scholarly journals MicroRNA-181a Inhibits Activated B-Cell-Like Diffuse Large B-Cell Lymphoma Progression by Repressing CARD11

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Danxia Zhu ◽  
Cheng Fang ◽  
Wenting He ◽  
Chen Wu ◽  
Xiaodong Li ◽  
...  

We investigated the role of miR-181a in diffuse large B-cell lymphoma (DLBCL) and its potential target genes. miR-181a levels were lower in activated B-cell- (ABC-) like DLBCL cells than that in germinal center B-cell- (GCB-) like DLBCL cells. Overexpression of miR-181a in ABC-like DLBCL cell lines (OCI-LY10 and U2932) resulted in G0/G1 cell cycle arrest, increased apoptosis, and decreased invasiveness. miRNA target prediction programs (miRanda, TargetScan, and miRDB) identified caspase recruitment domain-containing protein 11 (CARD11) as a putative miR-181a target. CARD11 mRNA and protein levels were higher in the ABC-like DLBCL than that in GCB-like DLBCL. Moreover, CARD11 mRNA and protein levels were downregulated in the OCI-LY10 and U2932 cell lines overexpressing miR-181a. Dual luciferase reporter assays confirmed the miR-181a binding site in the CARD11 3′UTR region. OCI-LY10 and U2932 cells transfected with a CARD11 expression vector encoding miR-181a with a mutated binding site showed higher CARD11 protein levels, cell viability, G2/M phase cells, and invasiveness compared to those transfected with a wild-type CARD11 expression vector. Nude mice xenografted with OCI-LY10 cells with overexpressed wild-type miR-181a generated smaller tumors compared to those with overexpressed mutated binding site of CARD11 3′UTR and miR-181a. These results indicate that miR-181a inhibits ABC-like DLBCL by repressing CARD11.

Author(s):  
Giulio Sartori ◽  
Sara Napoli ◽  
Luciano Cascione ◽  
Elaine Yee Lin Chung ◽  
Valdemar Priebe ◽  
...  

Abstract Background Diffuse large B-cell lymphoma (DLBCL) comprises at least two main biologically distinct entities: germinal center B-cell (GCB) and activated B-cell (ABC) subtype. Albeit sharing common lesions, GCB and ABC DLBCL present subtype-specific oncogenic pathway perturbations. ABC DLBCL is typically characterized by a constitutively active NF-kB. However, the latter is seen in also 30% of GCB DLBCL. Another recurrent lesion in DLBCL is an 11q24.3 gain, associated with the overexpression of two ETS transcription factors, ETS1 and FLI1. Here, we showed that FLI1 is more expressed in GCB than ABC DLBCL and we characterized its transcriptional network. Methods Gene expression data were obtained from public datasets GSE98588, phs001444.v2.p1, GSE95013 and GSE10846. ChIP-Seq for FLI1 paired with transcriptome analysis (RNA-Seq) after FLI1 silencing (siRNAs) was performed. Sequencing was carried out using the NextSeq 500 (Illumina). Detection of peaks was done using HOMER (v2.6); differential expressed genes were identified using moderated t-test (limma R-package) and functionally annotated with g:Profiler. ChIP-Seq and RNA-Seq data from GCB DLBCL cell lines after FLI1 downregulation were integrated to identify putative direct targets of FLI1. Results Analysis of clinical DLBCL specimens showed that FLI1 gene was more frequently expressed at higher levels in GCB than in ABC DLBCL and its  protein levels were higher in GCB than in ABC DLBCL cell lines. Genes negatively regulated by FLI1 included tumor suppressor genes involved in negative regulation of cell cycle and hypoxia. Among positively regulated targets of FLI1, we found genes annotated for immune response, MYC targets, NF-κB and BCR signaling and NOTCH pathway genes. Of note, direct targets of FLI1 overlapped with genes regulated by ETS1, the other transcription factor gained at the 11q24.3 locus in DLBCL, suggesting a functional convergence within the ETS family. Positive targets of FLI1 included the NF-κB-associated ASB2 a putative essential gene for DLBCL cell survival. ASB2 gene downregulation was toxic in GCB DLBCL cell lines and induced NF-κB inhibition via downregulation of RelB and increased IκBα. Additionally, downregulation of FLI1, but not ASB2, caused reduction of NF-κB1 and RelA protein levels. Conclusions We conclude that FLI1 directly regulates a network of biologically crucial genes and processes in GCB DLBCL. FLI1 regulates both the classical NF-κB pathway at the transcriptional level, and the alternative NF-κB pathway, via ASB2. FLI1 and ASB2 inhibition represents a potential novel therapeutic approach for GCB DLBCL.


2019 ◽  
Vol 116 (34) ◽  
pp. 16981-16986 ◽  
Author(s):  
Claudio Scuoppo ◽  
Jiguang Wang ◽  
Mirjana Persaud ◽  
Sandeep K. Mittan ◽  
Katia Basso ◽  
...  

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


2019 ◽  
Vol 2 (4) ◽  
pp. 246-258
Author(s):  
Prashanthi Dharanipragada ◽  
Nita Parekh

Abstract Diffuse large B-cell lymphoma (DLBCL) is the aggressive form of haematological malignancies with relapse/refractory in ~ 40% of cases. It mostly develops due to accumulation of various genetic and epigenetic variations that contribute to its aggressiveness. Though large-scale structural alterations have been reported in DLBCL, their functional role in pathogenesis and as potential targets for therapy is not yet well understood. In this study we performed detection and analysis of copy number variations (CNVs) in 11 human DLBCL cell lines (4 activated B-cell–like [ABC] and 7 germinal-centre B-cell–like [GCB]), that serve as model systems for DLBCL cancer cell biology. Significant heterogeneity observed in CNV profiles of these cell lines and poor prognosis associated with ABC subtype indicates the importance of individualized screening for diagnostic and prognostic targets. Functional analysis of key cancer genes exhibiting copy alterations across the cell lines revealed activation/disruption of ten potentially targetable immuno-oncogenic pathways. Genome guided in silico therapy that putatively target these pathways is elucidated. Based on our analysis, five CNV-genes associated with worst survival prognosis are proposed as potential prognostic markers of DLBCL.


2017 ◽  
Vol 59 (7) ◽  
pp. 1710-1716 ◽  
Author(s):  
Darius Juskevicius ◽  
Anne Müller ◽  
Hind Hashwah ◽  
Pontus Lundberg ◽  
Alexandar Tzankov ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1528-1528 ◽  
Author(s):  
Laura Pasqualucci ◽  
Roberta Guglielmino ◽  
Sami N. Malek ◽  
Urban Novak ◽  
Mara Compagno ◽  
...  

Abstract Genomic instability is a driving force in tumor development that can be achieved by a variety of mechanisms, such as defective chromosome segregation or inactivation of the DNA mismatch repair pathway. Although B-cell lymphomas are associated with chromosomal translocations deregulating oncogene expression, a mechanism for genome-wide instability during lymphomagenesis has long not been described. We have reported that the somatic hypermutation process (SHM), which normally targets the immunoglobulin variable region (IgV) and BCL6 genes in germinal center (GC) B-cells, functions aberrantly in >50% of diffuse large B-cell lymphoma (DLBCL), the most common type of B-cell non-Hodgkin lymphoma (Pasqualucci et al., Nature412:341, 2001). As a consequence, multiple somatic mutations are introduced into the 5′ region of genes that do not represent physiologic SHM targets, including known proto-oncogenes such as PIM1, PAX5, RhoH/TTF and cMYC. To further define the extent of this phenomenon, termed aberrant somatic hypermutation (ASHM), and to identify additional hypermutated loci of possible pathogenetic significance in DLBCL, we screened 113 genes for the presence of mutations affecting their 5′ sequences (≥1.3 Kb from the transcription start site, the target region for SHM) in 10 DLBCL cell lines. Fifteen genes (13.3%) were found to harbor a significant number of mutations (p<0.05), with 70% of the cell lines being mutated in 7 or more genes; among these, six B-cell specific loci -BCL7A, CIITA, IRF4, LRMP, NCOA3 and SIAT1- carried 9–53 mutational events distributed in 20 to 70% of the cases, corresponding to an overall mutation frequency of 0.032–0.15% (frequency in the mutated cases: 0.07–0.25%). The same genes were found hypermutated in a panel of 20 primary DLBCL biopsies, which displayed an overall mutation load of 7 to 45 distinct events/gene (total N=125). Mutations were of somatic origin, independent of chromosomal translocations to the Ig loci and were restricted to the first 1.5–2 Kb from the promoter. In addition, analogous to previously identified SHM and ASHM targets, the mutations exhibited characteristic features, including a bias for transitions over transversions, preferential hotspot (RGYW/WRCY motifs) targeting, and higher frequencies at G:C pairs. However, in contrast to physiologic SHM targets such as IgV and BCL6, none of the 4 newly identified hypermutated genes that have been analyzed so far (BCL7A, CIITA, SIAT1, LRMP) displayed significant levels of mutations in purified normal GC B-cells as well as in other B-cell malignancies. This finding indicates that these genes represent aberrant hypermutation targets resulting from a tumor-associated malfunction, possibly a loss of target specificity of the physiologic SHM process. Considering previous results and the present survey, 17 (13%) out of 130 genes investigated have been found involved in ASHM, suggesting that this aberrant activity may involve an extensive set of target genes in DLBCL. Since the mutations affect both regulatory and coding sequences of the targeted genes, aberrant SHM may represent a major contributor to the pathogenesis of this disease and may explain in part its phenotypic and clinical heterogeneity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 242-242 ◽  
Author(s):  
Hovav Nechushtan ◽  
Joseph D. Rosenblatt ◽  
Izidore S. Lossos

Abstract Diffuse Large B-cell Lymphoma (DLBCL) represent a diverse group of lymphoid neoplasms with heterogeneous clinical, histological, immunophenotypic, cytogenetic and molecular genetic features. Approximately 50% of DLBCL patients are not cured by the standard combination chemotherapy regimens. DLBCL can be subclassified into GCB-like DLBCL which are characterized by expression of genes normally expressed in germinal center B cells, and having a significantly better overall survival (OS) than the ABC-like DLBCL, which are characterized by expression of genes induced during in vitro activation of normal B cells. At least two markers of the GCB-phenotype - BCL6 and HGAL - are IL-4 target genes, increased expression of which independently predicts better OS. These observations suggest that endogenous or exogenously administered IL-4 may influence behavior of DLBCL. IL-4 mRNA was detected at low levels in 5 of 7 GCB-like and in all 4 ABC-like DLBCL tumor specimens. Two of 7 GCB-like tumors showed high expression levels of IL-4 as determined by real-time RT-PCR. Examination of the effects of IL-4 on proliferation of GCB-like (SUDHL6, SUDHL4 and OCILY19) and ABC-like (OCILY10 and OCILY3) DLBCL cell lines showed that IL-4 mildly increased DNA synthesis, as assessed by thymidine incorporation, in all the GCB-like DLBCL. Conversely, IL-4 markedly decreased proliferation in the ABC-like DLBCL cell lines by inducing G1 arrest. IL-4 also differently affected the sensitivity of GCB-like and ABC-like DLBCL to doxorubicin. IL-4 reduced doxorubicin-induced cell death of ABC-like cell lines (20–50% reduction) while it markedly increased the killing of the GCB-like cells (40–80% induction). IL-4 also prevented serum starvation-induced cell death of the ABC-like DLBCL, but it increased cell death of the GCB-like DLBCL cell lines. Recently, Rituximab was shown to improve survival of DLBCL patients when added to the CHOP regimen. The precise mechanisms of its action are unknown; however present data suggest that it may affect lymphoma cells either by activation of complement lysis or by mediating ADCC. IL-4 reduced the complement mediated Rituximab cell lysis of the ABC-like cell lines, while it increased the complement mediated Rituximab cell lysis of the GCB-like DLBCL cell lines. Expression levels of surface markers that modulate complement cell lysis (CD46, CD55 and CD59) were not affected by IL-4 exposure. In contrast, IL-4 did not affect killing of GCB-like and ABC-like cells by ADCC. These observations suggest that DLBCL subtypes may respond differently to the in vivo cytokine milieu of the tumor. Different responsiveness to IL-4 may modulate tumor sensitivity to the current therapeutic modalities and can potentially be explored to augment response to chemotherapy and Rituximab.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4808-4808
Author(s):  
Shahab Uddin ◽  
Azhar R. Hussain ◽  
Prahant Bavi ◽  
Abdul K. Siraj ◽  
Khawla S. Al-Kuraya

Abstract Phosphatidylinositol 3-kinase (PI3-kinase) is a key player in cell growth signaling in a number of lymphoid malignancies including myeloma and primary effusion lymphoma. However, its role in diffuse large B-cell lymphoma (DLBCL) has not been elucidated. Therefore, we have studied the PI3-kinase pathway and apoptosis in a panel of DLBCL cell lines (SUDHL4, SUDHL8, SUDHL10 and OCI-LY19). Our data show that inhibition of PI3-kinase by a specific inhibitor, LY294002, induced apoptosis as detected by Annexin V/Propidium Iodide dual staining in the majority of DLBCL cell lines. We then dissected the PI3-kinase pathway by analyzing the downstream targets of phosphorylation by Western blot. We found that AKT/PKB was constitutively phosphorylated, and thus activated, in all DLBCL cell lines. The downstream elements of AKT, ForkHead (FKHR) and GSK3 were also constitutively phosphorylated in all DLBCL cell lines. Similarly, treatment with LY294002 prevented this phenomenon in all the cell lines regardless of their final apoptotic endpoint. Inhibition of PI3-kinase activity further downstream induced cleavage of Bid in all DLBCL cells and subsequently loss of mitochondrial membrane potential and release of cytochrome c from mitochondria in all DLBCL cell lines. The release of cytochrome C led to activation of Caspases 9 and 3 and cleavage of PARP. Finally expression of the inhibitor of apoptosis, XIAP, which is also a downstream target of AKT, was compromised in the all cell lines following LY294002 treatment. Our data demonstrate that the PI3-kinase pathway plays a major role in the survival and growth of DLBCL cells. Altogether, these results suggest that blocking the PI3-kinase pathway may be a potential target for therapeutic intervention in diffuse large B-cell lymphoma.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 608-608
Author(s):  
Friedrich Feuerhake ◽  
Stefano Monti ◽  
Jonathan Blank ◽  
Erxi Wu ◽  
Wen Chen ◽  
...  

Abstract The proteasome inhibitor, bortezomib (VELCADE®, formerly PS341), has significant anti-tumor activity in several lymphoid malignancies. Reported targets of this broad-based inhibitor include the NF K B pathway (I K B A). Recently defined subtypes of large B-cell lymphoma (LBCL) exhibit constitutive activation of NF K B, prompting us to analyze the efficacy of bortezomib in a panel of 10 DLBCL cell lines. Six of the diffuse LBCL cell lines were sensitive to bortezomib treatment at doses below 10 nM (range IC50 = 2.9 to 6.9 nM) whereas 4 cell lines were resistant at 10 nM (IC50 = 14.8 to 70.2 nM). Baseline proteasomal function, as defined by cleavage of the 20S proteasome-specific fluorogenic peptide LLVY-AMC, was similar in sensitive and resistant DLBCLs; however, the IC50 for bortezomib proteasomal inhibition was somewhat lower in sensitive vs. resistant lines (sens. vs res., p = .04, one-sided t test). Baseline NF K B activity varied widely in the DLBCL cell lines and did not differ in cell lines that were sensitive vs. resistant to bortezomib. Ten nM bortezomib did not inhibit NF K B activity in resistant DLBCL cell lines whereas the same dose reduced NF K B activity in sensitive DLBCL cell lines (sens. vs. res., p &lt; .005, rank test [Mann-Whitney]). However, 5 of 6 sensitive DLBCL cell lines had very low baseline NF K B levels (&lt; 0.5 relative absorbance units) suggesting that NF K B inhibition was not a major factor in bortezomib response and prompting further analysis of additional bortezomib targets. Three sensitive and 1 resistant DLBCL cell line were selected for detailed analyses of transcriptional profiles following bortezomib treatment. We developed an algorithm for identifying genes that were significantly up- or down-regulated in the bortezomib-sensitive cell lines but unchanged in the resistant line. In addition, we utilized gene set enrichment analysis (GSEA) and gene ontogeny (GO) termed enrichment to interpret the molecular signatures of response. Genes down-regulated in response to bortezomib included critical B-cell transcription factors, components of the B-cell receptor signaling cascade and genes regulating mitosis and cell cycle control; up-regulated genes included heat shock proteins (HSP) and multiple proteasomal components. Consistent with the functional data, down-regulation of NF K B target genes was not a common feature in all bortezomib-sensitive cell lines. In contrast, target genes of the c-MYC transcription factor were significantly down-regulated and c-MYC activity was decreased in sensitive (but not resistant) DLBCL cell lines following bortezomib treatment (sens. vs. res., p &lt; .005, rank test). Taken together, the results provide insights into likely mechanisms of action of bortezomib in DLBCL, highlighting c-MYC as a potentially important target and identifying HSP as a complementary target to overcome bortezomib resistance.


Sign in / Sign up

Export Citation Format

Share Document