scholarly journals Erythropoietin structure-function relationships: high degree of sequence homology among mammals

Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1507-1516 ◽  
Author(s):  
D Wen ◽  
JP Boissel ◽  
TE Tracy ◽  
RH Gruninger ◽  
LS Mulcahy ◽  
...  

To investigate structure-function relationships of erythropoietin (Epo), we have obtained cDNA sequences that encode the mature Epo protein of a variety of mammals. A first set of primers, corresponding to conserved nucleotide sequences between mouse and human DNAs, allowed us to amplify by polymerase chain reaction (PCR) intron 1/exon 2 fragments from genomic DNA of the hamster, cat, lion, dog, horse, sheep, dolphin, and pig. Sequencing of these fragments permitted the design of a second generation of species-specific primers. RNA was prepared from anemic kidneys and reverse-transcribed. Using our battery of species-specific 5′ primers, we were able to successfully PCR- amplify Epo cDNA from Rhesus monkey, rat, sheep, dog, cat, and pig. Deduced amino acid sequences of mature Epo proteins from these animals, in combination with known sequences for human, Cynomolgus monkey, and mouse, showed a high degree of homology, which explains the biologic and immunological cross-reactivity that has been observed in a number of species. Human Epo is 91% identical to monkey Epo, 85% to cat and dog Epo, and 80% to 82% to pig, sheep, mouse, and rat Epos. There was full conservation of (1) the disulfide bridge linking the NH2 and COOH termini; (2) N-glycosylation sites; and (3) predicted amphipathic alpha- helices. In contrast, the short disulfide bridge (C29/C33 in humans) is not invariant. Cys33 was replaced by a Pro in rodents. Most of the amino acid replacements were conservative. The C-terminal part of the loop between the C and D helices showed the most variation, with several amino acid substitutions, deletions, and/or insertions. Calculations of maximum parsimony for intron 1/exon 2 sequences as well as coding sequences enabled the construction of cladograms that are in good agreement with known phylogenetic relationships.

Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1507-1516 ◽  
Author(s):  
D Wen ◽  
JP Boissel ◽  
TE Tracy ◽  
RH Gruninger ◽  
LS Mulcahy ◽  
...  

Abstract To investigate structure-function relationships of erythropoietin (Epo), we have obtained cDNA sequences that encode the mature Epo protein of a variety of mammals. A first set of primers, corresponding to conserved nucleotide sequences between mouse and human DNAs, allowed us to amplify by polymerase chain reaction (PCR) intron 1/exon 2 fragments from genomic DNA of the hamster, cat, lion, dog, horse, sheep, dolphin, and pig. Sequencing of these fragments permitted the design of a second generation of species-specific primers. RNA was prepared from anemic kidneys and reverse-transcribed. Using our battery of species-specific 5′ primers, we were able to successfully PCR- amplify Epo cDNA from Rhesus monkey, rat, sheep, dog, cat, and pig. Deduced amino acid sequences of mature Epo proteins from these animals, in combination with known sequences for human, Cynomolgus monkey, and mouse, showed a high degree of homology, which explains the biologic and immunological cross-reactivity that has been observed in a number of species. Human Epo is 91% identical to monkey Epo, 85% to cat and dog Epo, and 80% to 82% to pig, sheep, mouse, and rat Epos. There was full conservation of (1) the disulfide bridge linking the NH2 and COOH termini; (2) N-glycosylation sites; and (3) predicted amphipathic alpha- helices. In contrast, the short disulfide bridge (C29/C33 in humans) is not invariant. Cys33 was replaced by a Pro in rodents. Most of the amino acid replacements were conservative. The C-terminal part of the loop between the C and D helices showed the most variation, with several amino acid substitutions, deletions, and/or insertions. Calculations of maximum parsimony for intron 1/exon 2 sequences as well as coding sequences enabled the construction of cladograms that are in good agreement with known phylogenetic relationships.


1986 ◽  
Vol 64 (12) ◽  
pp. 1211-1217 ◽  
Author(s):  
In C. Kim ◽  
Hector Nolla

Testicular cytochrome c (cyt ct) was isolated from testes of sexually mature, rat, mouse, rabbit, and bull, among which rat testis is highly rich in cyt c1. By fusion of NS-1 myeloma cells and spleen cells of mice immunized with rat cyt ct, 11 stable mouse hybridoma cell lines were established. Using an enzyme-linked immunosorbent assay, it was determined that 4 of the 11 anti-rat cyt ct monoclonal antibodies (McAb) did not bind to somatic cyt c (cyt cs) of vertebrates nor to cyt ct of mouse, rabbit, and bull. Four other McAb showed no binding to cyt cs but showed different patterns of cross-reactivity with these four cyt ct. Therefore, these McAb appear to be very sensitive and useful probes for the discrimination or identification of extremely similar isocytochromes c. Although the primary amino acid sequences between cyt cs of rat and mouse are identical, the antigenic structure of cyt ct of rat and mouse are clearly distinct with regard to cross-reactivity with some anti-rat cyt ct McAb. Furthermore, these McAb also reveal that the primary amino acid sequences of cyt ct, which reflect differences in the surface conformation of the molecule, are probably species specific.


Rheumatology ◽  
2019 ◽  
Vol 58 (11) ◽  
pp. 1942-1949 ◽  
Author(s):  
Jon Waarst Gregersen ◽  
Christian Erikstrup ◽  
Per Ivarsen ◽  
Rie Glerup ◽  
Elizabeth Krarup ◽  
...  

Abstract Objectives This study aimed to characterize the association between HLA alleles and ANCA-associated vasculitis (AAV) in a genetically homogeneous population, and to analyse the contribution of specific HLA molecule amino acid sequences to the risk of AAV. Methods We included 187 Danish patients with AAV and 1070 healthy controls. All were HLA typed at two-field resolution. The association of HLA alleles to PR3- or MPO-AAV was analysed. The contribution of the dominant molecular motifs of the HLA-DPB1 molecule to the risk of AAV was investigated by association studies that included specific amino acid sequences of the hypervariable regions in exon 2. Results Ninety-four percent of patients with PR3-AAV were carriers of HLA-DPB1*04:01 while all patients with PR3-AAV were carriers of an HLA-DPB1*04 allele, and 85% were homozygous. This was significantly more than in the control group (P < 0.0001). The association was even stronger when HLA-DPB1*04:02 and -DPB1*23:01 were included. HLA-DPB1*04:01, -DPB1*04:02 and -DPB1*23:01 share amino acids in positions 8–9, 69, 76 and 84–87 within the hypervariable regions, but only positions 69 and 84–87 contributed significantly to the disease risk. HLA-DRB1*15 was associated with an increased risk of developing PR3-AAV, while HLA-DRB1*04, -DRB1*07 and -DQB1*03 were associated with a reduced risk of kidney involvement in PR3-AAV. MPO-AAV was only weakly associated with HLA class I alleles. Conclusion PR3-AAV is strongly associated with the HLA-DPB1 alleles HLA-DPB1*04:01, -DPB1*04:02 and -DPB1*23:01, which share amino acid sequences crucial for the peptide-binding groove.


2006 ◽  
Vol 87 (4) ◽  
pp. 909-919 ◽  
Author(s):  
Grant S. Hansman ◽  
Katsuro Natori ◽  
Haruko Shirato-Horikoshi ◽  
Satoko Ogawa ◽  
Tomoichiro Oka ◽  
...  

Human norovirus (NoV) strains cause a considerable number of outbreaks of gastroenteritis worldwide. Based on their capsid gene (VP1) sequence, human NoV strains can be grouped into two genogroups (GI and GII) and at least 14 GI and 17 GII genotypes (GI/1–14 and GII/1–17). Human NoV strains cannot be propagated in cell-culture systems, but expression of recombinant VP1 in insect cells results in the formation of virus-like particles (VLPs). In order to understand NoV antigenic relationships better, cross-reactivity among 26 different NoV VLPs was analysed. Phylogenetic analyses grouped these NoV strains into six GI and 12 GII genotypes. An antibody ELISA using polyclonal antisera raised against these VLPs was used to determine cross-reactivity. Antisera reacted strongly with homologous VLPs; however, a number of novel cross-reactivities among different genotypes was observed. For example, GI/11 antiserum showed a broad-range cross-reactivity, detecting two GI and 10 GII genotypes. Likewise, GII/1, GII/10 and GII/12 antisera showed a broad-range cross-reactivity, detecting several other distinct GII genotypes. Alignment of VP1 amino acid sequences suggested that these broad-range cross-reactivities were due to conserved amino acid residues located within the shell and/or P1-1 domains. However, unusual cross-reactivities among different GII/3 antisera were found, with the results indicating that both conserved amino acid residues and VP1 secondary structures influence antigenicity.


1989 ◽  
Vol 44 (7) ◽  
pp. 817-824 ◽  
Author(s):  
Aftab Ahmed ◽  
Meeno Jahan ◽  
Gerhard Braunitzer ◽  
Helmut Pechlaner

The complete amino acid sequences of the hemoglobins from the adult European polecat (Mustela putorius) are presented. The erythrocytes contain two hemoglobin components and three globin chains (α I, α II and β). The primary structure of globin chains and of the tryptic peptides determined in liquid- and gas-phase sequantors. Comparing the sequences of the globin chains of the polecat with that of human Hb-A, 17 (23.9%) substitutions were recognized in the α I, 16 (22.5%) in the α II and 14 (20.4%) in the β chain. A high degree of homology observed with other representatives of the family Mustelidae.


1992 ◽  
Vol 282 (2) ◽  
pp. 447-452 ◽  
Author(s):  
A L Newsome ◽  
J W McLean ◽  
M O Lively

Detergent-solubilized hen oviduct signal peptidase has been characterized previously as an apparent complex of a 19 kDa protein and a 23 kDa glycoprotein (GP23) [Baker & Lively (1987) Biochemistry 26, 8561-8567]. A cDNA clone encoding GP23 from a chicken oviduct lambda gt11 cDNA library has now been characterized. The cDNA encodes a protein of 180 amino acid residues with a single site for asparagine-linked glycosylation that has been directly identified by amino acid sequence analysis of a tryptic-digest peptide containing the glycosylated site. Immunoblot analysis reveals cross-reactivity with a dog pancreas protein. Comparison of the deduced amino acid sequence of GP23 with the 22/23 kDa glycoprotein of dog microsomal signal peptidase [Shelness, Kanwar & Blobel (1988) J. Biol. Chem. 263, 17063-17070], one of five proteins associated with this enzyme, reveals that the amino acid sequences are 90% identical. Thus the signal peptidase glycoprotein is as highly conserved as the sequences of cytochromes c and b from these same species and is likely to be found in a similar form in many, if not all, vertebrate species. The data also show conclusively that the dog and avian signal peptidases have at least one protein subunit in common.


1993 ◽  
Vol 11 (2) ◽  
pp. 141-149 ◽  
Author(s):  
S M Duthie ◽  
P L Taylor ◽  
K A Eidne

ABSTRACT The cloning and characterization of the mouse TRH receptor (TRH-R) gene revealed an untranslated exon (exon 1), a single intron and an upstream dinucleotide repeat sequence (d(TG)16.d(AG)21) in the 5′ untranslated region (UTR). The coding region was contained almost entirely on a second exon (exon 2), with the final amino acid and stop codon at the COOH terminus of the gene encoded by a third exon (exon 3) flanked by two introns. The 3′ UTR was contained on the remainder of exon 3 and on the final exon (exon 4). Exon 3 (228 bp) corresponds exactly to a 228 bp deletion that exists in the rat TRH-R cDNA, but not in the mouse cDNA. The mouse TRH-R cDNA encodes a protein of 393 amino acids which is 96% homologous to the rat TRH-R protein of 412 amino acids, but is 19 amino acids shorter at its COOH terminus. The coding sequence for these 19 amino acids (plus 1 extra amino acid) does exist in the mouse TRH-R gene, but the sequence is encoded by exon 4, separated from the rest of the coding region by the stop codon and 223 bp of 3′ UTR on exon 3. Splicing of exon 3 in the mouse TRH-R gene would remove the last amino acid, the stop codon and the 223 bp of 3′ UTR, allowing transcription to continue into the 3′ UTR on exon 4, which encodes the 19 extra amino acids found in the rat cDNA. This would then result in an alternative 412 amino acid version of the mouse TRH-R protein, with 95% homology to the rat TRH-R. This study focused on the structural differences in the intracellular COOH-terminal tail of the receptor, which is known to be a functionally important domain in other members of the G protein-coupled receptor family. We have also recently characterized the human TRH-R cDNA, which revealed a third variant at the COOH terminus. Comparisons between mouse, rat and human TRH-Rs show that the amino acid sequences are virtually identical. However, significant differences between these species exist at the COOH terminus, with each TRH-R having a unique form of the COOH-terminal tail, beginning at exactly the same site and encoding 1, 20 and 6 amino acids in the mouse, rat and human respectively.


1999 ◽  
Vol 112 (19) ◽  
pp. 3319-3330 ◽  
Author(s):  
C. Rabouille ◽  
D.A. Kuntz ◽  
A. Lockyer ◽  
R. Watson ◽  
T. Signorelli ◽  
...  

In this paper we show the organisation of the Drosophila gene encoding a Golgi alpha-mannosidase II. We demonstrate that it encodes a functional homologue of the mouse Golgi alpha-mannosidase II. The Drosophila and mouse cDNA sequences translate into amino acid sequences which show 41% identity and 61% similarity. Expression of the Drosophila GMII sequence in CHOP cells produces an enzyme which has mannosidase activity and is inhibited by swainsonine and by CuSO(4.) In cultured Drosophila cells and in Drosophila embryos, antibodies raised against a C-terminal peptide localise this product mainly to the Golgi apparatus as identified by cryo-immuno electron microscopy studies and by antibodies raised against known mammalian Golgi proteins. We discuss these results in terms of the possible use of dGMII as a Drosophila Golgi marker.


1987 ◽  
Vol 7 (11) ◽  
pp. 4065-4074
Author(s):  
B E Rich ◽  
J A Steitz

cDNA clones encoding three antigenically related human ribosomal phosphoproteins (P-proteins) P0, P1, and P2 were isolated and sequenced. P1 and P2 are analogous to Escherichia coli ribosomal protein L7/L12, and P0 is likely to be an analog of L10. The three proteins have a nearly identical carboxy-terminal 17-amino-acid sequence (KEESEESD(D/E)DMGFGLFD-COOH) that is the basis of their immunological cross-reactivity. The identities of the P1 and P2 cDNAs were confirmed by the strong similarities of their encoded amino acid sequences to published primary structures of the homologous rat, brine shrimp, and Saccharomyces cerevisiae proteins. The P0 cDNA was initially identified by translation of hybrid-selected mRNA and immunoprecipitation of the products. To demonstrate that the coding sequences are full length, the P0, P1, and P2 cDNAs were transcribed in vitro by bacteriophage T7 RNA polymerase and the resulting mRNAs were translated in vitro. The synthetic P0, P1, and P2 proteins were serologically and electrophoretically identical to P-proteins extracted from HeLa cells. These synthetic P-proteins were incorporated into 60S but not 40S ribosomes and also assembled into a complex similar to that described for E. coli L7/L12 and L10.


2003 ◽  
Vol 30 (8) ◽  
pp. 843 ◽  
Author(s):  
Tursun Kerim ◽  
Nijat Imin ◽  
Jeremy J. Weinman ◽  
Barry G. Rolfe

Three isoallergens of Ory s 2, homologues of grass group II pollen allergens, were identified from rice and characterised by proteome and immunochemical analyses. The N-terminal amino acid sequence profiles of three proteins on a 2-dimensional electrophoresis (2-DE) gel of rice pollen proteins matched 100% to the protein sequences encoded by three rice expressed sequence tags (ESTs). The deduced protein sequences from these ESTs share sequence identities of 41–43% with the protein sequences of the group II pollen allergens of different grasses, and sequence identity of 39% with the C-terminal portion of rice group I pollen allergens. Signal peptide sequences, which are similar to the leader peptides of other major pollen allergens, are also present in the deduced amino acid sequences. Polyclonal antibodies, produced in rabbits using Ory s 2 proteins purified by 2-DE, were used to investigate the developmental-stage- and tissue-specific expression of Ory s 2 by immunochemical analysis. Results of immunochemical experiments show that Ory s 2 proteins are expressed only at the late stage of pollen development and they do not have cross-reactivity with group II pollen allergens from some other common grasses.


Sign in / Sign up

Export Citation Format

Share Document