scholarly journals Granulocytopoiesis. II. Emergence and Pattern of Labeling of Neutrophilic Granulocytes in Humans

Blood ◽  
1964 ◽  
Vol 24 (6) ◽  
pp. 683-700 ◽  
Author(s):  
T. M. FLIEDNER ◽  
E. P. CRONKITE ◽  
S. Å. KILLMANN ◽  
V. P. BOND

Abstract 1. Following administration of H3-thymidine to 15 patients with a variety of hemopoietic conditions, the emergence and the pattern of labeling of neutrophilic granulocytes were studied in peripheral blood leukocytic concentrates. The hematologic diagnosis included five in which the hemopoiesis appeared to be in a steady state equilibrium at the time of study, three with various types of leukemia, one with lymphosarcoma, two with multiple myeloma, one with myelofibrosis, two with pernicious anemia (once before and once after therapy) and two with bacterial infections. 2. The emergence time of neutrophilic segmented granulocytes (time from H3-thymidine injection to the first appearance of labeled segmented forms in the peripheral blood) was found to vary in steady state equilibrium from 96 to 144 hours. It was shortened to 48 hours in two instances with bacterial infection. This was interpreted as indicating a faster than normal nuclear maturation with normal or delayed cytoplasmic maturation (dissociation in nuclear and cytoplasmic maturation). 3. The number of segments of neutrophilic granulocytes was found to be unrelated to cell age as had been hypothesized by Arneth many years ago. However, bandforms were found in the circulation about 24 hours earlier than segmented forms, suggesting that they are younger and that some are acceptable to the blood while others continue to mature to segmented forms. Pelgeroid cells with round or bilobed nuclei found in one case of subleukemic myelocytic leukemia were found to emerge simultaneously 132 hours after H3-thymidine injection. This suggests that both types are identical in their degree of maturation. Thus the cells with round nuclei are not band forms but result possibly from a delayed nuclear maturation. 4. In patients studied for at least 2 weeks, characteristic undulations of the labeling indices of the segmented granulocytes were found. If the sampling intervals were 24 hours, peaks were found 6 days apart, the second peak being about half of the labeling index of the first. If the sample interval was shorter, a finer structure was observed with undulations showing peak intervals of 2-3 days. Although the significance is obscure at present, the constancy of the findings suggest that there may be a constant input of cells with the index of labeling varying due to some synchrony of the precursor population(s). Alternative explanations are discussed.

2013 ◽  
Vol 11 (1) ◽  
pp. 625-633 ◽  
Author(s):  
Philippe Brunet de la Grange ◽  
Marija Vlaski ◽  
Pascale Duchez ◽  
Jean Chevaleyre ◽  
Veronique Lapostolle ◽  
...  

2001 ◽  
Vol 114 (14) ◽  
pp. 2641-2648
Author(s):  
Jacqueline Franke ◽  
Barbara Reimann ◽  
Enno Hartmann ◽  
Matthias Köhler ◽  
Brigitte Wiedmann

The nascent polypeptide-associated complex (NAC) has been found quantitatively associated with ribosomes in the cytosol by means of cell fractionation or fluorescence microscopy. There have been reports, however, that single NAC subunits may be involved in transcriptional regulation. We reasoned that the cytosolic location might only reflect a steady state equilibrium and therefore investigated the yeast NAC proteins for their ability to enter the nucleus. We found that single subunits of yeast NAC can indeed be transported into the nucleus and that this transport is an active process depending on different nuclear import factors. Translocation into the nucleus was only observed when binding to ribosomes was inhibited. We identified a domain of the ribosome-binding NAC subunit essential for nuclear import via the importin Kap123p/Pse1p-dependent import route. We hypothesize that newly translated NAC proteins travel into the nucleus to bind stoichiometrically to ribosomal subunits and then leave the nucleus together with these subunits to concentrate in the cytosol.


1965 ◽  
Vol 209 (4) ◽  
pp. 811-814 ◽  
Author(s):  
John C. Porter ◽  
M. S. Klaiber

The rate of secretion of corticosterone from the left adrenal of rats receiving a constant input of ACTH was determined for different flows of blood through the adrenal during the 2- to 3-hr interval following hypophysectomy. Two hours after hypophysectomy the secretion of corticosterone was low in all groups regardless of flow. An input of 0.26 mU ACTH/min caused a steady increase in secretion for 30–40 min before a steady-state rate was attained. The average steady-state rate of secretion was 1.1, 2.4, 3.5, 6.2, 7.2, 6.2, and 6.2 µg/5 min for flows of 0.005, 0.012, 0.023, 0.034, 0.039, 0.051, and 0.058 ml/min, respectively. Under the conditions of these experiments where the input of ACTH was 0.26 mU/min the secretion of corticosterone increased significantly with time of input of ACTH and with flow of blood through the adrenal.


2016 ◽  
Vol 20 (7) ◽  
pp. 1934-1952 ◽  
Author(s):  
Kirill Borissov

We consider a model of economic growth with altruistic agents who care about their consumption and the disposable income of their offspring. The agents' consumption and the offspring's disposable income are subject to positional concerns. We show that, if the measure of consumption-related positional concerns is sufficiently low and/or the measure of offspring-related positional concerns is sufficiently high, then there is a unique steady-state equilibrium, which is characterized by perfect income and wealth equality, and all intertemporal equilibira converge to it. Otherwise, in steady-state equilibria, the population splits into two classes, the rich and the poor; under this scenario, in any intertemporal equilibrium, all capital is eventually owned by the households that were the wealthiest from the outset and all other households become poor.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3808-3814
Author(s):  
HJ Sutherland ◽  
CJ Eaves ◽  
PM Lansdorp ◽  
GL Phillips ◽  
DE Hogge

Peripheral blood cells (PBCs) collected by leukapheresis after progenitor mobilization with chemotherapy and growth factors have been used successfully to replace marrow autografts in protocols requiring stem-cell support. Moreover, such transplants are often associated with more rapid recovery of blood cell counts than is routinely achieved with bone marrow. While conditions that mobilize colony-forming cells (CFCs) into the circulation are becoming increasingly well characterized, little information is available as to how these or other mobilizing treatments may influence the release of more primitive cells into the peripheral blood. To quantitate the peripheral blood content of such cells, we used the long-term culture-initiating cell (LTC-IC) assay, which detects a cell type that is able to produce progeny CFCs after a minimum of 5 weeks in cultures containing marrow fibroblasts. In this report, we present the findings on 21 patients who were transplanted over a 7-year period at our institution with PBCs alone. PBCs were collected in steady-state (n = 6) or during the recovery phase after high-dose cyclophosphamide (Cy; n = 15, nine with and six without additional growth factor administration). PBCs collected from another 11 patients given granulocyte colony-stimulating factor (G-CSF) were transplanted together with autologous marrow. Time-course studies of nine patients after Cy +/- granulocyte-macrophage CSF (GM-CSF) showed that CD34+ cells, CFCs, and LTC-ICs fell from normal to undetectable levels after Cy, and increased at the time of white blood cell (WBC) recovery: LTC-ICs to a mean of sixfold and CFCs to a mean of 26-fold higher than normal. The mean number of CD34+ cells, CFCs, and LTC-ICs present in the PBC harvest was twofold to 10-fold higher after mobilization than in steady-state collections; however, more than 2-log interpatient variability was observed. After PBC transplantation, the median time to a WBC count more than 10(9)/L was 12 days; polymorphonuclear leukocyte (PMN) count more than 0.5 x 10(9)/L, 15 days; and platelet count more than 20 x 10(9)/L, 17 days, although patients who received fewer than 1.5 x 10(5) CFCs/kg had a more than 50% chance of delayed count recovery (> 28 days). Patients who received Cy + GM-CSF-stimulated PBCs had more rapid and consistent platelet recoveries as compared with other groups receiving Cy mobilized or steady-state PBCs alone, and a rapid WBC recovery after Cy predicted a rapid WBC recovery after transplantation.


Sign in / Sign up

Export Citation Format

Share Document