scholarly journals Role for low-affinity receptor for IgE (CD23) in normal and leukemic B- cell proliferation

Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1881-1886 ◽  
Author(s):  
S Fournier ◽  
M Rubio ◽  
G Delespesse ◽  
M Sarfati

Abstract CD23 gene is overexpressed and abnormally regulated in the most frequent adult leukemic disorder, B chronic lymphocytic leukemia (B- CLL). Switch on and off in the upregulation of surface CD23 expression consistently occurs in the early stage of normal B-cell activation, suggesting a key role for CD23 in this process. We show here that, after ligation of mlg in the presence of interleukin-4, the increase of CD23 protein precedes B-cell DNA synthesis and mainly results from the strong induction of CD23 type-B isoform. Exposure of normal B cells to conventional or phosphorothioate-derivatized CD23 antisense oligonucleotides (predominantly type B) significantly augments B-cell proliferation induced by antigen receptor stimulation or direct contact with activated T cells. Unexpectedly, CD23 antisense, but not sense, oligonucleotides specifically enhance rather than suppress CD23 expression on B cells. Finally, a selective increase in CD23 type-B expression provokes the entry of resting (Go) CLL B cells into G1 and S phase of the cell cycle in the absence of any other stimulus, whereas it synergizes with tumor necrosis factor-alpha to increase the number of activated B cells. These results provide compelling evidence that CD23 represents an important molecule directly involved in the process of normal or leukemic B-cell activation and growth.

Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1881-1886
Author(s):  
S Fournier ◽  
M Rubio ◽  
G Delespesse ◽  
M Sarfati

CD23 gene is overexpressed and abnormally regulated in the most frequent adult leukemic disorder, B chronic lymphocytic leukemia (B- CLL). Switch on and off in the upregulation of surface CD23 expression consistently occurs in the early stage of normal B-cell activation, suggesting a key role for CD23 in this process. We show here that, after ligation of mlg in the presence of interleukin-4, the increase of CD23 protein precedes B-cell DNA synthesis and mainly results from the strong induction of CD23 type-B isoform. Exposure of normal B cells to conventional or phosphorothioate-derivatized CD23 antisense oligonucleotides (predominantly type B) significantly augments B-cell proliferation induced by antigen receptor stimulation or direct contact with activated T cells. Unexpectedly, CD23 antisense, but not sense, oligonucleotides specifically enhance rather than suppress CD23 expression on B cells. Finally, a selective increase in CD23 type-B expression provokes the entry of resting (Go) CLL B cells into G1 and S phase of the cell cycle in the absence of any other stimulus, whereas it synergizes with tumor necrosis factor-alpha to increase the number of activated B cells. These results provide compelling evidence that CD23 represents an important molecule directly involved in the process of normal or leukemic B-cell activation and growth.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1135-1135
Author(s):  
Renee C. Tschumper ◽  
Jaime R. Darce ◽  
Xiaosheng Wu ◽  
Stephen A. Mihalcik ◽  
Diane F. Jelinek

Abstract B cell-activating factor (BAFF) is known to regulate normal B cell development and homeostasis primarily by signaling through the high affinity receptor, BAFF-R, one of three BAFF binding receptors (BBRs). BAFF also binds two other receptors, BCMA and TACI with lesser affinity. We have recently shown that normal peripheral blood (PB) B cells express high levels of prebound soluble BAFF, which is lost upon B cell activation. Because of BAFF’s activity on normal B cells, we have been interested in the roles of BAFF and BBRs in B cell chronic lymphocytic leukemia (B-CLL). We and others have demonstrated that BAFF promotes primary CLL B cell survival and that serum BAFF levels are elevated in some patients. Although CLL B cells are known to express BBRs, a comprehensive and quantitative analysis of BBR levels and CLL B cell capacity to bind BAFF has not yet been done. We began this study by characterizing the level of soluble BAFF bound to freshly isolated CLL B cells, measured by both western blot analysis and flow cytometry. To assess receptor occupancy, cells were incubated with or without exogenous BAFF before assessing anti-BAFF reactivity and changes in median fluorescence intensity (ΔMFI; defined by dividing the MFI of the anti-BAFF antibody by the MFI of the isotype matched control antibody) were calculated. Normal B cells have higher detectable levels of bound BAFF with a ΔMFI ranging from 16 to 35 (mean=22.2). Upon addition of exogenous BAFF, the ΔMFI range increased to 27–96.6 (mean=49.1; n=8). Thus, despite evidence of prebound BAFF, clearly not all BBRs were occupied on normal PB B cells. By contrast, the levels of prebound BAFF on CLL B cells were significantly lower with a ΔMFI ranging from 1 to 13.1 (mean=2.7; n=36). Of note, 10/36 patients did not exhibit increased anti-BAFF reactivity upon incubation with exogenous BAFF (mean fold induction=0.8) whereas 26/36 patients displayed a mean fold induction of anti-BAFF reactivity of 3.5. These observations prompted us to next quantitate CLL B cell BBR expression. All patient CLL B cells expressed BAFF-R but at significantly lower levels than observed in normal B cells (p=0.0009). When CLL patients were categorized into IGHV mutated (M; n=22) and unmutated (UM; n=24), UM patients were observed to express higher levels of BAFF-R (ΔMFI =8.9) than M patients (ΔMFI =5.24). Regarding TACI, we previously demonstrated that normal memory B cells uniformly express TACI (ΔMFI =12.7; n=10) and there is a small population of activated naïve B cells that express TACI at lower levels (ΔMFI =8.3; n=10). In our CLL cohort, 14/22 M patients were TACI+ (ΔMFI =7.0) and 19/24 UM patients were TACI+ (ΔMFI =4.7). Finally, whereas normal PB B cells completely lack BCMA expression, 7/22 M and 4/22 UM patients expressed BCMA. Thus, using the BBR profile and analysis of expression levels relative to normal PB B cells, the following subgroups of B-CLL can be defined: BAFF-R+; BAFF-R/TACI+; BAFF-R/BCMA+; BAFF-R/TACI/BCMA+. It remains to be determined if these BBR profiles correlate with aspects of clinical disease. In addition, given the putative importance of BAFF in this disease, it is interesting to note that in general, CLL B cells display overall lower levels of prebound BAFF. Current studies are focused on determining whether this reflects CLL B cell activation status, increased competition for BAFF, and/or reduced levels of BBR expression.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3582-3582
Author(s):  
Nino Porakishvili ◽  
Peter Lydyard ◽  
Anna Bremser ◽  
Ketki Vispute ◽  
Azka Memon ◽  
...  

Abstract Abstract 3582 Introduction: We have demonstrated that CD180, an orphan receptor of the Toll-like receptor family, is expressed heterogeneously on B-CLL cells, mainly on those with mutated IGVH genes. We further showed that specific ligation of CD180 with mAbs induced activation and cycling of only ~50% CD180+ B-CLL clones (“R”: responders), while CD180+ B-CLL cells unresponsive to CD180 ligation (“NR”: non-responders) or CD180− B-CLL cells could not be activated through either CD40 or IL-4 suggesting anergy. Because CD180 has a short intracellular domain, it presumably, signals through pathways associated with other receptors, such as smIgM. Indeed, engagement of smIgM or CD180 induces Lyn and Syk phosphorylation. Here we compare activation, cycling and phosphorylation of intracellular protein kinases in R and NR and CD180− B-CLL clones and B lymphocytes from healthy subjects upon ligation of smIgM. Methods: B-CLL cells were analyzed for smCD180 and smIgM, and sm CD180+IgM+ B-CLL clones were categorized as R and NR by responsiveness to CD180 ligation. Leukemic clones from 15 smCD180+IgM+R, 14 smCD180+IgM+NR, 12 smCD180−IgM+ untreated B-CLL patients and 14 healthy age-matched individuals were stimulated with goat F(ab’)2 anti-human IgM pAbs for 72h, and stained with PE~anti-CD86 mAbs, or fixed, permeabilized and stained with PE~anti-Ki-67 to assess B-cell activation and cycling, respectively. In order to study early intracellular signalling events, cells were stimulated with the same antibodies for 20 min, fixed, permeabilized and stained with Alexa Fluor~rabbit/mouse antibodies to phospho-Akt, phospho-ERK, phospho-p38MAPK, and phospho-ZAP70/Syk. Unstimulated cells in medium were used as controls. Results were assessed by flow cytometry and analyzed with the Mann-Whitney U test and paired t-test where appropriate. Results: ligation of sIgM on smCD180+IgM+R B-CLL cells resulted in a significant increase in CD86+ cells (66.3±21.7% vs 18.7±12.0%, p=0.00004) and Ki-67+ cells (38.9±10.5% vs 11.1±5.9%, p=0.0001) compared to medium controls; this was not different from the increase in activation and cycling of normal B cells (not shown). In contrast, smCD180+IgM+NR B-CLL cells failed to significantly upregulate CD86 in response to anti-IgM pAbs (20.6±13.8% vs 17.6±13.7%, p=0.334) and Ki-67 (8.4±4.6% vs 5.3±1.4%, p=0.063). Interestingly, smCD180−IgM+ B-CLL cells demonstrated diminished CD86 upregulation following sIgM ligation: 36.9±21.7% vs 11.0±4.7% in medium, p=0.058 (difference with smCD180+IgM+R B-CLL, p=0.0069). Cell cycling was also decreased: 9.7±4.1% vs 5.4±3.6% in medium, p=0.015 (difference with smCD180+IgM+R, p=0.0022). The proximal stages of anti-smIgM responses were further studied by intracellular signalling of protein kinases associated with the IgM-signalling pathway. While ligation of sIgM on control B cells and smCD180+IgM+R B-CLL cells resulted in phosphorylation of all four enzymes studied, smCD180+IgM+NR cells failed to signal downstream from ZAP70/Syk following sIgM ligation (Table 1), although there was a greater heterogeneity in smCD180+IgM+R B-CLL responses, compared to normal B cells. Importantly, smIgM ligation of smCD180−IgM+ B-CLL cells did not increase phosphorylation of Erk or p38MAPK, although some such clones responded to smIgM ligation by phosphorylation of ZAP70/Syk and Akt (data not shown). Conclusions: B-CLL clones that are smCD180+IgM+ but unresponsive to CD180 ligation (~30% of all B-CLL cases) are also unresponsive (anergic) to smIgM ligation measured by intracellular signalling, cell activation and cycling. Meanwhile, smCD180−IgM+ B-CLL clones respond heterogeneously to IgM crosslinking. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4142-4142
Author(s):  
Rajendra N Damle ◽  
Sonal Temburni ◽  
Ryon M. Andersen ◽  
Jacqueline C. Barrientos ◽  
Jonathan E. Kolitz ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is characterized by the clonal amplification of CD5-expressing B cells that appear to develop and evolve based on signals from the microenvironment. In vitro and in vivo evidence suggests that the B-cell antigen receptor (BCR) and Toll-like receptors (TLRs) may be keys to this stimulation. Because clonal turnover can lead to the release of naked nuclear material into the cellular microenvironment, these remnants of dying/dead cells may contribute to disease progression by repeated low level T-independent activation of CLL cells through the combination of the BCR and TLRs. To test this hypothesis, we assessed TLR9-driven or BCR + TLR9-driven CLL B-cell activation, focusing on its impact on telomerase activation in CLL cells, which is known to be important in the disease and which we have shown to be selectively activated by BCR stimulation in Ig V-unmutated (U-CLL) clones but not in Ig V-mutated (M-CLL) clones. B cells, isolated by negative selection from peripheral blood of IgM+ CLL patients and cryopreserved until use, were cultured for 16 hr without/ with TLR9 agonist, ODN 2006, alone and were assayed for apoptosis using Annexin V and flow cytometry. To study the relative contribution of simultaneous TLR9 activation and BCR activation, B cells were exposed to ODN2006 alone or HB57dex (monoclonal anti IgM Ab conjugated onto dextran) alone or a combination of the two reagents. Extracts from cells cultured for a period of 3 days were assayed for functional telomerase activity using TRAP. Parallel cultures of B cells exposed to the same stimuli were harvested at day 3 and assayed for cell activation and proliferation, which was assessed by 3H thymidine incorporation. CLL cells cultured with ODN2006 exhibited significant apoptosis within 16 hours in 6/12 cases. However at day 3, the same stimulus elicited significant increases in percentages of CD69-expressing cells and densities of HLA-DR in all CLL cases studied. As compared to BCR activation, which upregulates telomerase activity in U-CLL only, TLR9-mediated activation of CLL induced telomerase activation in all CLL cases. Furthermore, ODN2006 elicited significantly higher induction of telomerase activity in M-CLL cases compared to U-CLL cases (p=0.01). In addition, in M-CLL cases, simultaneous activation via TLR9 and BCR significantly upregulated the telomerase activity (p=0.05) that was induced by TLR9 activation alone. IRAK-1/4 inhibitor down modulated both TLR9 mediated and TLR9 +BCR mediated telomerase activity to a greater extent in M-CLL cases than in U-CLL cases. TLR9 activation of CLL cells induced a 3.75 + 0.8 fold (range 1.1 to 19.6; n=32) increase in cell proliferation. When segregated by Ig V mutation, U-CLL cells (n=16) responded significantly better (6.0 + 1.6 fold) compared to M-CLL cells (2.1 + 0.3 fold, n=16; p=0.03). However, co-stimulation of cells via their BCR significantly increased TLR-mediated responses only in M-CLL cases (from 2.3 + 0.4 fold to 5.4 + 1.7 fold; p=0.05). IRAK-1/4 inhibitor did not exert a significant effect on TLR9 mediated cell proliferation in either the U-CLL or M-CLL cases. Co-culture of CLL cells with human stromal cells, HS5, further upregulated the concerted TLR9 + BCR induced proliferative responses in 70% of the cases studied. Together, these results indicate that simultaneous stimulation of CLL cells via both their TLR9 and BCR molecules positively impacts on telomerase activity in all patients studied. Since telomerase is crucial in maintaining longevity of repeatedly stimulated cells, this could represent a mechanism for worse clinical outcome in CLL. These studies stress the need for devising therapeutic agents or combinations thereof to effectively target multiple pathways downstream of these signaling receptors and to ultimately eradicate newly evolving CLL cells. Disclosures: No relevant conflicts of interest to declare.


1984 ◽  
Vol 159 (3) ◽  
pp. 881-905 ◽  
Author(s):  
J D Ashwell ◽  
A L DeFranco ◽  
W E Paul ◽  
R H Schwartz

In this report we have examined the ability of small resting B cells to act as antigen-presenting cells (APC) to antigen-specific MHC-restricted T cells as assessed by either T cell proliferation or T cell-dependent B cell stimulation. We found that 10 of 14 in vitro antigen-specific MHC-restricted T cell clones and lines and three of four T cell hybridomas could be induced to either proliferate or secrete IL-2 in the presence of lightly irradiated (1,000 rads) purified B cells and the appropriate foreign antigen. All T cell lines and hybridomas were stimulated to proliferate or make IL-2 by macrophage- and dendritic cell-enriched populations and all T cells tested except one hybridoma caused B cell activation when stimulated with B cells as APC. Furthermore, lightly irradiated, highly purified syngeneic B cells were as potent a source of APC for inducing B cell activation as were low density dendritic and macrophage-enriched cells. Lymph node T cells freshly taken from antigen-primed animals were also found to proliferate when cultured with purified B cells and the appropriate antigen. Thus, small resting B cells can function as APC to a variety of T cells. This APC function was easily measured when the cells were irradiated with 1,000 rads, but was greatly diminished or absent when they were irradiated with 3,300 rads. Thus, the failure of some other laboratories to observe this phenomenon may be the result of the relative radiosensitivity of the antigen-presenting function of the B cells. In addition, this radiosensitivity allowed us to easily distinguish B cell antigen presentation from presentation by the dendritic cell and macrophage, as the latter was resistant to 3,300 rads. Finally, one T cell clone that failed to proliferate when B cells were used as APC was able to recruit allogeneic B cells to proliferate in the presence of syngeneic B cells and the appropriate antigen. This result suggests that there are at least two distinct pathways of activation in T cells, one that leads to T cell proliferation and one that leads to the secretion of B cell recruitment factor(s).


2021 ◽  
Vol 12 ◽  
Author(s):  
Dominik Schmiedel ◽  
Hadas Hezroni ◽  
Amit Hamburg ◽  
Ziv Shulman

Activation and differentiation of B cells depend on extensive rewiring of gene expression networks through changes in chromatin structure and accessibility. The chromatin remodeling complex BAF with its catalytic subunit Brg1 was previously identified as an essential regulator of early B cell development, however, how Brg1 orchestrates gene expression during mature B cell activation is less clear. Here, we find that Brg1 is required for B cell proliferation and germinal center formation through selective interactions with enhancers. Brg1 recruitment to enhancers following B cell activation was associated with increased chromatin accessibility and transcriptional activation of their coupled promoters, thereby regulating the expression of cell cycle-associated genes. Accordingly, Brg1-deficient B cells were unable to mount germinal center reactions and support the formation of class-switched plasma cells. Our findings show that changes in B cell transcriptomes that support B cell proliferation and GC formation depend on enhancer activation by Brg1. Thus, the BAF complex plays a critical role during the onset of the humoral immune response.


2007 ◽  
Vol 81 (18) ◽  
pp. 9748-9758 ◽  
Author(s):  
Heather J. Martin ◽  
Jae Myun Lee ◽  
Dermot Walls ◽  
S. Diane Hayward

ABSTRACT Epstein-Barr virus (EBV) infection of primary B cells causes B-cell activation and proliferation. Activation of B cells requires binding of antigen to the B-cell receptor and a survival signal from ligand-bound CD40, signals that are provided by the EBV LMP1 and LMP2A latency proteins. Recently, Toll-like receptor (TLR) signaling has been reported to provide a third B-cell activation stimulus. The interaction between the EBV and TLR pathways was therefore investigated. Both UV-inactivated and untreated EBV upregulated the expression of TLR7 and downregulated the expression of TLR9 in naive B cells. UV-inactivated virus transiently stimulated naive B-cell proliferation in the presence of the TLR7 ligand R837, while addition of the TLR7 antagonist IRS 661 impaired cell growth induced by untreated EBV. Interferon regulatory factor 5 (IRF-5) is a downstream mediator of TLR7 signaling. IRF-5 was induced following EBV infection, and IRF-5 was expressed in B-cell lines with type III latency. Expression of IRF-5 in this setting is surprising since IRF-5 has tumor suppressor and antiviral properties. B-cell proliferation assays provided evidence that EBV modulates TLR7 signaling responses. Examination of IRF-5 transcripts identified a novel splice variant, V12, that was induced by EBV infection, was constitutively nuclear, and acted as a dominant negative form in IRF-5 reporter assays. IRF-4 negatively regulates IRF-5 activation, and IRF-4 was also present in type III latently infected cells. EBV therefore initially uses TLR7 signaling to enhance B-cell proliferation and subsequently modifies the pathway to regulate IRF-5 activity.


2002 ◽  
Vol 195 (8) ◽  
pp. 1079-1085 ◽  
Author(s):  
Elizabeth U. Rudge ◽  
Antony J. Cutler ◽  
Nicholas R. Pritchard ◽  
Kenneth G.C. Smith

Inhibitory receptors CD22, FcγRII (CD32), CD72, and paired immunoglobulin-like receptor (PIR)-B are critically involved in negatively regulating the B cell immune response and in preventing autoimmunity. Here we show that interleukin 4 (IL-4) reduces expression of all four on activated B cells at the level of messenger RNA and protein. This reduced expression is dependent on continuous exposure to IL-4 and is mediated through Stat6. Coligation of FcγRII to the B cell receptor (BCR) via intact IgG increases the B cell activation threshold and suppresses antigen presentation. IL-4 completely abolishes these negative regulatory effects of FcγRII. CD22 coligation with the BCR also suppresses activation — this suppression too is abolished by IL-4. Thus, IL-4 is likely to enhance the B cell immune response by releasing B cells from inhibitory receptor suppression. By this coordinate reduction in expression of inhibitory receptors, and release from CD22 and FcγRII-mediated inhibition, IL-4 is likely to play a role in T cell help of B cells and the development of T helper cell type 2 responses. Conversely, B cell activation in the absence of IL-4 would be more difficult to achieve, contributing to the maintenance of B cell tolerance in the absence of T cell help.


1982 ◽  
Vol 156 (6) ◽  
pp. 1860-1865 ◽  
Author(s):  
L Mayer ◽  
S M Fu ◽  
H G Kunkel

Human T-T hybridomas were established by fusion of concanavalin A-activated OKT-4+ T cells with hypoxanthine guanine phosphoribosyl transferase-deficient as well as nondeficient T cell lines. Four hybrids were selected for further study. Supernatant from hybrid clone J1.3 specifically enhanced IgA production and secretion by isolated human B cells, with increases in IgA plaque-forming cells approaching those seen with addition of autologous T cells and pokeweed mitogen. A monoclonal lymphocytic leukemia with membrane IgA also differentiated to IgA plasma cells by this supernatant. Evidence suggests that this hybrid supernatant acts on post-switch IgA-committed B cells. The other hybrids were not isotype specific; hybrid J2S1 enhanced polyclonal Ig secretion and hybrids K1 and K8 induced B cell proliferation without induction of Ig secretion.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 418-427
Author(s):  
AS Freedman ◽  
AW Boyd ◽  
FR Bieber ◽  
J Daley ◽  
K Rosen ◽  
...  

In an attempt to compare B cell chronic lymphocytic leukemia (B-CLL) with its normal cellular counterpart, the cell surface phenotype of 100 cases of B-CLL was determined by using a panel of monoclonal antibodies (MoAbs) directed against B cell-restricted and -associated antigens. The majority of B-CLL cells expressed Ia, B4 (CD19), B1 (CD20), B2 (CD21), surface immunoglobulin (sIg), and T1 (CD5) but lacked C3b (CD35) receptors. In contrast, the overwhelming majority of small unstimulated B cells expressed Ia, B4, B1, B2, sIg, and C3b receptors but lacked detectable T1. Small numbers of weakly sIg+ cells could be identified in peripheral blood and tonsil that coexpressed the B1 and T1 antigens. Approximately 16% of fetal splenocytes coexpressed B1, T1, weak sIg, B2, and Ia but lacked C3b receptors and therefore closely resembled most B-CLL cells. With the phenotypic differences between the majority of small unstimulated B cells and B-CLL cells, we examined normal in vitro activated B cells and B-CLL cells for the expression of B cell-restricted and -associated activation antigens. Of 20 cases examined, virtually all expressed B5, and approximately 50% of the cases expressed interleukin-2 receptors (IL-2R) and Blast-1. Normal B cells were activated with either anti-Ig or 12–0-tetradecanoylphorbol- beta-acetate (TPA) and then were examined for coexpression of B1, T1, and the B cell activation antigens B5 and IL-2R. Only cells activated with TPA coexpressed B1 and T1 as well as B5 and IL-2R. B cells activated with either anti-Ig or TPA proliferated in the presence of IL- 2, whereas B-CLL cells did not, although they all expressed the identical 60-kilodalton proteins by immunoprecipitation. These studies are consistent with the notion that B-CLL resembles several minor subpopulations of normal B cells including a population of B cells that are activated in vitro directly through the protein kinase C pathway.


Sign in / Sign up

Export Citation Format

Share Document