A CD47xCD19 Bispecific Antibody That Remodels the Tumor Microenvironment for Improved Killing and Provokes a Memory Immune Response to Cancer B Cells

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 44-44
Author(s):  
Walter G. Ferlin ◽  
Xavier Chauchet ◽  
Vanessa Buatois ◽  
Susana Salgado-Pires ◽  
Limin Shang ◽  
...  

Abstract Up-regulation of CD47 in hematological and solid cancers correlates with poor clinical prognosis. CD47 interaction with SIRPα provides a ‘don't eat me’ signal that allows healthy cells to limit elimination by immune cells, in particular macrophages. Although tumor-associated macrophages (TAMs) are often considered pro-tumorigenic, several studies report a high phagocytic potential and tumoricidal function in the presence of therapeutic antibodies (Ab). Therefore, targeting the CD47-SIRPα pathway in the tumor microenvironment is an attractive approach to maximize the tumor killing potential of TAMs to boost tumor destruction. However, clinical development of monoclonal Abs to CD47 is likely to be hindered by the ubiquitous expression of CD47 leading to rapid drug elimination and toxicity including anemia. To address these concerns, we have created NI-1701, a bispecific Ab that drives efficacious binding only to CD19+B cells by pairing a high affinity anti-CD19 targeting arm to an anti-CD47 arm of optimized affinity.. In addition to in vitro data demonstrating that the bispecific Ab, NI-1701, effectively kills CD19+ human tumor B cells through ADCP (antibody-dependent cellular phagocytosis) and antibody-dependent cell-mediated cytotoxicity (ADCC), we have observed significant tumor killing in vivo, as either a monotherapy or in a combination approach. NI-1701 controlled sub-cutaneously implanted Raji cell tumor growth in NOD/SCID mice in a manner dependent on the co-ligation of both CD19 and CD47. Examination of the excised tumors revealed that NI-1701 reshaped the tumor microenvironment by enhancing the tumoricidal activity of macrophages (i.e., more macrophages engulfing tumor cells), by promoting an antitumor M1-like phenotype, and reducing the proportion of CD11b+Gr1+myeloid-derived suppressor cells (MDSCs). Extending these findings to a disseminated in vivo model, NI-1701 eliminated tumor cells from the peripheral blood, bone marrow and liver in mice transplanted either with the B-Acute Lymphocytic Leukemia (B-ALL) cell line NALM-6 or with primary cells from B-ALL patients. Furthermore, NI-1701 also abrogated tumor growth more efficiently than the BTK inhibitor ibrutinib in a Diffuse Large B-Cell Lymphoma (DLBCL) patient-derived xenograft (PDX) mouse model. As combination therapies are gaining traction as successful treatment strategies in the clinic, we next tested the effect of blocking CD47 biology in combination with clinically validated molecules. Interestingly, in NOD/SCID mice implanted with Raji cells, NI-1701 was shown to be more efficacious at controlling tumor cell growth than Rituximab. A combination of NI-1701 and Rituximab was shown to act synergistically at controlling tumor growth and leading to tumor regression in some mice. Finally, in a syngeneic re-challenge model, using bispecific reagents targeting CD47 blockade to the A20 murine B-cell lymphoma, we observed the induction of a durable and protective anti-tumor response when combined with a single administration of cyclophosphamide. Importantly, in vitro safety studies demonstrate a favorable binding profile of NI-1701 to B cells compared with erythrocytes, no evidence of platelet activation or aggregation and no haemagglutination at and above anticipated therapeutic concentrations. Single and multiple dose studies in non-human primates demonstrated favorable elimination kinetics and no effects on hematological parameters (e.g., red blood cell and platelet counts) up to 100mg/kg, the highest dose tested. Taken together, we describe a novel bispecific approach that balances a safe yet effective blockade of CD47 with a high selectivity for a B cell associated antigen resulting in impressive tumor cell killing in a range of preclinical models. The effects on both the reshaping of the tumor microenvironment and the induction of long term tumor immunity provide further evidence that manipulation of myeloid lineage cells (e.g., macrophages and dendritic cells) is a promising approach for the next frontier in immune-oncology treatment strategies. NI-1701 is in preclinical enabling studies in preparation for a Phase I clinical study in patients with CD19+ B cell malignancies, planned for early 2017. Disclosures Ferlin: Novimmune S.A.: Employment, Equity Ownership. Chauchet:Novimmune S.A.: Employment. Buatois:Novimmune S.A.: Employment. Salgado-Pires:Novimmune S.A.: Employment. Shang:Novimmune S.A.: Employment. Dheilly:Novimmune S.A.: Employment. Masternak:Novimmune S.A.: Employment. Johnson:Novimmune S.A.: Employment. DiPersio:Incyte Corporation: Research Funding. Kosco-Vilbois:Novimmune S.A.: Employment. Fischer:Novimmune S.A.: Employment.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2-2 ◽  
Author(s):  
Masumichi Saito ◽  
Ryan T. Phan ◽  
Herbert C. Morse ◽  
Laura Pasqualucci ◽  
Riccardo Dalla-Favera

Abstract Deregulated expression of the proto-oncogenes BCL6 and c-MYC caused by chromosomal translocation or somatic hypermutation is common in non-Hodgkin B cell lymphoma derived from germinal center (GC) B cells, including diffuse large cell lymphoma (DLBCL) and Burkitt lymphoma (BL). Normal GC B cells express BCL6, whereas, surprisingly, they do not express c-MYC, suggesting that the expression of this oncogene in BL and DLBCL (20% of cases) is ectopic (Klein, U. et al. Proc Natl Acad Sci U S A100, 2639–2644, 2003). Here we report that c-MYC is absent in proliferating GC B cells because it is transcriptionally suppressed by BCL6, as demonstrated by the presence of specific BCL6 binding sites in the c-MYC promoter region and by chromatin immunoprecipitation experiments showing that BCL6 is bound to these sites in vivo. Thus, c-MYC escapes BCL6-mediated suppression in lymphoma leading to the co-expression of the two transcription factors, an event never observed in immunohistochemical and gene expression profile analysis of normal GC B cells. Surprisingly, co-immunoprecipitation experiments and in vitro binding experiments indicate that, when co-expressed, BCL6 and c-MYC are physically bound in a novel complex detectable in DLBCL and BL cell lines as well as in primary lymphoma cases. The formation of the BCL6/c-MYC complex has several significant functional consequences on the function of both c-MYC and BCL6: 1) a two fold, BCL6-binding dependent increase in c-MYC half-life, an event that has been shown to contribute to its oncogenic activation; 2) a synergistic increase in the ability of both BCL6 and c-MYC to suppress MIZ1-activated transcription of the p21CIP cell cycle arrest gene; 3) MYC-dependent inhibition of BCL6 acetylation by p300, an event that physiologically inactivates BCL6 via c-MYC-mediated recruitment of HDAC. Notably, the pathologic co-expression of c-MYC and BCL6 was shown to have pathologic consequences in vivo, since double transgenic BCL6/c-MYC mice display accelerated lymphoma development and the appearance of a novel GC-derived tumor phenotype not recognizable in single transgenic animals and containing the pathologic c-MYC/BCL6 complex. Thus, the pathologic co-expression and illegitimate physical interaction of BCL6 and c-MYC leads to an increase in the constitutive activity of both oncogenes. These results identify a novel mechanism of oncogenic function for BCL6 and c-MYC and a novel tumor-specific protein complex of potential therapeutic interest.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3735-3735
Author(s):  
Adam D Cohen ◽  
Indira D Joshi ◽  
Valentin Robu ◽  
Hossein Borghaei ◽  
Tahseen I. Al-Saleem ◽  
...  

Abstract Abstract 3735 Agonist monoclonal antibodies (mAbs) to CD137, a co-stimulatory TNF receptor family member expressed on activated T and NK cells, can induce immune-mediated rejection of multiple murine tumor types, and a fully human anti-CD137 mAb, BMS-663513, is in early-phase clinical trials in solid tumors. Significant activity has been seen in murine lymphoma models, both alone and in combination with anti-CD20 mAbs, providing rationale for clinical studies in lymphoma patients. Recently, however, CD137 up-regulation on activated human B cells has been reported, with CD137 ligation causing enhanced B cell proliferation and survival. This raises the concern that mAb binding to CD137, if present, on B cell neoplasms may promote tumor cell proliferation and/or resistance to apoptosis that may counteract the beneficial effects on T and NK cells. We therefore sought to assess the expression of CD137 on a series of human cell lines and primary tumor samples from patients with B-cell neoplasms, and if expressed, to explore the consequences of ligation with the anti-CD137 agonist BMS-66513. First, archived paraffin-embedded lymph node specimens from patients with low-grade B-cell lymphoma (n=11: 5 follicular, 4 marginal zone, 2 small lymphocytic) and diffuse large B-cell lymphoma (n=15) were stained for CD137 by immunohistochemistry. Reactive tonsillar tissue served as a positive control. No CD137 expression was observed within any tumor cells. Next, fresh samples from 14 additional patients with known tumor involvement of peripheral blood or bone marrow (8 chronic lymphocytic leukemia, 1 mantle cell lymphoma, 3 myeloma, 2 marginal zone lymphoma) were analyzed by multi-color flow cytometry. Again, no CD137 expression was observed on the gated neoplastic cells. Baseline surface expression of CD137 was similarly absent in all B cell-derived lines tested (Raji, FCTxFL2, FSCCL, DoHH2, Jeko-1, RPMI8226). However, activation with PMA/Ionomycin could reproducibly induce CD137 expression (% positive: 0.17% → 91%) after 24 hours in 1 of the lines: the follicular lymphoma FSCCL. Interestingly, this was the only line tested that lacked constitutive expression of CD137 ligand (CD137L), suggesting some reciprocal regulation of ligand and receptor expression. Despite this up-regulation of CD137, in vitro ligation of PMA/Ionomycin-activated FSCCL cells with BMS-66513 did not further increase tumor cell proliferation, nor protect the cells from activation-induced cell death, in contrast to effects of CD137 ligation reported in normal B cells (Zhang et al, J Immunol 2010; 184:787). Similarly, BMS-663513 treatment of activated, CD137+ FSCCL cells did not diminish the apoptosis induced by doxorubicin or bortezomib treatment. In addition, FSCCL cells recovered from ascites 7 and 14 days following intraperitoneal injection in SCID mice did not express CD137, implying that CD137 up-regulation is not occurring in vivo during tumor growth. Finally, treatment of FSCCL cells with rituximab, either in vitro or in vivo, did not induce CD137 expression. In conclusion, we demonstrate a lack of steady-state CD137 expression on malignant B cells, confirming the prior study by Houot et al (Blood 2009; 114:3431) and extending these findings to include CLL/SLL for the first time. While CD137 could be induced in a single cell line upon non-specific activation, CD137 expression on FSCCL cells was not seen under physiologic conditions likely to be encountered in the clinical setting, consistent with the primary patient data. Furthermore, even when CD137 was expressed, ligation with the agonist anti-CD137 mAb BMS-663513 did not provide a pro-proliferative or anti-apoptotic signal. These studies provide reassurance and further rationale for exploring agonist anti-CD137 antibodies as therapies for B cell neoplasms. Disclosures: Borghaei: Lilly, Genentech, Amgen, Pfizer: Honoraria, Research Funding. Jure-Kunkel:Bristol Meyers Squibb: Employment.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2519-2519 ◽  
Author(s):  
Ssucheng J. Hsu ◽  
Lin A. Esposito ◽  
Sharon L. Aukerman ◽  
Seema Kantak ◽  
Amer M. Mirza

Abstract CD40, a member of the tumor necrosis factor receptor family, is expressed in all human B-cell malignancies and engagement by the CD40 ligand (CD40L) is important for both cell proliferation and cell survival. CD40L has been shown to be co-expressed with CD40 in neoplastic B-cells from Chronic Lymphocytic Leukemia (CLL) and Non-Hodgkins Lymphoma (NHL), suggesting the importance of an autocrine CD40/CD40L loop in these malignancies. HCD122 (formerly known as CHIR-12.12) is a fully human, highly potent, IgG1 antagonist anti-CD40 monoclonal antibody (mAb) that blocks CD40/CD40L interactions in vitro and also mediates ADCC. Previous studies showed that HCD122 can mediate ADCC in vitro and has anti-proliferative and anti-tumor activities as a single agent in CLL, MM, and Burkitts Lymphoma in vitro and in vivo. In this study, the activity of HCD122 on a subtype of NHL, Diffuse Large B-Cell Lymphoma (DLBCL) was examined. The DLBCL derived cell lines, RL and SU-DHL-4, were selected for this study based upon in vivo characterization as well as their sensitivity to Rituximab as reported in the literature. These cell lines were subsequently confirmed for the expression of CD40 and CD20 by flow cytometry. The in vivo anti-tumor effects of HCD122 as single agent was demonstrated in these two xenograft models and was compared to Rituximab, an anti-CD20 antibody therapeutic currently approved for the treatment of relapsed or refractory, low-grade or follicular, NHL. HCD122 when administered intraperitoneally weekly at 1 mg/kg significantly reduced tumor growth with a tumor growth inhibition (TGI) of 85.5% (P<0.01) in the RL model. At the same dose and schedule in the RL model, TGI achieved with Rituximab was 31.7% (P>0.05). In the SU-DHL-4 model, an 85% TGI (P<0.01) was observed at the 1 mg/kg dose of HCD122. In comparison, Rituximab at this dose elicited a 57.6% TGI (P<0.05). Additionally, the downstream CD40/CD40L signal transduction pathways were also examined in order to elucidate the molecular mechanism underlying the HCD122-mediated effects in DLBCL. Taken together, these results support the clinical development of HCD122 for the treatment of DLBCL. Currently HCD122 is in Phase I trials for treatment of CLL and MM.


2018 ◽  
Vol 92 (21) ◽  
Author(s):  
Carrie B. Coleman ◽  
Julie Lang ◽  
Lydia A. Sweet ◽  
Nicholas A. Smith ◽  
Brian M. Freed ◽  
...  

ABSTRACTEpstein-Barr virus (EBV) has been classified into two strains, EBV type 1 (EBV-1) and EBV type 2 (EBV-2) based on genetic variances and differences in transforming capacity. EBV-1 readily transforms B cells in culture while EBV-2 is poorly transforming. The differing abilities to immortalize B cellsin vitrosuggest thatin vivothese viruses likely use alternative approaches to establish latency. Indeed, we recently reported that EBV-2 has a unique cell tropism for T cells, infecting T cells in culture and in healthy Kenyan infants, strongly suggesting that EBV-2 infection of T cells is a natural part of the EBV-2 life cycle. However, limitations of human studies hamper further investigation into how EBV-2 utilizes T cells. Therefore, BALB/c Rag2nullIL2rγnullSIRPα humanized mice were utilized to develop an EBV-2in vivomodel. Infection of humanized mice with EBV-2 led to infection of both T and B cells, unlike infection with EBV-1, in which only B cells were infected. Gene expression analysis demonstrated that EBV-2 established a latency III infection with evidence of ongoing viral reactivation in both B and T cells. Importantly, EBV-2-infected mice developed tumors resembling diffuse large B cell lymphoma (DLBCL). These lymphomas had morphological features comparable to those of EBV-1-induced DLBCLs, developed at similar rates with equivalent frequencies, and expressed a latency III gene profile. Thus, despite the impaired ability of EBV-2 to immortalize B cellsin vitro, EBV-2 efficiently induces lymphomagenesis in humanized mice. Further research utilizing this model will enhance our understanding of EBV-2 biology, the consequence of EBV infection of T cells, and the capacity of EBV-2 to drive lymphomagenesis.IMPORTANCEEBV is a well-established B cell-tropic virus. However, we have recently shown that the EBV type 2 (EBV-2) strain also infects primary T cells in culture and in healthy Kenyan children. This finding suggests that EBV-2, unlike the well-studied EBV-1 strain, utilizes the T cell compartment to persist. As EBV is human specific, studies to understand the role of T cells in EBV-2 persistence require anin vivomodel. Thus, we developed an EBV-2 humanized mouse model, utilizing immunodeficient mice engrafted with human cord blood CD34+stem cells. Characterization of the EBV-2-infected humanized mice established that both T cells and B cells are infected by EBV-2 and that the majority of infected mice develop a B cell lymphoma resembling diffuse large B cell lymphoma. This newin vivomodel can be utilized for studies to enhance our understanding of how EBV-2 infection of T cells contributes to persistence and lymphomagenesis.


1995 ◽  
Vol 181 (4) ◽  
pp. 1539-1550 ◽  
Author(s):  
E Racila ◽  
R H Scheuermann ◽  
L J Picker ◽  
E Yefenof ◽  
T Tucker ◽  
...  

Tumor dormancy can be induced in a murine B cell lymphoma (BCL1) by immunizing BALB/c mice with the tumor immunoglobulin (Ig) before tumor cell challenge. In this report, we have investigated the immunological and cellular mechanisms underlying the induction of dormancy. BCL1 tumor cells were injected into SCID mice passively immunized with antibody against different epitopes on IgM or IgD with or without idiotype (Id)-immune T lymphocytes. Results indicate that antibody to IgM is sufficient to induce a state of dormancy. Antibodies against other cell surface molecules including IgD and CD44 (Pgp1) had no effect on tumor growth. Id-immune T cells by themselves also had no effect on tumor growth in SCID mice. However, simultaneous transfer of anti-Id and Id-immune T cells enhanced both the induction and duration of the dormant state. In vitro studies indicated that antibody to IgM induced apoptosis within several hours and cell cycle arrest by 24 h. Hyper cross-linking increased apoptosis. The Fc gamma RII receptor played little or no role in the negative signaling. Antibodies that did not negatively signal in vitro did not induce dormancy in vivo. The results suggest that anti-IgM plays a decisive role in inducing tumor dormancy to BCL1 by acting as an agonist of IgM-mediated signal transduction pathways.


2020 ◽  
Author(s):  
Su Yao ◽  
Tairan Guo ◽  
Fen Zhang ◽  
Yu Chen ◽  
Fangping Xu ◽  
...  

Abstract Background: F-box and WD repeat domain-containing 7 (Fbw7) is an ubiquitin ligase and tumor suppressor which targets a variety of oncogenic proteins for proteolysis. We previously reported that Fbw7 regulates apoptosis in diffuse large B-cell lymphoma (DLBCL) through Fbw7-mediated ubiquitination of Stat3. However, the mechanism by Fbw7-mediated tumor metabolism remains undefined. We examined the function of Fbw7 for tumor metabolism and progression in DLBCL.Methods: The effect of Fbw7 overexpression on Lactate Dehydrogenase A (LDHA)-related tumor metabolism was explored in activated B-cell (ABC) like DLBCL. And Fbw7-mediated expression of LDHA in DLBCL was detected by immunoprecipitation for protein interaction, ubiquitination assay, western blotting and mRNA qualitative analyses. In vitro and in vivo studies were done to measure the function of the Fbw7-mediated LDHA/lactate/miR-223 axis in DLBCL progression.Results: We demonstrated that the ubiquitin-ligase Fbw7 played a key role in LDHA-related metabolism. As LDHA and its catalytic lactate were critical for tumor growth and progression in ABC-DLBCL, our results demonstrated that Fbw7 could interact with LDHA to trigger its ubiquitination and degradation, and lactate negatively regulated Fbw7 via inducing the expression of miR-223, which targeted Fbw7 3’-UTR to inhibit its expression. In vivo and in vitro studies revealed that miR-223 promoted tumor growth and that the effects of miR-223 on tumor growth were primarily related to the inhibition of Fbw7-mediated LDHA’s ubiquitination. Conclusions: Our study uncovers a positive functional loop consisting of a Fbw7-mediated LDHA/lactate/miR-223 axis, which may support the future ABC-DLBCL therapy by targeting LDHA-related inhibition.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208709 ◽  
Author(s):  
Silvia Da Ros ◽  
Luca Aresu ◽  
Serena Ferraresso ◽  
Eleonora Zorzan ◽  
Eugenio Gaudio ◽  
...  

2012 ◽  
Vol 209 (2) ◽  
pp. 291-305 ◽  
Author(s):  
Likun Du ◽  
Roujun Peng ◽  
Andrea Björkman ◽  
Noel Filipe de Miranda ◽  
Cornelia Rosner ◽  
...  

Cernunnos is involved in the nonhomologous end-joining (NHEJ) process during DNA double-strand break (DSB) repair. Here, we studied immunoglobulin (Ig) class switch recombination (CSR), a physiological process which relies on proper repair of the DSBs, in B cells from Cernunnos-deficient patients. The pattern of in vivo generated CSR junctions is altered in these cells, with unusually long microhomologies and a lack of direct end-joining. The CSR junctions from Cernunnos-deficient patients largely resemble those from patients lacking DNA ligase IV, Artemis, or ATM, suggesting that these factors are involved in the same end-joining pathway during CSR. By screening 269 mature B cell lymphoma biopsies, we also identified a somatic missense Cernunnos mutation in a diffuse large B cell lymphoma sample. This mutation has a dominant-negative effect on joining of a subset of DNA ends in an in vitro NHEJ assay. Translocations involving both Ig heavy chain loci and clonal-like, dynamic IgA switching activities were observed in this tumor. Collectively, our results suggest a link between defects in the Cernunnos-dependent NHEJ pathway and aberrant CSR or switch translocations during the development of B cell malignancies.


2020 ◽  
Vol 52 (4) ◽  
pp. 401-410
Author(s):  
Mengyu Xi ◽  
Wan He ◽  
Bo Li ◽  
Jinfeng Zhou ◽  
Zhijian Xu ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is the most common category and disease entity of non-Hodgkin lymphoma. Osalmide and pterostilbene are natural products with anticancer activities via different mechanism. In this study, using a new synthetic strategy for the two natural products, we obtained the compound DCZ0801, which was previously found to have anti-multiple myeloma activity. We performed both in vitro and in vivo assays to investigate its bioactivity and explore its underlying mechanism against DLBCL cells. The results showed that DCZ0801 treatment gave rise to a dose- and time-dependent inhibition of cell viability as determined by CCK-8 assay and flow cytometry assay. Western blot analysis results showed that the expression of caspase-3, caspase-8, caspase-9 and Bax was increased, while BCL-2 and BCL-XL levels were decreased, which suggested that DCZ0801 inhibited cell proliferation and promoted intrinsic apoptosis. In addition, DCZ0801 induced G0/G1 phase arrest by downregulating the protein expression levels of CDK4, CDK6 and cyclin D1. Furthermore, DCZ0801 exerted an anti-tumor effect by down-regulating the expressions of p-PI3K and p-AKT. There also existed a trend that the expression of p-JNK and p-P38 was restrained. Intraperitoneal injection of DCZ0801 suppressed tumor development in xenograft mouse models. The preliminary metabolic study showed that DCZ0801 displayed a rapid metabolism within 30 min. These results demonstrated that DCZ0801 may be a new potential anti-DLBCL agent in DLBCL therapy.


2019 ◽  
Vol 116 (34) ◽  
pp. 16981-16986 ◽  
Author(s):  
Claudio Scuoppo ◽  
Jiguang Wang ◽  
Mirjana Persaud ◽  
Sandeep K. Mittan ◽  
Katia Basso ◽  
...  

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


Sign in / Sign up

Export Citation Format

Share Document