordic Nanovector ASA: Employment, Equity Ownership, Patents & Royalties. Bertoni:Nordic Nanovector ASA: Research Funding; Oncology Therapeutic Development: Research Funding; PIQUR Therapeutics AG: Other: travel grant, Research Funding; HTG: Other: Expert Statements ; Amgen: Other: travel grants; Astra Zeneca: Other: travel grants; Jazz Pharmaceuticals: Other: travel grants; NEOMED Therapeutics 1: Research Funding; Acerta: Research Funding; ADC Therapeutics: Research Funding; Bayer AG: Research Funding; Cellestia: Research Funding; CTI Life Sciences: Research Funding; EMD Serono: Research Funding; Helsinn: Consultancy, Research Funding; ImmunoGen: Research Funding; Menarini Ricerche: Consultancy, Research Funding. Dahle:Nordic Nanovector ASA: Employment, Equity Ownership, Patents & Royalties. Syljuåsen:Nordic Nanovector ASA: Patents & Royalties, Research Funding. Patzke:Nordic Nanovector ASA: Employment, Patents & Royalties.


Author(s):  
Jing-Ran Sun ◽  
Xiao Zhang ◽  
Ya Zhang

Abstract Objective We explored the role and mechanism of miR-214 involvement in the progression of diffuse large B-cell lymphoma (DLBCL). Methods The expression levels of miR-214 and PD-L1 in human DLBCL cell lines and in tissue samples from patients with DLBCL were determined using quantitative RT-PCR. The dual-luciferase reporter assay was employed to determine the correlation between the expressions of miR-214 and PD-L1. Cell viability, invasiveness and apoptosis were respectively examined in cells of the DLBCL line OCI-Ly3 using CCK-8, transwell and flow cytometry assays. The expression level of PD-L1 was determined via immunoblotting. Inflammatory cytokine secretion was determined via enzyme-linked immune sorbent assay (ELISA). Results miR-214 was downregulated and PD-L1 was upregulated in DLBCL tissues and cell lines in comparison to normal adjacent tissues or normal B-cell. This indicates a negative correlation in the expression levels. Overexpression of miR-214 inhibited cell viability and invasion and induced apoptosis of OCI-Ly3 cells. Moreover, miR-214 was shown to target PD-L1 mRNA by binding to its 3′-untranslated region (UTR). Knockdown of PD-L1 attenuated the malignant phenotype of OCI-Ly3 cells. Overexpression of miR-214 inhibited tumor growth by targeting PD-L1 in vivo. Conclusion By targeting PD-L1, miR-214 regulates the progression of DLBCL in vitro and in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Danxia Zhu ◽  
Cheng Fang ◽  
Wenting He ◽  
Chen Wu ◽  
Xiaodong Li ◽  
...  

We investigated the role of miR-181a in diffuse large B-cell lymphoma (DLBCL) and its potential target genes. miR-181a levels were lower in activated B-cell- (ABC-) like DLBCL cells than that in germinal center B-cell- (GCB-) like DLBCL cells. Overexpression of miR-181a in ABC-like DLBCL cell lines (OCI-LY10 and U2932) resulted in G0/G1 cell cycle arrest, increased apoptosis, and decreased invasiveness. miRNA target prediction programs (miRanda, TargetScan, and miRDB) identified caspase recruitment domain-containing protein 11 (CARD11) as a putative miR-181a target. CARD11 mRNA and protein levels were higher in the ABC-like DLBCL than that in GCB-like DLBCL. Moreover, CARD11 mRNA and protein levels were downregulated in the OCI-LY10 and U2932 cell lines overexpressing miR-181a. Dual luciferase reporter assays confirmed the miR-181a binding site in the CARD11 3′UTR region. OCI-LY10 and U2932 cells transfected with a CARD11 expression vector encoding miR-181a with a mutated binding site showed higher CARD11 protein levels, cell viability, G2/M phase cells, and invasiveness compared to those transfected with a wild-type CARD11 expression vector. Nude mice xenografted with OCI-LY10 cells with overexpressed wild-type miR-181a generated smaller tumors compared to those with overexpressed mutated binding site of CARD11 3′UTR and miR-181a. These results indicate that miR-181a inhibits ABC-like DLBCL by repressing CARD11.


2019 ◽  
Vol 116 (34) ◽  
pp. 16981-16986 ◽  
Author(s):  
Claudio Scuoppo ◽  
Jiguang Wang ◽  
Mirjana Persaud ◽  
Sandeep K. Mittan ◽  
Katia Basso ◽  
...  

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


2019 ◽  
Vol 2 (4) ◽  
pp. 246-258
Author(s):  
Prashanthi Dharanipragada ◽  
Nita Parekh

Abstract Diffuse large B-cell lymphoma (DLBCL) is the aggressive form of haematological malignancies with relapse/refractory in ~ 40% of cases. It mostly develops due to accumulation of various genetic and epigenetic variations that contribute to its aggressiveness. Though large-scale structural alterations have been reported in DLBCL, their functional role in pathogenesis and as potential targets for therapy is not yet well understood. In this study we performed detection and analysis of copy number variations (CNVs) in 11 human DLBCL cell lines (4 activated B-cell–like [ABC] and 7 germinal-centre B-cell–like [GCB]), that serve as model systems for DLBCL cancer cell biology. Significant heterogeneity observed in CNV profiles of these cell lines and poor prognosis associated with ABC subtype indicates the importance of individualized screening for diagnostic and prognostic targets. Functional analysis of key cancer genes exhibiting copy alterations across the cell lines revealed activation/disruption of ten potentially targetable immuno-oncogenic pathways. Genome guided in silico therapy that putatively target these pathways is elucidated. Based on our analysis, five CNV-genes associated with worst survival prognosis are proposed as potential prognostic markers of DLBCL.


2017 ◽  
Vol 59 (7) ◽  
pp. 1710-1716 ◽  
Author(s):  
Darius Juskevicius ◽  
Anne Müller ◽  
Hind Hashwah ◽  
Pontus Lundberg ◽  
Alexandar Tzankov ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1528-1528 ◽  
Author(s):  
Laura Pasqualucci ◽  
Roberta Guglielmino ◽  
Sami N. Malek ◽  
Urban Novak ◽  
Mara Compagno ◽  
...  

Abstract Genomic instability is a driving force in tumor development that can be achieved by a variety of mechanisms, such as defective chromosome segregation or inactivation of the DNA mismatch repair pathway. Although B-cell lymphomas are associated with chromosomal translocations deregulating oncogene expression, a mechanism for genome-wide instability during lymphomagenesis has long not been described. We have reported that the somatic hypermutation process (SHM), which normally targets the immunoglobulin variable region (IgV) and BCL6 genes in germinal center (GC) B-cells, functions aberrantly in >50% of diffuse large B-cell lymphoma (DLBCL), the most common type of B-cell non-Hodgkin lymphoma (Pasqualucci et al., Nature412:341, 2001). As a consequence, multiple somatic mutations are introduced into the 5′ region of genes that do not represent physiologic SHM targets, including known proto-oncogenes such as PIM1, PAX5, RhoH/TTF and cMYC. To further define the extent of this phenomenon, termed aberrant somatic hypermutation (ASHM), and to identify additional hypermutated loci of possible pathogenetic significance in DLBCL, we screened 113 genes for the presence of mutations affecting their 5′ sequences (≥1.3 Kb from the transcription start site, the target region for SHM) in 10 DLBCL cell lines. Fifteen genes (13.3%) were found to harbor a significant number of mutations (p<0.05), with 70% of the cell lines being mutated in 7 or more genes; among these, six B-cell specific loci -BCL7A, CIITA, IRF4, LRMP, NCOA3 and SIAT1- carried 9–53 mutational events distributed in 20 to 70% of the cases, corresponding to an overall mutation frequency of 0.032–0.15% (frequency in the mutated cases: 0.07–0.25%). The same genes were found hypermutated in a panel of 20 primary DLBCL biopsies, which displayed an overall mutation load of 7 to 45 distinct events/gene (total N=125). Mutations were of somatic origin, independent of chromosomal translocations to the Ig loci and were restricted to the first 1.5–2 Kb from the promoter. In addition, analogous to previously identified SHM and ASHM targets, the mutations exhibited characteristic features, including a bias for transitions over transversions, preferential hotspot (RGYW/WRCY motifs) targeting, and higher frequencies at G:C pairs. However, in contrast to physiologic SHM targets such as IgV and BCL6, none of the 4 newly identified hypermutated genes that have been analyzed so far (BCL7A, CIITA, SIAT1, LRMP) displayed significant levels of mutations in purified normal GC B-cells as well as in other B-cell malignancies. This finding indicates that these genes represent aberrant hypermutation targets resulting from a tumor-associated malfunction, possibly a loss of target specificity of the physiologic SHM process. Considering previous results and the present survey, 17 (13%) out of 130 genes investigated have been found involved in ASHM, suggesting that this aberrant activity may involve an extensive set of target genes in DLBCL. Since the mutations affect both regulatory and coding sequences of the targeted genes, aberrant SHM may represent a major contributor to the pathogenesis of this disease and may explain in part its phenotypic and clinical heterogeneity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 242-242 ◽  
Author(s):  
Hovav Nechushtan ◽  
Joseph D. Rosenblatt ◽  
Izidore S. Lossos

Abstract Diffuse Large B-cell Lymphoma (DLBCL) represent a diverse group of lymphoid neoplasms with heterogeneous clinical, histological, immunophenotypic, cytogenetic and molecular genetic features. Approximately 50% of DLBCL patients are not cured by the standard combination chemotherapy regimens. DLBCL can be subclassified into GCB-like DLBCL which are characterized by expression of genes normally expressed in germinal center B cells, and having a significantly better overall survival (OS) than the ABC-like DLBCL, which are characterized by expression of genes induced during in vitro activation of normal B cells. At least two markers of the GCB-phenotype - BCL6 and HGAL - are IL-4 target genes, increased expression of which independently predicts better OS. These observations suggest that endogenous or exogenously administered IL-4 may influence behavior of DLBCL. IL-4 mRNA was detected at low levels in 5 of 7 GCB-like and in all 4 ABC-like DLBCL tumor specimens. Two of 7 GCB-like tumors showed high expression levels of IL-4 as determined by real-time RT-PCR. Examination of the effects of IL-4 on proliferation of GCB-like (SUDHL6, SUDHL4 and OCILY19) and ABC-like (OCILY10 and OCILY3) DLBCL cell lines showed that IL-4 mildly increased DNA synthesis, as assessed by thymidine incorporation, in all the GCB-like DLBCL. Conversely, IL-4 markedly decreased proliferation in the ABC-like DLBCL cell lines by inducing G1 arrest. IL-4 also differently affected the sensitivity of GCB-like and ABC-like DLBCL to doxorubicin. IL-4 reduced doxorubicin-induced cell death of ABC-like cell lines (20–50% reduction) while it markedly increased the killing of the GCB-like cells (40–80% induction). IL-4 also prevented serum starvation-induced cell death of the ABC-like DLBCL, but it increased cell death of the GCB-like DLBCL cell lines. Recently, Rituximab was shown to improve survival of DLBCL patients when added to the CHOP regimen. The precise mechanisms of its action are unknown; however present data suggest that it may affect lymphoma cells either by activation of complement lysis or by mediating ADCC. IL-4 reduced the complement mediated Rituximab cell lysis of the ABC-like cell lines, while it increased the complement mediated Rituximab cell lysis of the GCB-like DLBCL cell lines. Expression levels of surface markers that modulate complement cell lysis (CD46, CD55 and CD59) were not affected by IL-4 exposure. In contrast, IL-4 did not affect killing of GCB-like and ABC-like cells by ADCC. These observations suggest that DLBCL subtypes may respond differently to the in vivo cytokine milieu of the tumor. Different responsiveness to IL-4 may modulate tumor sensitivity to the current therapeutic modalities and can potentially be explored to augment response to chemotherapy and Rituximab.


Sign in / Sign up

Export Citation Format

Share Document