scholarly journals Induction of superoxide dismutase in leukocytes by paraquat: correlation with age and possible predictor of longevity

Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 835-841 ◽  
Author(s):  
Y Niwa ◽  
K Ishimoto ◽  
T Kanoh

Abstract Reactive oxygen species (ROS) are thought to play a role in the aging process as well as in a number of human diseases states. Superoxide dismutase (SOD), an enzyme that scavenges the superoxide anion (O2-) is constitutively expressed in leukocytes and other tissues. When assayed in peripheral blood leukocytes (PBL), constitutive SOD activity shows little variation among individuals of different ages. We have found that significant induction of SOD activity occurs in PBL incubated in vitro with paraquat, an agent known to cause intracellular O2- production. This induction was found to be highly age dependent; lymphocytes from 36 healthy subjects aged 20 to 40 years showed an increase of 85% +/- 10%, versus an increase of only 8% +/- 1% for lymphocytes from 30 healthy subjects aged 65 to 79 years (P less than 10(-4)). Forty subjects, aged 67 to 73 years, who were healthy at the time of assay of leukocyte SOD induction were followed up 5 years later. Nineteen of these subjects had died; all 19 had shown SOD induction of less than 10% (range, 0% to 7%; mean, 2.4%). In contrast, of the 21 survivors (range, 2.5% to 50%; mean, 21%), 12 had shown SOD induction greater than 10%, and 7 had shown SOD induction greater than or equal to 35% (P less than 10(-3)). Thirteen of the 19 deaths were attributable to malignancy or cerebrocardiovascular disease. Preservation of leukocyte SOD inducibility appears to correlate with longevity in elderly individuals and may be of value in predicting resistance to malignancy or fetal cardiovascular events.

Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 835-841 ◽  
Author(s):  
Y Niwa ◽  
K Ishimoto ◽  
T Kanoh

Reactive oxygen species (ROS) are thought to play a role in the aging process as well as in a number of human diseases states. Superoxide dismutase (SOD), an enzyme that scavenges the superoxide anion (O2-) is constitutively expressed in leukocytes and other tissues. When assayed in peripheral blood leukocytes (PBL), constitutive SOD activity shows little variation among individuals of different ages. We have found that significant induction of SOD activity occurs in PBL incubated in vitro with paraquat, an agent known to cause intracellular O2- production. This induction was found to be highly age dependent; lymphocytes from 36 healthy subjects aged 20 to 40 years showed an increase of 85% +/- 10%, versus an increase of only 8% +/- 1% for lymphocytes from 30 healthy subjects aged 65 to 79 years (P less than 10(-4)). Forty subjects, aged 67 to 73 years, who were healthy at the time of assay of leukocyte SOD induction were followed up 5 years later. Nineteen of these subjects had died; all 19 had shown SOD induction of less than 10% (range, 0% to 7%; mean, 2.4%). In contrast, of the 21 survivors (range, 2.5% to 50%; mean, 21%), 12 had shown SOD induction greater than 10%, and 7 had shown SOD induction greater than or equal to 35% (P less than 10(-3)). Thirteen of the 19 deaths were attributable to malignancy or cerebrocardiovascular disease. Preservation of leukocyte SOD inducibility appears to correlate with longevity in elderly individuals and may be of value in predicting resistance to malignancy or fetal cardiovascular events.


1988 ◽  
Vol 2 (2) ◽  
pp. 368-371
Author(s):  
Y. Marumoto ◽  
I. Sato ◽  
K. Ikeda

In this study, the effects of culture supernatants on various activities of the monocyte, as a bone-resorbing cell, were compared between peripheral blood leukocyte (PBL) cultures from patients with periodontal disease and those from subjects with a clinically healthy periodontium. We have reported that normal human monocytes in vitro induce the release of calcium from synthetic hydroxyapatite particles and that the activity is enhanced by supernatants from cultures of stimulated or non-stimulated peripheral blood leukocytes. Monocytes from both patients and healthy subjects induced the release of calcium from hydroxyapatite particles (HA) to an equal degree. This activity of monocytes from healthy subjects showed a statistically significant increase by addition of supernatants from stimulated or unstimulated cultures of peripheral blood leukocytes from periodontitis patients. This increase was greater than that seen with supernatants from cells of healthy controls. The Nitro Blue Tetrazolium reduction activity and [3H]-thymidine incorporation of monocytes were also increased by addition of the supernatants from leukocyte cultures from either patients or healthy controls, but no significant difference was noted in the increase. These results suggest that the HA-resorbing activity of monocytes was enhanced by factors from cultured leukocytes. Furthermore, these studies showed that production of these factors by peripheral mononuclear cells from patients with periodontal disease was greater than that seen with cells from normal subjects.


Author(s):  
Kiptiyah Kiptiyah ◽  
Widodo Widodo ◽  
Gatot Ciptadi ◽  
Aulanni’am Aulanni’Am ◽  
Mohammad A. Widodo ◽  
...  

AbstractBackgroundWe investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells.MethodsFor the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies.ResultsThe in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10˗gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.Conclusions10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.


2010 ◽  
Vol 298 (2) ◽  
pp. F401-F407 ◽  
Author(s):  
Md. Abdul Hye Khan ◽  
Mohammed Toriqul Islam ◽  
Alexander Castillo ◽  
Dewan Syed Abdul Majid

To examine the functional interaction between superoxide dismutase (SOD) and NADPH oxidase activity, we assessed renal responses to acute intra-arterial infusion of ANG II (0.5 ng·kg−1·min−1) before and during administration of a SOD inhibitor, diethyldithiocarbamate (DETC, 0.5 mg·kg−1·min−1), in enalaprilat-pretreated (33 μg·kg−1·min−1) rats ( n = 11). Total (RBF) and regional (cortical, CBF; medullary; MBF) renal blood flows were determined by Transonic and laser-Doppler flowmetry, respectively. Renal cortical and medullary tissue NADPH oxidase activity in vitro was determined using the lucigenin-chemiluminescence method. DETC treatment alone resulted in decreases in RBF, CBF, MBF, glomerular filtration rate (GFR), urine flow (V), and sodium excretion (UNaV) as reported previously. Before DETC, ANG II infusion decreased RBF (−18 ± 3%), CBF (−16 ± 3%), MBF [−5 ± 6%; P = not significant (NS)], GFR (−31 ± 4%), V (−34 ± 2%), and UNaV (−53 ± 3%). During DETC infusion, ANG II also caused similar reductions in RBF (−20 ± 4%), CBF (−19 ± 3%), MBF (−2 ± 2; P = NS), and in GFR (−22 ± 7%), whereas renal excretory responses (V; −12 ± 2%; UNaV; −24 ± 4%) were significantly attenuated compared with those before DETC. In in vitro experiments, ANG II (100 μM) enhanced NADPH oxidase activity both in cortical [13,194 ± 1,651 vs. 20,914 ± 2,769 relative light units (RLU)/mg protein] and in medullary (21,296 ± 2,244 vs. 30,597 ± 4,250 RLU/mg protein) tissue. Application of DETC (1 mM) reduced the basal levels and prevented ANG II-induced increases in NADPH oxidase activity in both tissues. These results demonstrate that renal excretory responses to acute ANG II administration are attenuated during SOD inhibition, which seems related to a downregulation of NADPH oxidase in the deficient condition of SOD activity.


2009 ◽  
Vol 63 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Visnja Bogdanovic ◽  
Marija Slavic ◽  
Jasminka Mrdjanovic ◽  
Slavica Solajic ◽  
Aleksandar Djordjevic

Eukaryotic cell survives in predominantly reduced conditions. Homeostasis of cellular redox system is an imperative of cell surviving and its normal metabolism. ROS are well recognized for playing a dual role as both deleterious and beneficial species, since they can be either harmful or beneficial to living systems. These species are mutagenic compounds known to lead to DNA damage, favor cell transformation, and contribute to the development of a variety of malignant diseases. All the effects of oxidants are influenced by the cellular antioxidant defenses. This multilayer system consists of low molecular weight components and several antioxidant enzymes. Superoxide dismutases (SODs) are the only enzymes dismuting superoxide radicals. Mitomycin C, a cross-linking agent, demonstrated genotoxicity in all in vitro and in vivo test systems in mammalian cells and animals. Water-soluble fullerenes are well known as cytotoxic agents for many cell lines in vitro. At the other side, fullerenols are good free radical scavengers and antioxidants both in vitro and in vivo. This paper investigates the effects of fullerenol on survival and fullerenol/ /mytomicine (MMC) treatment on superoxide-dismutase (SOD) activity in CHO-K1 cells. Samples were treated 3 and 24 h with fullerenol (C60(OH)24) at concentration range 0.01-0.5 mg/mL and survival was monitored with dye exclusion test (DET). The activity of total SOD was estimated in samples treated with chosen concentrations of fullerenol and MMC (0.5 and 0.1 mg/mL) after 3 and 24 h of cell incubation. Increasing of C60(OH)24 concentration leads to decreasing of percent of surviving cells 3 and 24 h after incubation. The activity of total SOD enhanced with higher concentration of fullerenol, while decreased in the highest concentration at both experimental points. In samples treated with MMC, as well as in samples treated with fullerenol (0.0625 mg/mL) + MMC was noticed boost in total SOD activity in comparison with controls. Treatment with fullerenol decreased SOD activity in rest of samples treated with MMC. Decreased activity of superoxide-dismutase in almost all samples treated with fullerenol and MMC might be contributed to antioxidative properties of fullerenol. Increased enzyme level at concentration of 0.0625 mg/mL may be due to its prooxidative activity.


2017 ◽  
Vol 51 (2) ◽  
pp. 39-45
Author(s):  
Milena Jankovic ◽  
Lada Zivkovic ◽  
Andrea Pirkovic ◽  
Dijana Topalovic ◽  
Dragana Dekanski ◽  
...  

1978 ◽  
Vol 8 (2) ◽  
pp. 228-232 ◽  
Author(s):  
D Subrahmanyam ◽  
K Mehta ◽  
D S Nelson ◽  
Y V Rao ◽  
C K Rao

Sera from cases of elephantiasis due to Wuchereria bancrofti infection promoted an intense adhesion of peripheral blood leukocytes to W. bancrofti microfilariae in vitro. A similar adhesion was also seen using sera from some normal persons living for several years in areas where filariasis is endemic. No such adhesion was evident with sera from microfilaria carriers or from normal subjects from nonendemic areas. The adhesion was complement independent and was associated with the immunoglobulin G fraction of serum. 51Cr release studies suggested the occurrence of cell-mediated cytotoxicity to W. bancrofti microfilariae in the presence of elephantiasis serum. Microfilariae of Litomosoides carinii could be isolated free of blood cells, from the blood of infected rats. In the presence of serum, or its immunoglobulin G fraction, from patients with elephantiasis, L. carinii microfilariae adhered to human peripheral blood leukocytes or rat spleen cells.


2000 ◽  
Vol 68 (8) ◽  
pp. 4822-4826 ◽  
Author(s):  
Jacqueline Y. Channon ◽  
Rosanne M. Seguin ◽  
Lloyd H. Kasper

ABSTRACT When tachyzoites were incubated with human peripheral blood leukocytes in vitro, more monocytes and dendritic cells than neutrophils or lymphocytes were infected. Although tachyzoites were able to divide in each of these cell types, monocytes and dendritic cells were more permissive to rapid tachyzoite division than neutrophils or lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document