scholarly journals Effects of the Th1 and Th2 stimulatory cytokines interleukin-12 and interleukin-4 on human immunodeficiency virus replication

Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2114-2123 ◽  
Author(s):  
A Foli ◽  
MW Saville ◽  
MW Baseler ◽  
R Yarchoan

The cytokines interleukin-12 (IL-12) and IL-4 play important roles in the development of Th1-like (type-1) and Th2-like (type-2) T-cell responses, respectively, and there is evidence that type-1/type-2 T helper imbalances are important in the pathogenesis of human immunodeficiency virus (HIV) disease. With this background, we examined the effects of these cytokines on HIV replication. Neither stimulated HIV replication in fresh peripheral blood mononuclear cells (PBMC). However, in prestimulated PBMC, IL-12, and to a greater extent, IL-4 as well as IL-2, induced production of HIV p24 antigen over 7 days of culture (no cytokine 3,900 x/divided by 1.31 [GM x/divided by SEM] pg/mL; IL-12, 34,300 x/divided by 1.39 pg/mL; IL-4, 283,000 x/divided by 1.14 pg/mL; and IL-2, 328,000 x/divided by 1.31 pg/mL). Neither IL-12- nor IL-4-induced HIV replication was attributable to induction of IL-1, IL-2, tumor necrosis factor (TNF)-alpha, or TNF-beta. Both IL-12- and IL-4-induced HIV replication was associated with selective loss of the CD4+ subset in stimulated cultures. IL-4 stimulated HIV replication in monocyte/macrophages, while IL-12 had little or no effect in these cells. Finally, HIV replication stimulated by IL-12 or IL-4 was inhibited by dideoxynucleosides. Thus, IL-12 and IL-4 enhance HIV replication and HIV-induced cell death in prestimulated PBMC. Through killing of the CD4+ T cells stimulated by these cytokines, this may result in inappropriate type-1/type-2 responses in HIV-infected patients and contribute to their Th1 immunodeficiency.

2006 ◽  
Vol 87 (2) ◽  
pp. 411-418 ◽  
Author(s):  
David Marchant ◽  
Stuart J. D. Neil ◽  
Áine McKnight

This study compares the replication of primary isolates of human immunodeficiency virus type 2 (HIV-2) and type 1 (HIV-1) in monocyte-derived macrophages (MDMs). Eleven HIV-2 and five HIV-1 primary isolates that use CCR5, CXCR4 or both coreceptors to enter cells were included. Regardless of coreceptor preference, 10 of 11 HIV-2 viruses could enter, reverse transcribe and produce fully infectious virus in MDMs with efficiency equal to that in peripheral blood mononuclear cells. However, the kinetics of replication of HIV-2 compared with HIV-1 over time were distinct. HIV-2 had a burst of virus replication 2 days after infection that resolved into an apparent ‘latent state’ at day 3. HIV-1, however, continued to produce infectious virions at a lower, but steady, rate throughout the course of infection. These results may have implications for the lower pathogenesis and viral-load characteristics of HIV-2 infection.


2004 ◽  
Vol 78 (23) ◽  
pp. 12996-13006 ◽  
Author(s):  
Katrien Princen ◽  
Sigrid Hatse ◽  
Kurt Vermeire ◽  
Stefano Aquaro ◽  
Erik De Clercq ◽  
...  

ABSTRACT Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC50] ranging from 1.2 to 26.5 μM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC50, 1.8 to 7.3 μM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca2+ signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca2+ flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca2+ signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca2+ signaling by itself at concentrations up to 400 μM. In freshly isolated monocytes, AMD3451 inhibited the Ca2+ flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.


2000 ◽  
Vol 74 (18) ◽  
pp. 8550-8557 ◽  
Author(s):  
Gene G. Olinger ◽  
Mohammed Saifuddin ◽  
Gregory T. Spear

ABSTRACT The ability of human immunodeficiency virus strain MN (HIVMN), a T-cell line-adapted strain of HIV, and X4 and R5 primary isolates to bind to various cell types was investigated. In general, HIVMN bound to cells at higher levels than did the primary isolates. Virus bound to both CD4-positive (CD4+) and CD4-negative (CD4−) cells, including neutrophils, Raji cells, tonsil mononuclear cells, erythrocytes, platelets, and peripheral blood mononuclear cells (PBMC), although virus bound at significantly higher levels to PBMC. However, there was no difference in the amount of HIV that bound to CD4-enriched or CD4-depleted PBMC. Virus bound to CD4− cells was up to 17 times more infectious for T cells in cocultures than was the same amount of cell-free virus. Virus bound to nucleated cells was significantly more infectious than virus bound to erythrocytes or platelets. The enhanced infection of T cells by virus bound to CD4− cells was not due to stimulatory signals provided by CD4− cells or infection of CD4− cells. However, anti-CD18 antibody substantially reduced the enhanced virus replication in T cells, suggesting that virus that bound to the surface of CD4−cells is efficiently passed to CD4+ T cells during cell-cell adhesion. These studies show that HIV binds at relatively high levels to CD4− cells and, once bound, is highly infectious for T cells. This suggests that virus binding to the surface of CD4− cells is an important route for infection of T cells in vivo.


2009 ◽  
Vol 53 (8) ◽  
pp. 3565-3568 ◽  
Author(s):  
Secondo Sonza ◽  
Adam Johnson ◽  
David Tyssen ◽  
Tim Spelman ◽  
Gareth R. Lewis ◽  
...  

ABSTRACT Polyanion-based microbicides have been developed to prevent the sexual transmission of human immunodeficiency virus (HIV). Recent data suggest that polyanions have the capacity to enhance HIV type 1 (HIV-1) replication at threshold antiviral concentrations. Evaluation of the microbicide candidates SPL7013 and PRO 2000 revealed no specific enhancement of two CCR5 HIV-1 strains in human peripheral blood mononuclear cells compared to enfuvirtide (Fuzeon). The enhancement effect is likely to be a function of the assay conditions and is not an intrinsic property of these polyanions.


Sign in / Sign up

Export Citation Format

Share Document