scholarly journals Nifedipine Potentiates Susceptibility of Salmonella Typhimurium to Different Classes of Antibiotics

Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1200
Author(s):  
David Haschka ◽  
Manuel Grander ◽  
Johannes Eibensteiner ◽  
Stefanie Dichtl ◽  
Sabine Koppelstätter ◽  
...  

The calcium channel blocker nifedipine induces cellular iron export, thereby limiting the availability of the essential nutrient iron for intracellular pathogens, resulting in bacteriostatic activity. To study if nifedipine may exert a synergistic anti-microbial activity when combined with antibiotics, we used the mouse macrophage cell line RAW267.4, infected with the intracellular bacterium Salmonella Typhimurium, and exposed the cells to varying concentrations of nifedipine and/or ampicillin, azithromycin and ceftriaxone. We observed a significant additive effect of nifedipine in combination with various antibiotics, which was not observed when using Salmonella, with defects in iron uptake. Of interest, increasing intracellular iron levels increased the bacterial resistance to treatment with antibiotics or nifedipine or their combination. We further showed that nifedipine increases the expression of the siderophore-binding peptide lipocalin-2 and promotes iron storage within ferritin, where the metal is less accessible for bacteria. Our data provide evidence for an additive effect of nifedipine with conventional antibiotics against Salmonella, which is partly linked to reduced bacterial access to iron.

Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 928-930 ◽  
Author(s):  
E Fibach ◽  
ER Bauminger ◽  
AM Konijn ◽  
S Ofer ◽  
EA Rachmilewitz

Abstract Murine erythroleukemia (MEL) and human K-562 cell lines were cultured in the presence of 57Fe, and the quantities of cellular iron-containing compounds were determined with the aid of Mossbauer spectroscopy. Upon induction of differentiation, both ferritin-iron and hemoglobin (Hb) iron could be detected. Treatment of the cells with 0.01%-0.02% acetylphenylhydrazine (APH) resulted in gradual denaturation of Hb and incorporation of the released Hb-iron into ferritin. Following treatment with APH, the ratio of Hb-57Fe to ferritin-57Fe decreased from 2.6 to 0.2 in MEL cells and from 0.56 to 0.12 in K-562 cells. No change was observed in the total intracellular iron. Using fluorescence ELISA, an increased level of immunologically detectable ferritin was found in hemoglobinized K-562 cells treated with APH, as compared to the amount of ferritin found in untreated cells. Ferritin may thus function not only as an intermediate during Hb synthesis, but also as storage protein for iron released during Hb denaturation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2200-2200
Author(s):  
Evangelia Vlachodimitropoulou ◽  
Garbowski Maciej ◽  
John B Porter

Abstract Introduction Monotherapy with clinically available chelators, namely deferoxaime (DFO), deferasirox (DFX) or deferiprone (DFP) is effective but often slow and suboptimal. Combinations of DFO with DFP have been used clinically to enhance cellular iron mobilization but the conditions under which this occurs have not been studied systematically. With the emergence of DFX, the possibility exists to combine this with either DFO or DFP to enhance chelation. We have developed a system to study the optimal concentrations and times of exposure to these chelators, alone or in combination for maximising cellular iron removal. Isobol modeling has been used to determine whether interaction is additive or synergistic. The demonstration of synergy would imply the primary chelator acting as a ‘sink’ for iron chelated and donated to this sink by low concentrations of a secondary ‘shuttle’ chelator as shown in plasma (Evans et al. TransL. Res, 2010). Methods Human hepatocellular carcinoma (HuH-7) cells were chosen as hepatocytes are the major cell of iron storage in iron overload. Iron concentration was determined using the ferRozine (Riemer et al. Anal Biochem. 2004). A threefold increase of intracellular iron compared to control was obtained by serially treating cells with 10% FBS RPMI media. The cells were then exposed to iron chelator then lysed and intracellular iron concentration determined via the ferrozine assay, normalized against protein content. Cell viability was assessed using 0.4% Trypan blue as well as Acridine Orange /Propidium Iodide and was consistently > 98%. Isobolograms were constructed (Tallarida et al, Pharmacol Ther, 2010) as well as a the synergy index (QUOTE 1-1/R) x 100 (%), where R = difference of areas between the line of additivity and the curve of synergy on the isobologram. This index represents how much of the obtained effect exceeds that expected by additivity of two chelators. Results Monotherapy with DFP, DFX or DFO at clinically relevant concentrations of 1 to 30µM iron binding equivalents (IBE), induced both dose and time dependent cellular iron removal. Dual therapy combinations of all 3 chelators enhanced iron removal at 4, 8 and 12 hours. At 4 hours of incubation, whereas 10µM DFO alone had no demonstrable effect on cellular iron removal, addition of DFP at as little as 1µM IBE increased cellular iron removal. Table 1 shows examples of cellular iron removal at specimen chelator concentrations alone or in combination at 8h. The combination of DFX with DFO, DFX with DFP and DFP with DFO all resulted in enhanced cellular iron removal. The combination of DFP and DFX was the most effective. Isobol plot analysis from multiple chelator concentrations demonstrated synergy for all pairs at 4 and 8 hours of exposure. The derived synergy index at 8h indicates that when DFX and DFO are combined, 49% of the chelation effect is due to synergy in this system and 51% in the case of DFP and DFO combination. Most interestingly, the synergistic effect is even greater, in the case of the two oral chelators DFP and DFX when in combination (59%). Figure 1. Conclusion Remarkably low concentrations of a second chelator are required to enhance cellular iron removal by the primary chelator. Isobol analysis shows synergy rather than additivity as the mechanism for enhanced chelation for all 3 combinations, implying a ‘shuttle’ and ‘sink’ effect. Interestingly, the combination of two oral chelators DFP and DFX showed the most marked enhancement of cellular iron removal, without cellular toxicity, suggesting a potentially powerful therapeutic approach, provided this is also well tolerated clinically. The long plasma half life of once daily oral DFX will allow a continuous ‘sink’ for iron shuttled by the shorter acting DFP. Line of Additivity Curve of Synergy below the line Disclosures: Porter: Novartis: Consultancy, Honoraria, Research Funding; Shire: Consultancy, Honoraria; Celgene: Consultancy.


Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3915-3921 ◽  
Author(s):  
H.D. Riedel ◽  
M.U. Muckenthaler ◽  
S.G. Gehrke ◽  
I. Mohr ◽  
K. Brennan ◽  
...  

Hereditary hemochromatosis (HH) is a common autosomal-recessive disorder of iron metabolism. More than 80% of HH patients are homozygous for a point mutation in a major histocompatibility complex (MHC) class I type protein (HFE), which results in a lack of HFE expression on the cell surface. A previously identified interaction of HFE and the transferrin receptor suggests a possible regulatory role of HFE in cellular iron absorption. Using an HeLa cell line stably transfected with HFE under the control of a tetracycline-sensitive promoter, we investigated the effect of HFE expression on cellular iron uptake. We demonstrate that the overproduction of HFE results in decreased iron uptake from diferric transferrin. Moreover, HFE expression activates the key regulators of intracellular iron homeostasis, the iron-regulatory proteins (IRPs), implying that HFE can affect the intracellular “labile iron pool.” The increase in IRP activity is accompanied by the downregulation of the iron-storage protein, ferritin, and an upregulation of transferrin receptor levels. These findings are discussed in the context of the pathophysiology of HH and a possible role of iron-responsive element (IRE)-containing mRNAs.


Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 928-930 ◽  
Author(s):  
E Fibach ◽  
ER Bauminger ◽  
AM Konijn ◽  
S Ofer ◽  
EA Rachmilewitz

Murine erythroleukemia (MEL) and human K-562 cell lines were cultured in the presence of 57Fe, and the quantities of cellular iron-containing compounds were determined with the aid of Mossbauer spectroscopy. Upon induction of differentiation, both ferritin-iron and hemoglobin (Hb) iron could be detected. Treatment of the cells with 0.01%-0.02% acetylphenylhydrazine (APH) resulted in gradual denaturation of Hb and incorporation of the released Hb-iron into ferritin. Following treatment with APH, the ratio of Hb-57Fe to ferritin-57Fe decreased from 2.6 to 0.2 in MEL cells and from 0.56 to 0.12 in K-562 cells. No change was observed in the total intracellular iron. Using fluorescence ELISA, an increased level of immunologically detectable ferritin was found in hemoglobinized K-562 cells treated with APH, as compared to the amount of ferritin found in untreated cells. Ferritin may thus function not only as an intermediate during Hb synthesis, but also as storage protein for iron released during Hb denaturation.


Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3915-3921 ◽  
Author(s):  
H.D. Riedel ◽  
M.U. Muckenthaler ◽  
S.G. Gehrke ◽  
I. Mohr ◽  
K. Brennan ◽  
...  

Abstract Hereditary hemochromatosis (HH) is a common autosomal-recessive disorder of iron metabolism. More than 80% of HH patients are homozygous for a point mutation in a major histocompatibility complex (MHC) class I type protein (HFE), which results in a lack of HFE expression on the cell surface. A previously identified interaction of HFE and the transferrin receptor suggests a possible regulatory role of HFE in cellular iron absorption. Using an HeLa cell line stably transfected with HFE under the control of a tetracycline-sensitive promoter, we investigated the effect of HFE expression on cellular iron uptake. We demonstrate that the overproduction of HFE results in decreased iron uptake from diferric transferrin. Moreover, HFE expression activates the key regulators of intracellular iron homeostasis, the iron-regulatory proteins (IRPs), implying that HFE can affect the intracellular “labile iron pool.” The increase in IRP activity is accompanied by the downregulation of the iron-storage protein, ferritin, and an upregulation of transferrin receptor levels. These findings are discussed in the context of the pathophysiology of HH and a possible role of iron-responsive element (IRE)-containing mRNAs.


Author(s):  
M. Ashraf ◽  
F. Thompson ◽  
S. Miki ◽  
P. Srivastava

Iron is believed to play an important role in the pathogenesis of ischemic injury. However, the sources of intracellular iron in myocytes are not yet defined. In this study we have attempted to localize iron at various cellular sites of the cardiac tissue with the ferrocyanide technique.Rat hearts were excised under ether anesthesia. They were fixed with coronary perfusion with 3% buffered glutaraldehyde made in 0.1 M cacodylate buffer pH 7.3. Sections, 60 μm in thickness, were cut on a vibratome and were incubated in the medium containing 500 mg of potassium ferrocyanide in 49.5 ml H2O and 0.5 ml concentrated HC1 for 30 minutes at room temperature. Following rinses in the buffer, tissues were dehydrated in ethanol and embedded in Spurr medium.The examination of thin sections revealed intense staining or reaction product in peroxisomes (Fig. 1).


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Kumfu ◽  
S.C Chattipakorn ◽  
N Chattipakorn

Abstract Background Iron overload cardiomyopathy is a common cause of death in iron overload patients. L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been shown to play important roles for iron uptake into the heart under iron overload condition. Recently, cardiomyocytes which exposed to lipocalin-2 (LCN-2) have been shown to increase apoptosis due to excessive intracellular iron accumulation. However, the mechanistic roles of LCN-2 and LCN-2 receptor (LCN-2R) as iron transporters in cardiomyocytes under iron overload condition have never been investigated. Purpose We hypothesized that the LCN-2 and LCN-2R are alternate iron uptake pathways into cardiomyocytes under iron overload condition. Methods H9c2 cardiomyocytes were treated with either LCN-2 siRNA or LCN-2R siRNA for 72 hr or LTCC blocker (verapamil), TTCC blocker (TTA-P2), or iron chelator deferiprone (DFP) for 1 hr. After treatment, cells were exposed to ferric ammonium citrate (FAC, Fe3+) or FAC + 1mM ascorbic acid (Fe2+) at 200 μM for 48 hr. Intracellular iron level, cell viability, mitochondrial dynamics, mitophagy and apoptosis were determined. Results Both Fe2+ and Fe3+ treated groups showed significantly increased intracellular iron uptake, decreased cell viability, increased mitochondrial fission, mitophagy and apoptotic protein expression in cardiomyocytes. Under Fe2+ overload condition, treatments with LTCC blocker, TTCC blocker, and DFP could significantly decrease intracellular iron accumulation and increase cell viability via decreasing mitochondrial fission, mitophagy and cleaved caspase-3 (Figure), whereas both LCN-2 and LCN-2R siRNA treatment had no beneficial effects on these parameters. Under Fe3+ overload condition, treatment with LCN-2 siRNA, LCN-2R siRNA, and DFP showed beneficial effects on those parameters, whereas neither LTCC nor TTCC blocker provided these benefits (Figure 1). Conclusion Silencing of LCN-2 and LCN-2R increased cardiomyocyte viability via decreasing iron uptake, mitochondrial fission, mitophagy and apoptosis under Fe3+ iron overload condition. Meanwhile, treatment with calcium channel blockers improved cardiomyocytes viability via decreasing iron uptake, mitochondrial fission, mitophagy and apoptosis under Fe2+ iron overload condition. All of these findings suggested that LTCC and TTCC played important roles for Fe2+ uptake, whereas LCN-2 and LCN-2R were essential for Fe3+ uptake into the cardiomyocytes under iron overload conditions. Figure 1. Cell viability and apoptosis Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Thailand Research Fund and NSTDA Research Chair Grant (NC)


Blood ◽  
1995 ◽  
Vol 85 (10) ◽  
pp. 2962-2966 ◽  
Author(s):  
R Oria ◽  
L Sanchez ◽  
T Houston ◽  
MW Hentze ◽  
FY Liew ◽  
...  

Nitric oxide (NO) is known to increase the affinity of the intracellular iron-regulatory protein (IRP) for iron-response elements (IREs) in transferrin receptor and ferritin mRNAs, suggesting that it may act as a regulator of cellular iron metabolism. In this study, exogenous NO produced by adding the NO-generator S-nitroso-N-acetyl penicillamine gave a dose-dependent upregulation of transferrin receptor expression by K562 erythroleukemia cells and increased levels of transferrin receptor mRNA. NO did not affect the affinity of transferrin binding by the transferrin receptor. NO alone did not alter intracellular ferritin levels, but it did abrogate the inhibitory effect of the iron chelator desferrioxamine and potentiated the stimulatory effect of additional iron. NO also caused some increase in ferritin mRNA levels, which might mask any IRP-/IRE-mediated inhibitory effect of NO on ferritin translation. Although NO did not affect net iron uptake, it increased release of iron from K562 cells pulsed previously with 59Fe, and subcellular fractionation showed that it also increased the proportion of intracellular iron bound to ferritin. These findings provide direct evidence that NO can affect cellular iron metabolism and suggest that NO produced in vivo by activated bone marrow macrophages might affect erythropoiesis.


Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 2161-2167 ◽  
Author(s):  
Guangjun Nie ◽  
Alex D. Sheftel ◽  
Sangwon F. Kim ◽  
Prem Ponka

AbstractCytosolic ferritin sequesters and stores iron and, consequently, protects cells against iron-mediated free radical damage. However, the function of the newly discovered mitochondrial ferritin (MtFt) is unknown. To examine the role of MtFt in cellular iron metabolism, we established a cell line that stably overexpresses mouse MtFt under the control of a tetracycline-responsive promoter. The overexpression of MtFt caused a dose-dependent iron deficiency in the cytosol that was revealed by increased RNA-binding activity of iron regulatory proteins (IRPs) along with an increase in transferrin receptor levels and decrease in cytosolic ferritin. Consequently, the induction of MtFt resulted in a dramatic increase in cellular iron uptake from transferrin, most of which was incorporated into MtFt. The induction of MtFt caused a shift of iron from cytosolic ferritin to MtFt. In addition, iron inserted into MtFt was less available for chelation than that in cytosolic ferritin and the expression of MtFt was associated with decreased mitochondrial and cytosolic aconitase activities, the latter being consistent with the increase in IRP-binding activity. In conclusion, our results indicate that overexpression of MtFt causes a dramatic change in intracellular iron homeostasis and that shunting iron to MtFt likely limits its availability for active iron proteins.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Jason S Shapiro ◽  
Hsiang-Chun Chang ◽  
Hossein Ardehali

Iron is an essential nutrient and is critical for cellular growth and metabolism. Here, we delineate a novel mechanism by which iron alters amino acid homeostasis and mTOR activity by remodeling the cellular epigenetic landscape. We find that iron deficiency inactivates Jumonji-C domain containing histone-demethylases, resulting in histone hyper-methylation and silencing of the leucine transporter LAT3 and obligatory mTORC1 cofactor RAPTOR. Additionally, we identify that mTOR-mediated regulation of RNA stability through tristetraprolin (TTP) is a novel and requisite step in selective-autophagy. In the absence of TTP, mitochondria damaged by the loss of iron cannot undergo fission, rendering the mitochondria too large for engulfment and subsequent recycling. Accumulation of damaged mitochondria leads to defective oxidative metabolism and impairs hepatic gluconeogenesis in response to fasting. These studies uncover a novel pathway that integrates iron sensing with cellular metabolism, mitochondrial dynamics and autophagy.


Sign in / Sign up

Export Citation Format

Share Document