scholarly journals Induction of phagocytosis by a protein tyrosine kinase

Blood ◽  
1995 ◽  
Vol 85 (5) ◽  
pp. 1175-1180 ◽  
Author(s):  
ZK Indik ◽  
JG Park ◽  
XQ Pan ◽  
AD Schreiber

The transmission of extracellular signals to cellular targets by many noncatalytic surface receptors is dependent on interaction between cytoplasmic protein tyrosine kinases (PTKs) and tyrosine-containing sequences in the cytoplasmic domain of the receptor or an associated subunit. Isoforms of each of the three classes of the noncatalytic Fc gamma receptors, Fc gamma RI, Fc gamma RII, and Fc gamma RIII, are able to transmit a phagocytic signal in transfected COS-1 cells. Both Fc gamma RI and Fc gamma RIIIA require the gamma subunit for this signaling event. The protein tyrosine kinase Syk dramatically enhances phagocytosis mediated by both these receptors and increases the number of cells able to mediate phagocytosis. Two gamma chain cytoplasmic YXXL sequences are required for this effect. The action of Syk is less pronounced on the phagocytic Fc gamma RII receptor, Fc gamma RIIA, which does not require the gamma chain for phagocytosis. However, Syk allows phagocytosis by the nonphagocytic Fc gamma RII receptor Fc gamma RIIB2, which contains only a single YXXL sequence, when an additional tyrosine-containing sequence, YMTL, is introduced. These studies indicate that the efficiency of phagocytosis is markedly enhanced by the presence of a specific protein tyrosine kinase.

1988 ◽  
Vol 168 (5) ◽  
pp. 1801-1810 ◽  
Author(s):  
S F Ziegler ◽  
C B Wilson ◽  
R M Perlmutter

Protein tyrosine kinases are thought to participate in signal transduction pathways in a variety of cell types. Recent studies have identified a new src family protein tyrosine kinase (hck) that is preferentially expressed in myeloid cells. To examine the hypothesis that this kinase may regulate myeloid cell activity, antisera were generated that define the 59-kD product of the hck gene. Functional activation of human cultured macrophages with LPS augmented the expression of hck transcripts and of p59hck, but decreased the level of transcripts encoded by the closely related c-fgr protooncogene. Thus these two structurally similar src family kinases almost certainly subserve distinct functions. Reasoning from the known properties of the src family protein tyrosine kinases, it is likely that the products of these two protooncogenes assist in regulating the behavior of activated phagocytes.


1996 ◽  
Vol 184 (2) ◽  
pp. 365-376 ◽  
Author(s):  
V A Boussiotis ◽  
D L Barber ◽  
B J Lee ◽  
J G Gribben ◽  
G J Freeman ◽  
...  

When stimulated through their antigen receptor, without costimulation, T cells enter a state of antigen-specific unresponsiveness, termed anergy. B7-mediated costimulation, signaling via CD28, is sufficient to prevent the induction of anergy. Here we show that ligation of T cell receptor (TCR) by alloantigen alone, which results in anergy, activates tyrosine phosphorylation of TCR zeta and its association with fyn. In contrast, TCR ligation in the presence of B7 costimulation, which results in productive immunity, activates tyrosine phosphorylation of TCR zeta and CD3 chains, which associate with activated lck and zeta-associated protein (ZAP) 70. Under these conditions, CD28 associates with activated lck and TCR zeta. These data suggest that the induction of anergy is an active signaling process characterized by the association of TCR zeta and fyn. In addition, CD28-mediated costimulation may prevent the induction of anergy by facilitating the effective association of TCR zeta and CD3 epsilon with the critical protein tyrosine kinase lck, and the subsequent recruitment of ZAP-70. Strategies to inhibit or activate TCR-associated, specific protein tyrosine kinase-mediated pathways may provide a basis for drug development with potential applications in the fields of transplantation, autoimmunity, and tumor immunity.


Blood ◽  
1995 ◽  
Vol 86 (12) ◽  
pp. 4389-4399 ◽  
Author(s):  
ZK Indik ◽  
JG Park ◽  
S Hunter ◽  
AD Schreiber

Because hematopoietic cells express multiple Fc gamma receptor isoforms, the role of the individual Fc gamma receptors in phagocytosis has been difficult to define. Transfection of Fc gamma receptors into COS-1 cells, which lack endogeneous Fc gamma receptors but have phagocytic potential, has proved valuable for the study of individual Fc gamma receptor function. Using this model system, we have established that a single class of human Fc gamma receptor mediates phagocytosis in the absence of other Fc receptors and that isoforms from each Fc gamma receptor class mediate phagocytosis, although the requirements for phagocytosis differ. In investigating the relationship between structure and function for Fc gamma receptor mediated phagocytosis, the importance of the cytoplasmic tyrosines of the receptor or its associated gamma chain has been established. For example, two cytoplasmic YXXL sequences, in a configuration similar to the conserved tyrosine-containing motif found in Ig gene family receptors, are important for phagocytosis by the human Fc gamma receptor, Fc gamma RIIA. Fc gamma RI and Fc gamma RIIIA do not possess cytoplasmic tyrosines but transmit a phagocytic signal through interaction with an associated gamma subunit that contains two YXXL sequences in a conserved motif required for phagocytosis. The human Fc gamma RII isoforms Fc gamma RIIB1 and Fc gamma RIIB2 do not induce phagocytosis and have only a single YXXL sequence. Cross-linking the phagocytic Fc gamma receptors induces tyrosine phosphorylation of either Fc gamma RIIA or the gamma chain, and treatment with tyrosine kinase inhibitors reduces both phagocytosis and phosphorylation of the receptor tyrosine residues. Activation of protein tyrosine kinases follows Fc gamma receptor engagement of IgG-coated cells. The data indicate that coexpression of the protein tyrosine kinase Syk, which is associated with the gamma chain in monocytes/macrophages, is important for phagocytosis mediated by Fc gamma RI and Fc gamma RIIIA. Furthermore, phosphatidylinositol-3 kinase is required for phagocytosis mediated by Fc gamma RIIA as well as for phagocytosis mediated by Fc gamma RI/gamma and Rc gamma RIIIA/gamma.


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 240
Author(s):  
Lan-Yi Wei ◽  
Wei Lin ◽  
Bey-Fen Leo ◽  
Lik-Voon Kiew ◽  
Chia-Ching Chang ◽  
...  

A miniature tyrosinase-based electrochemical sensing platform for label-free detection of protein tyrosine kinase activity was developed in this study. The developed miniature sensing platform can detect the substrate peptides for tyrosine kinases, such as c-Src, Hck and Her2, in a low sample volume (1–2 μL). The developed sensing platform exhibited a high reproducibility for repetitive measurement with an RSD (relative standard deviation) of 6.6%. The developed sensing platform can detect the Hck and Her2 in a linear range of 1–200 U/mL with the detection limit of 1 U/mL. The sensing platform was also effective in assessing the specificity and efficacies of the inhibitors for protein tyrosine kinases. This is demonstrated by the detection of significant inhibition of Hck (~88.1%, but not Her2) by the Src inhibitor 1, an inhibitor for Src family kinases, as well as the significant inhibition of Her2 (~91%, but not Hck) by CP-724714 through the platform. These results suggest the potential of the developed miniature sensing platform as an effective tool for detecting different protein tyrosine kinase activity and for accessing the inhibitory effect of various inhibitors to these kinases.


1994 ◽  
Vol 14 (9) ◽  
pp. 5812-5819
Author(s):  
H Shibuya ◽  
K Kohu ◽  
K Yamada ◽  
E L Barsoumian ◽  
R M Perlmutter ◽  
...  

Members of the newly identified receptor family for cytokines characteristically lack the intrinsic protein tyrosine kinase domain that is a hallmark of other growth factor receptors. Instead, accumulating evidence suggests that these receptors utilize nonreceptor-type protein tyrosine kinases for downstream signal transduction by cytokines. We have shown previously that the interleukin-2 receptor beta-chain interacts both physically and functionally with a Src family member, p56lck, and that p56lck activation leads to induction of the c-fos gene. However, the mechanism linking p56lck activation with c-fos induction remains unelucidated. In the present study, we systematically examined the extent of c-fos promoter activation by expression of a series of p56lck mutants, using a transient cotransfection assay. The results define a set of the essential amino acid residues that regulate p56lck induction of the c-fos promoter. We also provide evidence that the serum-responsive element and sis-inducible element are both targets through which p56lck controls c-fos gene activation.


2018 ◽  
Vol 165 (2) ◽  
pp. 322-334
Author(s):  
Jiajun Zhou ◽  
Qiang Zhang ◽  
Joseph E Henriquez ◽  
Robert B Crawford ◽  
Norbert E Kaminski

AbstractThe aryl hydrocarbon receptor (AHR) is a cytosolic ligand-activated transcription factor involved in xenobiotic sensing, cell cycle regulation, and cell development. In humans, the activation of AHR by 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a high affinity AHR-ligand, impairs the secretion of immunoglobulin M (IgM) to suppress humoral immunity. However, the mechanisms bridging the activation of AHR and the impairment of IgM secretion by human primary B cells remain poorly understood. Recent transcriptomic analysis revealed upregulation of lymphocyte-specific protein tyrosine kinase (LCK) in AHR-activated human primary B cells. LCK is a well-characterized tyrosine kinase that phosphorylates critical signaling proteins involved in activation and cytokine production in T cells. Conversely, the role of LCK in human primary B cells is not well understood. In the current studies, we have verified the transcriptomic finding by detecting AHR-mediated upregulation of LCK protein in human primary B cells. We also confirmed the role of AHR in the upregulation of LCK by using a specific AHR antagonist, which abolished the AHR-mediated increase of LCK. Furthermore, we have confirmed the role of LCK in the AHR-mediated suppression of IgM by using LCK specific inhibitors, which restored the IgM secretion by human B cells in the presence of TCDD. Collectively, the current studies demonstrate a novel role of LCK in IgM response and provide new insights into the mechanism for AHR-mediated impairment of immunoglobulin secretion by human primary B cells.


Sign in / Sign up

Export Citation Format

Share Document