Activity of RN-1, an LSD-1 Inhibitor, on Fetal Globin Expression in Sickle Mice and Sickle Erythroid Progenitors

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 961-961 ◽  
Author(s):  
Shuaiying Cui ◽  
Jose Sangerman ◽  
Seyed Mehdi Nouraie ◽  
Yan Dai ◽  
Oluwakemi Owoyemi ◽  
...  

Abstract Sickle cell disease (SCD) is the most common monogenic disorder, afflicting millions worldwide, and causing hemolytic anemia and chronic organ damage from vaso-occlusion. Fetal hemoglobin (HbF) is an endogenous type of hemoglobin present in all humans during development, which is normally suppressed in infancy. Biochemical and clinical studies have shown that increased synthesis of HbF inhibits sickle hemoglobin (HbS) polymerization and reduces clinical severity. Concerted efforts have been made to induce the synthesis of HbF in adult erythroid cells with chemical inducers of HbF and through disruption of transcription factors in repressor complexes. As wide variability in individual responses to drug candidates have been observed in clinical trials, consistently effective HbF inducers are highly desired. We previously identified that Lysine-specific histone demethylase 1 (LSD1) is involved in the regulation of the fetal γ-globin genes, and inhibition of LSD1 using either RNAi or by the momoamine oxidase inhibitor tranylcypromine (TC) in primary human erythroid progenitor cells induces HbF to therapeutic levels. However, TC treatment has potentially problematic side effects, and at high concentrations decreases adult b-globin mRNAs and impairs erythroid maturation. We have now investigated another LSD1 inhibitor, RN-1, which is a cell-permeable TC analog that acts as a potent, irreversible inhibitor of LSD1 with a lower IC50 than TC. We investigated in vivo effects of RN-1 on γ-globin gene expression and erythroid physiology in a transgenic mouse model of SCD which expresses human α- and sickle β-globin, and has many genetic, hematologic, and pathophysiological features found in SCD patients, including irreversibly sickled RBCs, hemolytic anemia, high reticulocyte counts, hepatosplenomegaly and organ pathology. We found a robust increase in human fetal γ-globin (15-fold) and murine embryonic εY- and βH1-globin mRNAs (36 and 54-fold) and 4-fold increases in human HbF in SCD mice following repeated RN-1 treatment (at 10 μg/g body weight) within 4 weeks. Further, irreversibly sickled RBCs were significantly reduced, and RBC lifespan increased markedly in RN-1-treated SCD mice, leading to significantly decrease pathophysiologic indicators (hemolysis, splenomegaly, and organ necrosis) compared to untreated SCD mice. To begin to evaluate potential effects of RN-1 on erythroid progenitor cells from patients with SCD, peripheral blood from 5 adult SCD patients was cultured with RN-1 (0.07 to 0.25 μM) in a 2-phase progenitor assay, with mRNA analyzed on day 12 and F-reticulocytes on day 13-14 of the erythroid differentiation phase. RN-1 treated progenitors demonstrated a mean 3.4-fold higher g-globin mRNA (p=0.04) and 5% higher absolute F-reticulocytes than were observed in untreated progenitors from the same subject, with responses occurring in 5/5 subjects' assays. These preclinical studies provide additional evidence that modulating LSD-1 activity is a promising approach to inducing HbF expression as a mechanism to reduce clinical severity of SCD. Disclaimer: "Research reported in this publication was supported by the NHLBI under Award Number P50HL118006. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health" R01 DK052962 10A1 R42-HL-110727 Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4102-4102
Author(s):  
Vladan P. Cokic ◽  
Bojana B. Beleslin-Cokic ◽  
Constance Tom Noguchi ◽  
Alan N. Schechter

Abstract We have previously shown that nitric oxide (NO) is involved in the hydroxyurea-induced increase of gamma-globin gene expression in cultured human erythroid progenitor cells and that hydroxyurea increases NO production in endothelial cells via endothelial NO synthase (NOS). Here we report that co-culture of human bone marrow endothelial cells with erythroid progenitor cells induced gamma-globin mRNA expression (1.8 fold), and was further elevated (2.4 fold) in the presence of hydroxyurea (40 μM). Based on these results, NOS-dependent stimulation of NO levels by bradykinin and lipopolysaccharide has been observed in endothelial (up to 0.3 μM of NO) and macrophage cells (up to 6 μM of NO), respectively. Bradykinin slightly increased gamma-globin mRNA levels in erythroid progenitor cells, but failed to increase gamma-globin mRNA levels in endothelial/erythroid cell co-cultures indicating that stimulation of endothelial cell production of NO alone is not sufficient to induce gamma-globin expression. In contrast, lipopolysaccharide and interferon-gamma mutually increased gamma-globin gene expression (2 fold) in macrophage/erythroid cell co-cultures. In addition, hydroxyurea (5–100 μM) induced NOS-dependent production of NO in human (up to 0.7 μM) and mouse macrophages (up to 1.2 μM). Co-culture studies of macrophages with erythroid progenitor cells also resulted in induction of gamma-globin mRNA expression (up to 3 fold) in the presence of hydroxyurea (20–100 μM). These results demonstrate a mechanism by which hydroxyurea may induce globin genes and affect changes in the phenotype of hematopoietic cells via the common paracrine effect of bone marrow stromal cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3648-3648
Author(s):  
Vladan P. Cokic ◽  
Bhaskar Bhattacharya ◽  
Raj K. Puri ◽  
Alan N. Schechter

Abstract During erythropoiesis and human development different globin genes (α, β, γ, δ and ε) are expressed as a result of globin gene switching. We investigated globin gene expression in comparison to the expression of other genes in erythroid progenitor cells (EPC) during ontogenesis using in-house produced microarrays containing 16,659 oligonucleotides. Human primitive CD34+ cells were isolated from fetal liver (FL), cord blood (CB), adult bone marrow (BM), peripheral blood (PB) and mobilized peripheral blood (mPB), and developed into EPC in the presence of erythropoietin and other cytokines. The differentiation to EPC was confirmed by flow cytometry as 100% cells were CD71+. In microarray studies, a total of 2996 genes were highly expressed in FL, 2673 genes in CB, 2580 in mPB, 1465 in PB and 1259 in BM derived EPC. 661 of these genes were common for all type of cells. The high level of expression, beside globin genes, was observed for the following genes: transferrin receptor, proteoglycans, ALAS2, Charcot-Leyden crystal protein, nucleophosmin, eosinophil peroxidase, myeloperoxidase and ribonucleases. Most of the analyzed genes demonstrated down-regulation during ontogenesis (elastase 2, glutathione peroxidase 1, SERPINB1, nudix, mitochondrial proteins, ribosomal proteins, enthoprotin, serine proteinase inhibitor), but some showed up-regulation (hexokinase, superoxide dismutase 2, spectrin). Besides developmental changes of globin gene expression during ontogenesis, we also analyzed changes in their expression during erythropoiesis in these different tissues by quantitative PCR. Beta-globin gene expression reached the maximum levels in cells of adult blood origin: BM (176 fmol/μg) and PB (110 fmol/μg). Gamma-globin gene expression, of FL origin, had steady levels during erythroid differentiation (20 fmol/μg), whereas cord blood derived EPC demonstrated consistent up-regulation (60 fmol/μg) in contrast to cells originated from adult blood (3–15 fmol/μg at day 14th). G protein related genes and histone deacetylases were elevated in CB derived EPC, concomitant with increased gamma-globin gene expression. We also analyzed the gamma-globin induction by hydroxyurea, a well known inducer, and established which G protein-coupled receptors involved pathways are activated in PB derived EPC: dopamine receptors D1, D2 and D5, beta 2 adrenergic receptor, human DP prostanoid receptor and prostaglandin E receptor 1, as well as genes activated by cAMP/PKA, PI-3 kinase, MAP and NO/cGMP pathways. This study establishes concomitant changes in expression of globin genes and other known and/or previously unrecognized genes, which appear to be involved in erythropoiesis.


1994 ◽  
Vol 14 (4) ◽  
pp. 2266-2277 ◽  
Author(s):  
G D Longmore ◽  
P N Pharr ◽  
H F Lodish

If the env gene of spleen focus-forming virus (SFFV) is replaced by a cDNA encoding a constitutively active form of the erythropoietin receptor, EPO-R(R129C), the resultant recombinant virus, SFFVcEPO-R, induces transient thrombocytosis and erythrocytosis in infected mice. Clonogenic progenitor cell assays of cells from the bone marrow and spleens of these infected mice suggest that EPO-R(R129C) can stimulate proliferation of committed megakaryocytic and erythroid progenitors as well as nonerythroid multipotent progenitors. From the spleens of SFFVcEPO-R-infected mice, eight multiphenotypic immortal cell lines were isolated and characterized. These included primitive erythroid, lymphoid, and monocytic cells. Some expressed proteins characteristic of more than one lineage. All cell lines resulting from SFFVcEPO-R infection contained a mutant form of the p53 gene. However, in contrast to infection by SFFV, activation of PU.1 gene expression, by retroviral integration, was not observed. One cell line had integrated a provirus upstream of the fli-1 gene, in a location typically seen in erythroleukemic cells generated by Friend murine leukemia virus infection. This event led to increased expression of fli-1 in this cell line. Thus, infection by SFFVcEPO-R can induce proliferation and lead to transformation of nonerythroid as well as very immature erythroid progenitor cells. The sites of proviral integration in clonal cell lines are distinct from those in SFFV-derived lines.


Blood ◽  
1996 ◽  
Vol 88 (5) ◽  
pp. 1576-1582 ◽  
Author(s):  
M Silva ◽  
D Grillot ◽  
A Benito ◽  
C Richard ◽  
G Nunez ◽  
...  

Abstract Erythropoietin (Epo), the hormone that is the principal regulator of red blood cell production, interacts with high-affinity receptors on the surface of erythroid progenitor cells and maintains their survival. Epo has been shown to promote cell viability by repressing apoptosis; however, the molecular mechanism involved is unclear. In the present studies we have examined whether Epo acts as a survival factor through the regulation of the bcl-2 family of apoptosis-regulatory genes. We addressed this issue in HCD-57, a murine erythroid progenitor cell line that requires Epo for proliferation and survival. When HCD-57 cells were cultured in the absence of Epo, Bcl-2 and Bcl-XL but not Bax were downregulated, and the cells underwent apoptotic cell death. HCD-57 cells infected with a retroviral vector encoding human Bcl-XL or Bcl-2 rapidly stopped proliferating but remained viable in the absence of Epo. Furthermore, endogenous levels of bcl-2 and bcl-XL were downregulated after Epo withdrawal in HCD-57 cells that remained viable through ectopic expression of human Bcl-XL, further indicating that Epo specifically maintains the expression of bcl-2 and bcl-XL. We also show that HCD-57 rescued from apoptosis by ectopic expression of Bcl-XL can undergo erythroid differentiation in the absence of Epo, demonstrating that a survival signal but not Epo itself is necessary for erythroid differentiation of HCD-57 progenitor cells. Thus, we propose a model whereby Epo functions as a survival factor by repressing apoptosis through Bcl-XL and Bcl-2 during proliferation and differentiation of erythroid progenitors.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 651-657 ◽  
Author(s):  
Xingwei Sui ◽  
Sanford B. Krantz ◽  
Zhizhuang Zhao

Abstract Polycythemia vera (PV) is a clonal hematologic disease characterized by hyperplasia of the three major bone marrow lineages. PV erythroid progenitor cells display hypersensitivity to several growth factors, which might be caused by an abnormality of tyrosine phosphorylation. In the present study, we have investigated protein tyrosine phosphatase (PTP) activity in highly purified erythroid progenitor cells and found that the total PTP activity in the PV cells was twofold to threefold higher than that in normal cells. Protein separation on anion-exchange and gel-filtration columns showed that the increased activity was due to a major PTP eluted at approximately 170 kD. This enzyme was sensitive to PTP inhibitors and it did not cross-react with antibodies to SHP-1, SHP-2, or CD45. Subcellular fractionation showed that the PTP localized with the membrane fraction, where its activity was increased by threefold in PV erythroid progenitors when compared with normal cells. As the erythroid progenitors progressively matured, activity of the PTP declined rapidly in the normal cells but at a much slower rate in the PV cells. These studies suggest that a potentially novel membrane or membrane-associated PTP, representing a major PTP activity, may have an important role in proliferation and/or survival of human erythroid progenitors and that its hyperactivation in PV erythroid progenitors might be responsible for the increased erythropoiesis in PV patients.


Blood ◽  
2004 ◽  
Vol 103 (10) ◽  
pp. 3615-3623 ◽  
Author(s):  
Jonathan Back ◽  
Andrée Dierich ◽  
Corinne Bronn ◽  
Philippe Kastner ◽  
Susan Chan

Abstract PU.1 is a hematopoietic-specific transcriptional activator that is absolutely required for the differentiation of B lymphocytes and myeloid-lineage cells. Although PU.1 is also expressed by early erythroid progenitor cells, its role in erythropoiesis, if any, is unknown. To investigate the relevance of PU.1 in erythropoiesis, we produced a line of PU.1-deficient mice carrying a green fluorescent protein reporter at this locus. We report here that PU.1 is tightly regulated during differentiation—it is expressed at low levels in erythroid progenitor cells and down-regulated upon terminal differentiation. Strikingly, PU.1-deficient fetal erythroid progenitors lose their self-renewal capacity and undergo proliferation arrest, premature differentiation, and apoptosis. In adult mice lacking one PU.1 allele, similar defects are detected following stress-induced erythropoiesis. These studies identify PU.1 as a novel and critical regulator of erythropoiesis and highlight the versatility of this transcription factor in promoting or preventing differentiation depending on the hematopoietic lineage.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1988-1988
Author(s):  
Jadwiga Gasiorek ◽  
Gregory Chevillard ◽  
Zaynab Nouhi ◽  
Volker Blank

Abstract Abstract 1988 Poster Board I-1010 The NF-E2 transcription factor is a heterodimer composed of a large hematopoietic-specific subunit called p45 and widely expressed 18 to 20-kDa small Maf subunits. In MEL (mouse erythroleukemia) cells, a model of erythroid differentiatin, the absence of p45 is inhibiting chemically induced differentiation, including induction of globin genes. In vivo, p45 knockout mice were reported to show splenomegaly, severe thrompocytopenia and mild erythroid abnormalities. Most of the mice die shortly after birth due to haemorrhages. The animals that survive display increased bone, especially in bony sites of hematopoiesis. We confirmed that femurs of p45 deficient mice are filled with bone, thus limiting the space for cells. Hence, we observed a decrease in the number of hematopoietic cells in the bone marrow of 3 months old mice. In order to analyze erythroid progenitor populations we performed flow cytometry using the markers Ter119 and CD71. We found that p45 deficient mice have an increased proportion of early erythroid progenitors (proerythroblasts) and a decreased proportion of late stage differentiated red blood cells (orthochromatic erythroblasts and reticulocytes) in the spleen, when compared to wild-type mice. We showed that the liver of p45 knockout adult mice is also becoming a site of red blood cell production. The use of secondary sites, such as the spleen and liver, suggests stress erythropoiesis, likely compensating for the decreased production of red blood cells in bone marrow. In accordance with those observations, we observed about 2 fold increased levels of erythropoietin in the serum of p45 knockout mice.Overall, our data suggest that p45 NF-E2 is required for proper functioning of the erythroid compartment in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 340-340
Author(s):  
Pratima Chaurasia ◽  
Dmitriy Berenzon ◽  
Ronald Hoffman

Abstract Abstract 340 Presently, blood transfusion products (TP) are composed of terminally differentiated cells with a finite life span. We attempted to develop an alternative TP which would be capable of generating additional red blood cells (RBC). Several histone deacetylase inhibitors (HDACIs) were used in vitro to reprogram cord blood (CB) CD34+ cells to differentiate to erythroid progenitor cells (EPC). We demonstrated that CB CD34+ cells in the presence of HDACIs (SAHA, VPA and TSA), and a combination of cytokines SCF, IL-3, TPO and FLT3, promoted expansion of CD34+ cells and CD34+CD90+ cells as compared to cultures containing cytokines alone. Addition of VPA resulted in the greatest expansion of CD34+ cells, CD34+CD90+cells+ (59.4 fold, p=0.01; 66.7 fold, p=0.02, respectively) as compared to SAHA and TSA. VPA also led to the generation of the greatest absolute number of EPC cells (14.9×106, p=0.002), approximately a 5500 fold in the numbers of assayable EPC, as compared to primary CB. The single cell analyses of CB CD34+ cells (Day0) and single CD34+ reisolated from ex-vivo cultures pretreated with cytokines alone or cytokines+VPA demonstrated an skewed differentiation program of CD34+ cells to EPC (>94%, p=0.003) compared to CB CD34+(50%) and cytokines alone (29%). We investigated the expression of lineage specific phenotypic markers expressed by CD34+ cells exposed to cytokines alone or cytokines plus VPA. The FACS analyses showed a significantly greater proportion of CD34+CD36+ (52.4% vs 21.0%) CD36+CD71+(44.5% vs7.6%), CD36+GPA+(12.8% Vs 4.0%) and CD71+GPA+(22.2% vs 6.3%) cells with lower numbers of CD19+(2.8% vs 13.6%) cells, CD14+(2.0% vs 8.9%), CD15+(1.8 vs 6.9%) in VPA treated CD34+ cells as compared to cytokines alone. We monitored the relative expression of a group of genes characteristic of both primitive HPC and erythroid commitment (Bmi1, Dnmt1, Ezh2, Smad5, Eklf, GATA1, GATA2, EpoR and Pu.1). Q-PCR was performed on CD34+cells reisolated from cultures treated with cytokines alone or cytokines plus VPA and compared to primary CB CD34+ cells. The expression of genes associated with retention of the biological properties of the primitive HPC (Bmi1-2.6 fold, Dnmt1-10.3 fold and Ezh2-4.8 fold) and erythroid lineage specific genes (Smad5-6.2 fold, GATA2-3.7 fold) were upregulated and Pu.1 (0.6-fold), GATA1(1.9 fold) were downregulated as compared to cytokines alone. However, expression of EpoR and Eklf were similar in the two cell populations Histone acetylation study showed that the CB CD34+ cells and VPA treated CD34+ cells had a significant proportion of acetylated H3K9 cells, 52.2% and 56.1% respectively, while this population was virtually absent in CD34+ cells exposed to cytokines alone (1.3%, p=0.001). ChIP assay demonstrated a varying degree of H3K9/14 and H3K27 acetylation within the promoters of VPA treated CD34+ cells for GATA2 (7.4 fold, 7.2 fold), Eklf (7.4 fold, 9.7 fold), Pu.1(4.5fold, 4.8 fold), EpoR (2.3 fold, 4.7 fold) and GATA1(4.7 fold, 2.9 fold). The acetylation of cytokines treated CD34+ cells were much lower than VPA treated CD34+ cells. The VPA treated cell product after 9 days (supplemented with SCF, Epo and IL-3 for 2 additional days) compared to 7 days contained a greater percentage of EPC and erythroid precursor cells CD34+CD36+(24.9% vs 23.0%), CD36+GPA+(33.9% vs 18.8%), CD36+. CD71+(55.8% vs 37.8%), CD71+GPA+(33.9% vs 20.5%) and CD34+CXCR4+(28.8% vs 21.0 %). The TP contained very limited number of CD19+(1.4%), CD14+(11.11%) or CD15+(6.8%) of cells. Approximately 50 % of the cells present in the TP expressed the chemokine receptor CXCR4. We next evaluated the behavior of ex vivo expanded cell product following transfusion into sublethally irradiated NOD/SCID mice. FACS analyses of mice peripheral blood (PB) on serial days showed evidence of circulating nucleated erythroid and enucleated red cells. The greatest number of circulating human RBC (12.4%±6.8%) was observed on day5. RT-PCR analyses on the PB of mice on day 15 revealed the presence of erythroid cells containing both human adult and fetal hemoglobin. On day 15 the mice were sacrificed and the degree of human cells engraftment in the marrow were predominately hu -CD45+ (7.4%), CD34-CD36+(1.8%), CD36 (4.5%) and GPA+(1.7%) with no evidence of CD33+, CD14+, CD19+ and CD41+ cells. The ex vivo generated EPC-TP likely represents a paradigm shift in transfusion medicine due to its continued ability to generate additional RBC. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 44 (3) ◽  
pp. 167-177 ◽  
Author(s):  
Maria-Grazia Spiga ◽  
Douglas A Weidner ◽  
Chantal Trentesaux ◽  
Robert D LeBoeuf ◽  
Jean-Pierre Sommadossi

Blood ◽  
2009 ◽  
Vol 114 (1) ◽  
pp. 187-194 ◽  
Author(s):  
Wulin Aerbajinai ◽  
Jianqiong Zhu ◽  
Chutima Kumkhaek ◽  
Kyung Chin ◽  
Griffin P. Rodgers

Abstract Increased fetal hemoglobin expression in adulthood is associated with acute stress erythropoiesis. However, the mechanisms underlying γ-globin induction during the rapid expansion of adult erythroid progenitor cells have not been fully elucidated. Here, we examined COUP-TFII as a potential repressor of γ-globin gene after stem cell factor (SCF) stimulation in cultured human adult erythroid progenitor cells. We found that COUP-TFII expression is suppressed by SCF through phosphorylation of serine/threonine phosphatase (PP2A) and correlated well with fetal hemoglobin induction. Furthermore, down-regulation of COUP-TFII expression with small interfering RNA (siRNA) significantly increases the γ-globin expression during the erythroid maturation. Moreover, SCF-increased expression of NF-YA associated with redox regulator Ref-1 and cellular reducing condition enhances the effect of SCF on γ-globin expression. Activation of Erk1/2 plays a critical role in SCF modulation of downstream transcriptional factor COUP-TFII, which is involved in the regulation of γ-globin gene induction. Our data show that SCF stimulates Erk1/2 MAPK signaling pathway, which regulates the downstream repressor COUP-TFII by inhibiting serine/threonine phosphatase 2A activity, and that decreased COUP-TFII expression resulted in γ-globin reactivation in adult erythropoiesis. These observations provide insight into the molecular pathways that regulate γ-globin augmentation during stress erythropoiesis.


Sign in / Sign up

Export Citation Format

Share Document