scholarly journals Iron storage in ferritin following intracellular hemoglobin denaturation in erythroleukemic cells

Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 928-930 ◽  
Author(s):  
E Fibach ◽  
ER Bauminger ◽  
AM Konijn ◽  
S Ofer ◽  
EA Rachmilewitz

Murine erythroleukemia (MEL) and human K-562 cell lines were cultured in the presence of 57Fe, and the quantities of cellular iron-containing compounds were determined with the aid of Mossbauer spectroscopy. Upon induction of differentiation, both ferritin-iron and hemoglobin (Hb) iron could be detected. Treatment of the cells with 0.01%-0.02% acetylphenylhydrazine (APH) resulted in gradual denaturation of Hb and incorporation of the released Hb-iron into ferritin. Following treatment with APH, the ratio of Hb-57Fe to ferritin-57Fe decreased from 2.6 to 0.2 in MEL cells and from 0.56 to 0.12 in K-562 cells. No change was observed in the total intracellular iron. Using fluorescence ELISA, an increased level of immunologically detectable ferritin was found in hemoglobinized K-562 cells treated with APH, as compared to the amount of ferritin found in untreated cells. Ferritin may thus function not only as an intermediate during Hb synthesis, but also as storage protein for iron released during Hb denaturation.

Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 928-930 ◽  
Author(s):  
E Fibach ◽  
ER Bauminger ◽  
AM Konijn ◽  
S Ofer ◽  
EA Rachmilewitz

Abstract Murine erythroleukemia (MEL) and human K-562 cell lines were cultured in the presence of 57Fe, and the quantities of cellular iron-containing compounds were determined with the aid of Mossbauer spectroscopy. Upon induction of differentiation, both ferritin-iron and hemoglobin (Hb) iron could be detected. Treatment of the cells with 0.01%-0.02% acetylphenylhydrazine (APH) resulted in gradual denaturation of Hb and incorporation of the released Hb-iron into ferritin. Following treatment with APH, the ratio of Hb-57Fe to ferritin-57Fe decreased from 2.6 to 0.2 in MEL cells and from 0.56 to 0.12 in K-562 cells. No change was observed in the total intracellular iron. Using fluorescence ELISA, an increased level of immunologically detectable ferritin was found in hemoglobinized K-562 cells treated with APH, as compared to the amount of ferritin found in untreated cells. Ferritin may thus function not only as an intermediate during Hb synthesis, but also as storage protein for iron released during Hb denaturation.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1200
Author(s):  
David Haschka ◽  
Manuel Grander ◽  
Johannes Eibensteiner ◽  
Stefanie Dichtl ◽  
Sabine Koppelstätter ◽  
...  

The calcium channel blocker nifedipine induces cellular iron export, thereby limiting the availability of the essential nutrient iron for intracellular pathogens, resulting in bacteriostatic activity. To study if nifedipine may exert a synergistic anti-microbial activity when combined with antibiotics, we used the mouse macrophage cell line RAW267.4, infected with the intracellular bacterium Salmonella Typhimurium, and exposed the cells to varying concentrations of nifedipine and/or ampicillin, azithromycin and ceftriaxone. We observed a significant additive effect of nifedipine in combination with various antibiotics, which was not observed when using Salmonella, with defects in iron uptake. Of interest, increasing intracellular iron levels increased the bacterial resistance to treatment with antibiotics or nifedipine or their combination. We further showed that nifedipine increases the expression of the siderophore-binding peptide lipocalin-2 and promotes iron storage within ferritin, where the metal is less accessible for bacteria. Our data provide evidence for an additive effect of nifedipine with conventional antibiotics against Salmonella, which is partly linked to reduced bacterial access to iron.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2200-2200
Author(s):  
Evangelia Vlachodimitropoulou ◽  
Garbowski Maciej ◽  
John B Porter

Abstract Introduction Monotherapy with clinically available chelators, namely deferoxaime (DFO), deferasirox (DFX) or deferiprone (DFP) is effective but often slow and suboptimal. Combinations of DFO with DFP have been used clinically to enhance cellular iron mobilization but the conditions under which this occurs have not been studied systematically. With the emergence of DFX, the possibility exists to combine this with either DFO or DFP to enhance chelation. We have developed a system to study the optimal concentrations and times of exposure to these chelators, alone or in combination for maximising cellular iron removal. Isobol modeling has been used to determine whether interaction is additive or synergistic. The demonstration of synergy would imply the primary chelator acting as a ‘sink’ for iron chelated and donated to this sink by low concentrations of a secondary ‘shuttle’ chelator as shown in plasma (Evans et al. TransL. Res, 2010). Methods Human hepatocellular carcinoma (HuH-7) cells were chosen as hepatocytes are the major cell of iron storage in iron overload. Iron concentration was determined using the ferRozine (Riemer et al. Anal Biochem. 2004). A threefold increase of intracellular iron compared to control was obtained by serially treating cells with 10% FBS RPMI media. The cells were then exposed to iron chelator then lysed and intracellular iron concentration determined via the ferrozine assay, normalized against protein content. Cell viability was assessed using 0.4% Trypan blue as well as Acridine Orange /Propidium Iodide and was consistently > 98%. Isobolograms were constructed (Tallarida et al, Pharmacol Ther, 2010) as well as a the synergy index (QUOTE 1-1/R) x 100 (%), where R = difference of areas between the line of additivity and the curve of synergy on the isobologram. This index represents how much of the obtained effect exceeds that expected by additivity of two chelators. Results Monotherapy with DFP, DFX or DFO at clinically relevant concentrations of 1 to 30µM iron binding equivalents (IBE), induced both dose and time dependent cellular iron removal. Dual therapy combinations of all 3 chelators enhanced iron removal at 4, 8 and 12 hours. At 4 hours of incubation, whereas 10µM DFO alone had no demonstrable effect on cellular iron removal, addition of DFP at as little as 1µM IBE increased cellular iron removal. Table 1 shows examples of cellular iron removal at specimen chelator concentrations alone or in combination at 8h. The combination of DFX with DFO, DFX with DFP and DFP with DFO all resulted in enhanced cellular iron removal. The combination of DFP and DFX was the most effective. Isobol plot analysis from multiple chelator concentrations demonstrated synergy for all pairs at 4 and 8 hours of exposure. The derived synergy index at 8h indicates that when DFX and DFO are combined, 49% of the chelation effect is due to synergy in this system and 51% in the case of DFP and DFO combination. Most interestingly, the synergistic effect is even greater, in the case of the two oral chelators DFP and DFX when in combination (59%). Figure 1. Conclusion Remarkably low concentrations of a second chelator are required to enhance cellular iron removal by the primary chelator. Isobol analysis shows synergy rather than additivity as the mechanism for enhanced chelation for all 3 combinations, implying a ‘shuttle’ and ‘sink’ effect. Interestingly, the combination of two oral chelators DFP and DFX showed the most marked enhancement of cellular iron removal, without cellular toxicity, suggesting a potentially powerful therapeutic approach, provided this is also well tolerated clinically. The long plasma half life of once daily oral DFX will allow a continuous ‘sink’ for iron shuttled by the shorter acting DFP. Line of Additivity Curve of Synergy below the line Disclosures: Porter: Novartis: Consultancy, Honoraria, Research Funding; Shire: Consultancy, Honoraria; Celgene: Consultancy.


Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3915-3921 ◽  
Author(s):  
H.D. Riedel ◽  
M.U. Muckenthaler ◽  
S.G. Gehrke ◽  
I. Mohr ◽  
K. Brennan ◽  
...  

Hereditary hemochromatosis (HH) is a common autosomal-recessive disorder of iron metabolism. More than 80% of HH patients are homozygous for a point mutation in a major histocompatibility complex (MHC) class I type protein (HFE), which results in a lack of HFE expression on the cell surface. A previously identified interaction of HFE and the transferrin receptor suggests a possible regulatory role of HFE in cellular iron absorption. Using an HeLa cell line stably transfected with HFE under the control of a tetracycline-sensitive promoter, we investigated the effect of HFE expression on cellular iron uptake. We demonstrate that the overproduction of HFE results in decreased iron uptake from diferric transferrin. Moreover, HFE expression activates the key regulators of intracellular iron homeostasis, the iron-regulatory proteins (IRPs), implying that HFE can affect the intracellular “labile iron pool.” The increase in IRP activity is accompanied by the downregulation of the iron-storage protein, ferritin, and an upregulation of transferrin receptor levels. These findings are discussed in the context of the pathophysiology of HH and a possible role of iron-responsive element (IRE)-containing mRNAs.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3357-3357 ◽  
Author(s):  
Evangelia Vlachodimitropoulou Koumoutsea ◽  
John B Porter ◽  
Nichola Cooper ◽  
Bethan Psaila ◽  
Martha Sola-Visner

Abstract INTRODUCTION Eltrombopag (ELT) is an orally available, non-peptide, small-molecule thrombopoietin receptor (TPO-R) agonist approved for the treatment of chronic immune thrombocytopenic purpura (ITP). Additionally ELT appears to bind intracellular iron (Roth et al, 2012, Blood) and our group has previously demonstrated its ability to progressively mobilize iron from cardiomyocytes in vitro. (Vlachodimitropoulou et al, Blood 2014, Volume 124, 21). The ELT concentrations at which iron was mobilized were substantially less (1µM) than with the clinically available iron chelators Desferrioxamine (DFO), Deferiprone (DFP) and Deferasirox (DFX), where 30µM iron binding equivalents (ibe) were required to achieve similar effects (Vlachodimitropoulou et al, 2014. Blood, Volume 124, 21). Importantly , the 1µM effective concentration of ELT for mobilizing cellular iron is nearly twenty-fold less than peak plasma concentrations reported clinically, even with low doses (30mg) of ELT (Gabianski, Journal of Clinical Pharmacology, 2011;51:842-856). At this low dose, increments in platelet counts do not typically exceed 1.2 x the baseline values in healthy volunteers with repeat dosing (Jenkins et al 2007, Blood, 109; 11 ). Hence it is predicted that effective chelating doses of ELT could be given without promoting unacceptable thombocytosis. In principle, still lower concentrations could be used for iron chelation if combined with another iron chelator. Here we explore and compare the concentrations at which effective cellular chelation is achieved with ELT alone or in combination with another chelator. METHODS As cardiomyocytes are a target tissue for transfusional iron overload and provide a particular therapeutic challenge once iron has accumulated in them, the cardiomyocyte cell line H9C2, derived from embryonic rat ventricle, was chosen for investigation. As hepatocytes represent the cell type with the largest quantity of iron deposition, a human hepatocarcinoma HuH7 cell line was also evaluated. Cellular iron loading and iron mobilization were measured as a decrease in cellular iron content using the ferrozine assay (Vlachodimitropoulou et al 2015, British Journal of Haematology). The cells loaded with iron using 10% FBS containing media and then exposed to iron chelators/ELT. Cells were then lysed and intracellular iron concentration determined via the ferrozine assay, normalized against protein content. Acridine Orange/Propidium Iodide staining was used to ensure viability was consistently >98% during experiments, and to assess the toxicity of ELT on the cardiomyocyte and hepatocyte cell lines. RESULTS Monotherapy with 1µM ELT removed 42% of total cardiomyocyte iron following 8 hours of treatment. This was notably more efficient than in hepatocytes, where only 7% of cellular iron was removed with 1µM ELT monotherapy (Table 1). In Table 1 we can see the difference in iron removal between ELT monotherapy and combination with chelators after 8 hours. The effect in combination with all chelators was substantial. Viability was unaffected by combinations of 1µM ELT with other chelators. The hydrophilic hydroxypridinone iron chelator CP40, which has no iron mobilizing effects when used alone, enhanced iron mobilization by ELT, indicating that ELT can shuttle iron from cells onto a second chelator. CONCLUSION Remarkably low concentrations of ELT monotherapy mobilize cellular iron from cardiomyocytes compared with conventional iron chelators. Furthermore, when used at as little as 1μΜ, in combination with standard therapeutic concentrations of DFO, DFP and DFX, the percentage of iron mobilized from cardiomyocytes more than doubled. Experiments with CP40 indicate that ELT acts as a shuttle molecule for chelated iron onto a second 'sink chelator' and that this is the likely mechanism for the enhanced iron mobilization with other iron chelators. While the action of ELT on the TPO-R is highly species-specific and occurs only in humans and primates, we found effective iron mobilization from both rat cardiomyocytes and human hepatocyte cell lines. This is consistent with an iron chelating mechanismdistinct from the TPO-R downstream signaling mechanism of ELT. The concentrations of ELT used to achieve iron mobilization in combination are clinically achievable and are unlikely to increase platelet counts in patients without thrombocytopaenia. Disclosures Porter: Celgene: Consultancy; Shire: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding.


Author(s):  
Naiara Santana-Codina ◽  
Joseph D. Mancias

Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin (“ferritinophagy”), the cytosolic iron storage complex. NCOA4-mediated ferritinophagy maintains intracellular iron homeostasis by facilitating ferritin iron storage or release according to demand. Ferritinophagy is involved in iron-dependent physiological processes such as erythropoiesis, where NCOA4 mediates ferritin iron release for mitochondrial heme synthesis. Recently, ferritinophagy has been shown to regulate ferroptosis, a newly described form of iron-dependent cell death mediated by excess lipid peroxidation. Dysregulation of iron metabolism and ferroptosis have been described in neurodegeneration, cancer, and infection, but little is known about the role of ferritinophagy in the pathogenesis of these diseases. Here, we will review the biochemical regulation of NCOA4, its contribution to physiological processes and its role in disease. Finally, we will discuss the potential of activating or inhibiting ferritinophagy and ferroptosis for therapeutic purposes.


2018 ◽  
Vol 11 (4) ◽  
pp. 114 ◽  
Author(s):  
Naiara Santana-Codina ◽  
Joseph Mancias

Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin (“ferritinophagy”), the cytosolic iron storage complex. NCOA4-mediated ferritinophagy maintains intracellular iron homeostasis by facilitating ferritin iron storage or release according to demand. Ferritinophagy is involved in iron-dependent physiological processes such as erythropoiesis, where NCOA4 mediates ferritin iron release for mitochondrial heme synthesis. Recently, ferritinophagy has been shown to regulate ferroptosis, a newly described form of iron-dependent cell death mediated by excess lipid peroxidation. Dysregulation of iron metabolism and ferroptosis have been described in neurodegeneration, cancer, and infection, but little is known about the role of ferritinophagy in the pathogenesis of these diseases. Here, we will review the biochemical regulation of NCOA4, its contribution to physiological processes and its role in disease. Finally, we will discuss the potential of activating or inhibiting ferritinophagy and ferroptosis for therapeutic purposes.


Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3915-3921 ◽  
Author(s):  
H.D. Riedel ◽  
M.U. Muckenthaler ◽  
S.G. Gehrke ◽  
I. Mohr ◽  
K. Brennan ◽  
...  

Abstract Hereditary hemochromatosis (HH) is a common autosomal-recessive disorder of iron metabolism. More than 80% of HH patients are homozygous for a point mutation in a major histocompatibility complex (MHC) class I type protein (HFE), which results in a lack of HFE expression on the cell surface. A previously identified interaction of HFE and the transferrin receptor suggests a possible regulatory role of HFE in cellular iron absorption. Using an HeLa cell line stably transfected with HFE under the control of a tetracycline-sensitive promoter, we investigated the effect of HFE expression on cellular iron uptake. We demonstrate that the overproduction of HFE results in decreased iron uptake from diferric transferrin. Moreover, HFE expression activates the key regulators of intracellular iron homeostasis, the iron-regulatory proteins (IRPs), implying that HFE can affect the intracellular “labile iron pool.” The increase in IRP activity is accompanied by the downregulation of the iron-storage protein, ferritin, and an upregulation of transferrin receptor levels. These findings are discussed in the context of the pathophysiology of HH and a possible role of iron-responsive element (IRE)-containing mRNAs.


Blood ◽  
2021 ◽  
Author(s):  
Izumi Yanatori ◽  
Des R Richardson ◽  
Herschel Shrikant Dhekne ◽  
Shinya Toyokuni ◽  
Fumio Kishi

Extracellular vesicles (EVs) transfer functional molecules between cells. CD63 is a widely recognized EV marker that contributes to EV secretion from cells. However, the regulation of its expression remains largely unknown. Ferritin is a cellular iron storage protein that can be also secreted by the exosome pathway (Truman-Rosentsvit M. et al. BLOOD 131 (2018) 342-352), with serum ferritin levels classically reflecting body iron stores. Iron metabolism-associated proteins, such as ferritin, are intricately regulated by cellular iron levels via the iron responsive element (IRE)-iron regulatory protein (IRP) system. Herein, we present a novel mechanism demonstrating that the expression of the EV-associated protein, CD63, is under the regulation of the IRE-IRP system. We discovered a canonical IRE in the 5'-untranslated region (UTR) of CD63 mRNA responsible for regulating its expression in response to increased iron. Cellular iron-loading caused a marked increase in CD63 expression and the secretion from cells of CD63 positive (i.e., CD63(+)) EVs, which were shown to contain ferritin-H (FtH) and -L (FtL). Our results demonstrate that under iron-loading, intracellular ferritin is transferred via nuclear receptor coactivator 4 (NCOA4) to CD63(+) EVs that are then secreted. Such iron-regulated secretion of the major iron storage protein ferritin via CD63(+) EVs, poses significant impact for understanding the local cell-to-cell exchange of ferritin and iron.


2007 ◽  
Vol 293 (2) ◽  
pp. C641-C649 ◽  
Author(s):  
J. Fisher ◽  
K. Devraj ◽  
J. Ingram ◽  
B. Slagle-Webb ◽  
A. B. Madhankumar ◽  
...  

Traditionally, transferrin has been considered the primary mechanism for cellular iron delivery, despite suggestive evidence for additional iron delivery mechanisms. In this study we examined ferritin, considered an iron storage protein, as a possible delivery protein. Ferritin consists of H- and L-subunits, and we demonstrated iron uptake by ferritin into multiple organs and that the uptake of iron is greater when the iron is delivered via H-ferritin compared with L-ferritin. The delivery of iron via H-ferritin but not L-ferritin was significantly decreased in mice with compromised iron storage compared with control, indicating that a feedback mechanism exists for H-ferritin iron delivery. To further evaluate the mechanism of ferritin iron delivery into the brain, we used a cell culture model of the blood-brain barrier to demonstrate that ferritin is transported across endothelial cells. There are receptors that prefer H-ferritin on the endothelial cells in culture and on rat brain microvasculature. These studies identify H-ferritin as an iron transport protein and suggest the presence of an H-ferritin receptor for mediating iron delivery. The relative amount of iron that could be delivered via H-ferritin could make this protein a predominant player in cellular iron delivery.


Sign in / Sign up

Export Citation Format

Share Document