scholarly journals Diadenosine 5',5'''-p1,p4-tetraphosphate deficiency in blood platelets of the Chediak-Higashi syndrome

Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 735-737
Author(s):  
BK Kim ◽  
FC Chao ◽  
R Leavitt ◽  
AS Fauci ◽  
KM Meyers ◽  
...  

Diadenosine tetraphosphate (AP4A) is an unusual nucleotide found in a variety of cells, including platelets. It has been suggested that platelet AP4A is stored in the dense granules and is metabolically inactive. We have studied the AP4A content of blood platelets in two patients and three cattle with Chediak-Higashi syndrome (CHS), a hereditary platelet defect with dense granule deficiency. Acid-soluble extractions of whole blood and platelets were neutralized. The adenosine triphosphate (ATP) level was measured by luminescence technique. To measure the AP4A content, the neutralized extract was treated with phosphomonoesterase for removal of ATP. The AP4A content was then measured by coupling the phosphodiesterase and luciferase reaction. The AP4A content was 0.43 nmol/mg protein for normal human platelets and 0.004 nmol/mg protein for CHS platelets. The ATP/AP4A ratio was 67 for normal and 3,023 for CHS platelets. The whole blood AP4A was reduced by 89% in CHS patients who had only a slight decrease in ATP level (26% reduction). Similarly, bovine platelets with CHS showed a marked decrease of AP4A content and a moderate reduction of the ATP level. The platelet ATP/AP4A ratio was 351 and 3,133 for normal and CHS cattle, respectively. Results demonstrate a marked reduction of AP4A in CHS platelets and suggest that AP4A may be a useful marker for the measurement of dense granule content in platelets.

Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 735-737 ◽  
Author(s):  
BK Kim ◽  
FC Chao ◽  
R Leavitt ◽  
AS Fauci ◽  
KM Meyers ◽  
...  

Abstract Diadenosine tetraphosphate (AP4A) is an unusual nucleotide found in a variety of cells, including platelets. It has been suggested that platelet AP4A is stored in the dense granules and is metabolically inactive. We have studied the AP4A content of blood platelets in two patients and three cattle with Chediak-Higashi syndrome (CHS), a hereditary platelet defect with dense granule deficiency. Acid-soluble extractions of whole blood and platelets were neutralized. The adenosine triphosphate (ATP) level was measured by luminescence technique. To measure the AP4A content, the neutralized extract was treated with phosphomonoesterase for removal of ATP. The AP4A content was then measured by coupling the phosphodiesterase and luciferase reaction. The AP4A content was 0.43 nmol/mg protein for normal human platelets and 0.004 nmol/mg protein for CHS platelets. The ATP/AP4A ratio was 67 for normal and 3,023 for CHS platelets. The whole blood AP4A was reduced by 89% in CHS patients who had only a slight decrease in ATP level (26% reduction). Similarly, bovine platelets with CHS showed a marked decrease of AP4A content and a moderate reduction of the ATP level. The platelet ATP/AP4A ratio was 351 and 3,133 for normal and CHS cattle, respectively. Results demonstrate a marked reduction of AP4A in CHS platelets and suggest that AP4A may be a useful marker for the measurement of dense granule content in platelets.


1987 ◽  
Author(s):  
C T Poll ◽  
J Westwick

Fura 2 is one of a recently-introduced family of Ca++ indicators with improved fluorescent properties compared to quin 2 (Grynkiewicz et al 1985). This study has examined the role of [Ca++]i in thrombin-induced dense granule release using prostacyclin-washed human platelets loaded with either thedense granule marker 14C-5HT (5HT) alone or with 5HT together with quin 2 ([quin2]i = 0.8mM) or fura 2 ([fura 2]i 20-30µM). In the presence of ImM extracellular calcium concentration ([Ca++]i) the [Ca++]e in quin 2 and fura 2 loaded platelets was 93±2 (n=10 experiments) and 133±0.3nM (n=12 experiments) respectively. In either quin 2 or fura 2 loaded platelets suspended in the presence of ImM [Ca++]e, thrombin (0.23-23.InM) promoted a rapid (in secs)concentration-dependent elevation of [Ca++]i from basal values to levels l-2µM, together with a parallel release of dense granules almost identical to that obtained with thrombin in non dye loaded platelets. In fura 2 loaded cells, removal of [Ca++]e inhibited the elevation of [Ca++]i induced by a sub-maximal concentration of thrombin (0.77nM) by 43+5% (n=4) but interestingly had no significant effect (p<0.05) on the rise in [Ca++]i elicited by low thrombin doses (0.231nM). Neither did lowering [Ca++]e inhibit the release of 5HT evoked by thrombin ( 0.231-23.InM) from either fura 2 loaded or non dye loaded platelets. In contrast, in quin 2 loaded platelets, removal of [Ca++]e inhibited the thrombin (0.231-23.InM) stimulated rise in [Ca++]i-by 90% and the 5HT release response to either low (0.231nM), sub-maximal (0.77nM) or maximal (23.InM) thrombin by 100% (n=4), 87+2°/o (n=6)and 2+l°/o (n=4) respectively. Fura 2 but not quin 2 loaded cells suspended in ImM [Ca++]e exhibited a Ca++ response to thrombin concentrations >2.31nM which could be separated into a rapid phasic component and a more sustained 'tonic' like component inhibitable by removal of [Ca++]e or by addition of ImM Ni++ . These data suggest the use of fura 2 rather than quin 2 for investigating stimulus response coupling in platelets, particularly when [Ca++]e is less than physiological. We thank the British Heart Foundation and Ciba-Geigy USA for financial support.


1981 ◽  
Author(s):  
H Sandberg ◽  
A P Bodet ◽  
F A Dombrosei ◽  
L O Andersson ◽  
B R Lentz

Collagen and thrombin induced platelet activation were examined, in vitro, with regard to the appearance of surface-associated Factor V-like activity (PF1) and catalytic phospholipid-like surface activity (PF3). Two test systems were used: a clotting assay (a modified KAPTT) and a chromogenic substrate assay (maximum hydrolysis of S-2238). Following stimulation of normal platelets, both PF1 and PF3 appeared simultaneously in the supernatant and platelet pellet. When normal platelets were collected and carefully washed in a buffer containing adenosine, PGE1, and theophylline, the appearance of both PF1 and PF3 was blocked, as was the release of ATP from dense granules, the release of β-TG and PF4 from α-granules, and the occurrence of aggregation. When platelets were collected in this same inhibitor-containing buffer, and then gel filtered/centrifuge-washed in an inhibitor-free buffer, the appearance of PF1 and PF3 was still blocked. This occurred even though release of ATP, β-TG and PF4 as well as aggregation followed a pattern equivalent to platelets never exposed to these inhibitors. When the release supernatant from normal platelets isolated in the absence of inhibitors was gel filtered on Sepharose CL-4B in the presence of EDTA, the carbohydrate-free, lipid- protein particles (70-170nm diam.) that provide PF3 appeared in the void volume. When the release supernatant from normal platelets was gel filtered in the presence of Ca2+, both, PF1 and PF3 eluted in the void volume. With platelets isolated from severe F.V-deficient donors, only PF3 was found in the void volume, in the presence or absence of Ca2+. It seems that the appearance of PF1 and PF3 as coagulant activities is completely separate from both the release of dense granule and α-granule contents as well as platelet aggregation and that the appearance of PF1 requires the presence of Ca2+.


Blood ◽  
1968 ◽  
Vol 31 (2) ◽  
pp. 258-262 ◽  
Author(s):  
HARVEY J. WEISS ◽  
ALAN KELLY ◽  
VICTOR HERBERT

Abstract The vitamin B12 and folate content of human platelets have been determined. The B12 concentration was sixfold that in red cells and one-sixth that in leukocytes. In normal whole blood, with a platelet count of 300,000 per cu. mm., the B12 activity contributed by platelets would be 6-21 pg. per ml. The contribution of platelets to the folate activity of normal whole blood averaged 0.4-1.7 ng. per ml. The folate activity in platelets was one-fifth that in an equal volume of red cells, but unlike red cell folate, was not increased by incubating platelet extracts with plasma.


2011 ◽  
Vol 436 (2) ◽  
pp. 469-480 ◽  
Author(s):  
Knut Fälker ◽  
Linda Haglund ◽  
Peter Gunnarsson ◽  
Martina Nylander ◽  
Tomas L. Lindahl ◽  
...  

PARs (protease-activated receptors) 1 and 4 belong to the family of G-protein-coupled receptors which induce both Gα12/13 and Gαq signalling. By applying the specific PAR1- and PAR4-activating hexapeptides, SFLLRN and AYPGKF respectively, we found that aggregation of isolated human platelets mediated via PAR1, but not via PAR4, is abolished upon homologous receptor activation in a concentration- and time-dependent fashion. This effect was not due to receptor internalization, but to a decrease in Ca2+ mobilization, PKC (protein kinase C) signalling and α-granule secretion, as well as to a complete lack of dense granule secretion. Interestingly, subthreshold PAR4 activation rapidly abrogated PAR1 signalling desensitization by differentially reconstituting these affected signalling events and functional responses, which was sufficient to re-establish aggregation. The lack of ADP release and P2Y12 receptor-induced Gαi signalling accounted for the loss of the aggregation response, as mimicking Gαi/z signalling with 2-MeS-ADP (2-methylthioadenosine-5′-O-diphosphate) or epinephrine (adrenaline) could substitute for intermediate PAR4 activation. Finally, we found that the re-sensitization of PAR1 signalling-induced aggregation via PAR4 relied on PKC-mediated release of both ADP from dense granules and fibrinogen from α-granules. The present study elucidates further differences in human platelet PAR signalling regulation and provides evidence for a cross-talk in which PAR4 signalling counteracts mechanisms involved in PAR1 signalling down-regulation.


2000 ◽  
Vol 349 (1) ◽  
pp. 231-238 ◽  
Author(s):  
Christian M. HACKENG ◽  
Barbara FRANKE ◽  
Ingrid A. M. RELOU ◽  
Gertie GORTER ◽  
Johannes L. BOS ◽  
...  

Physiological concentrations of low-density lipoprotein (LDL) sensitize blood platelets to α-thrombin- and collagen-induced secretion, and after prolonged contact trigger secretion independent of other agonists. Here we report that LDL activates the small GTPases Rap1 and Ral but not Ras, as assessed by specific precipitation of the GTP-bound enzymes. In unstirred suspensions, the inhibitor SB203580 blocks Rap1 activation by 60-70%, suggesting activation via p38 mitogen-activated protein kinase and a second, unidentified route. Inhibitors of cyclooxygenase (indomethacin) and the thromboxane A2 (TxA2) receptor (SQ30741) induce complete inhibition, indicating that Rap1 activation is the result of TxA2 formation. Stirring reveals a second, TxA2-independent Rap1 activation, which correlates quantitatively with a slow induction of dense granule secretion. Both pathways are unaffected by inhibitors of ligand binding to integrin αIIbβ3. The results suggest that Rap1 and Ral, but not Ras, may take part in signalling routes initiated by LDL that initially enhance the sensitivity of platelets to other agonists and later trigger LDL-dependent secretion.


1985 ◽  
Vol 54 (03) ◽  
pp. 603-606 ◽  
Author(s):  
Chantal Legrand ◽  
Alan T Nurden

SummaryCollagen induces a saturable 125I-fibrinogen binding to normal human platelets. A role for secreted ADP in this process is supported by studies on 2 patients with the Chédiak-Higashi syndrome. Both collagen-induced nucleotide release and 125I-fibrinogen binding were strongly reduced while ADP-induced fibrinogen binding was normal. Platelets from 2 patients with the gray platelet syndrome bound normal amounts of 125I-fibrinogen in the presence of ADP or collagen despite the severe reduction of secretable α-granule proteins. Binding did not occur to collagen-stimulated type I thrombasthenic platelets which lacked GPIIb-IIIa complexes but was detected in amounts which correlated with the residual concentrations of GPIIb-IIIa in the platelets of a patient with type II disease. Our results allow us to propose that collagen-induced fibrinogen binding to normal platelets requires the presence of GPIIb-IIIa complexes and secreted ADP but proceeds independently of α-granule release.


Blood ◽  
1971 ◽  
Vol 38 (4) ◽  
pp. 422-430 ◽  
Author(s):  
GEOFFREY M. BRITTIN ◽  
SHIRLEY A. DEW ◽  
ELVI K. FEWELL

Abstract We have evaluated the use of an optical particle counter to perform automated platelet counts on whole blood. The erythrocytes were lysed by dilution of whole blood with 2 M urea and the remaining platelets and leukocytes were enumerated by a darkfield microscope optical system that detects light diffracted by them. A suspension of fixed human platelets available commercially was highly satisfactory for standardization. The method gave accurate and reproducible platelet counts, comparable with those of electronic particle counting on venous blood and substantially more reliable platelet counts on thrombocytopenic and finger-puncture blood samples. We believe that errors resulting from the electronic method were caused by technical difficulties of sample handling and not to an intrinsic error in electronic counting. By using the automated optical method we found no significant difference between the platelet counts of capillary and venous blood, although capillary platelet counts had twice the variability of venous counts. The optical technique has important advantages over electronic platelet counting, and its superiority appears to be due to the ability to count platelets in diluted whole blood rather than in plasma. It should prove especially useful in performing the large numbers of platelet counts on thrombocytopenic and finger-puncture blood samples that are increasingly important for management of patients receiving chemotherapy.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1726-1734 ◽  
Author(s):  
M Menard ◽  
KM Meyers

Abstract Platelets from cattle with the Chediak-Higashi syndrome (CHS) have a storage pool deficiency and virtual absence of platelet dense granules. Megakaryocytes (MKs) from five control (n = 135) and five CHS (n = 133) cattle were evaluated using standard transmission electron microscopy. Osmiophilic dense granules were not observed in control or CHS MKs. In MKs from normal cattle, clear vesicles of 200- to 650-nm diameter bounded by a sharp membrane were observed. They were easily differentiated from the demarcation membrane system, endoplasmic reticulum, and alpha granules. The clear vesicles were virtually absent in MKs from CHS cattle at all stages of maturation. MKs in bone marrow samples from two control (n = 91) and two CHS (n = 61) cattle that had been processed for the uranaffin reaction were also evaluated. The clear vesicles were replaced by uranaffin-positive granules in MKs from control cattle, but positive uranaffin granules were not observed in CHS MKs. These findings indicate that the platelet dense granule storage pool deficiency in CHS cattle results from an anatomic absence of dense granule precursors in maturing and mature CHS MKs.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3210-3210
Author(s):  
Walter H. Kahr ◽  
Shoma Baidya ◽  
Animitra Das ◽  
Ayca Toprak ◽  
Hilary Christensen ◽  
...  

Abstract Platelets are important in maintaining hemostasis in newborns, where bleeding can arise from abnormal platelet function and/or thrombocytopenia. It is well established that plasma coagulation factor concentrations are lower in neonates compared to children and adults, but less is known about the development and function of neonatal platelets. It has been postulated that platelets from neonates, and to a greater extend from premature neonates, are dysfunctional due to low dense granule counts (Blood2006;108:331a), however, other studies have shown normal neonate platelet function. Our previous studies indicated a slightly decreased number of dense granules per platelet in neonates (Blood2005;106:4159–4156). We have now extended these studies to a larger cohort of 19 normal neonatal cord blood samples (gestational age 37.5–40 weeks) from planned Caesarean sections, which were analyzed under optimal sample handling conditions and compared to platelets from 10 children (age 8–10 years). 50 platelets from each subject were evaluated for dense granule content utilizing whole mount and thin section electron microscopy (EM) for the quantification of dense granules (detected via their electron-dense calcium content) and ultrastructural assessment. A subset of samples was tested via flow cytometry for P-selectin expression as a measure of platelet activation, and platelet structural integrity was also assessed using thin section EM. Our data revealed that platelets in neonatal cord blood had a mean dense granule count of 2.3 (SD=2.2) per platelet, compared to 4.4 dense granules per platelet (SD=2.7) in blood from older children; t-test comparisons showed the difference between these groups to be highly significant (P<0.001). Interestingly, 22% of cord blood platelets contained no measurable dense granules, whereas only 3% of platelets from older children where devoid of dense granules. We suspected that the mean dense granule counts of <1 per platelet in neonatal cord blood reported by others may have arisen due to high levels of platelet activation during sample acquisition or handling. In our samples platelet activation as measured by P-selectin expression was similar in both populations and did not exceed 7.5%, and platelet morphology as assessed by thin section EM was also comparable. Our studies confirm that neonatal cord blood platelets contain fewer recognizable dense granules than those found in older children. Two possible explanations for this observation are: normal numbers of dense granules are present in neonatal platelets, but a subset cannot be detected via EM owing to insufficient calcium uptake; there are fewer dense granules in neonatal platelets owing to peculiarities in the development of megakaryocytes, where recent studies have suggested that dense granules originate by an active transport mechanism and move into proplatelets. These possibilities point to the usefulness of studying fetal and neonatal megakaryopoiesis.


Sign in / Sign up

Export Citation Format

Share Document