scholarly journals Interleukin-12 inhibits murine graft-versus-host disease

Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2429-2438 ◽  
Author(s):  
M Sykes ◽  
GL Szot ◽  
PL Nguyen ◽  
DA Pearson

Interleukin-12 (IL-12) is a potent immunostimulatory cytokine and an inducer of type-1 T-helper cell activity and of cytotoxic T lymphocyte and natural killer cell function. We report here the paradoxical observation that a single injection of 4,900 IU of recombinant murine IL-12 inhibits acute graft-versus-host disease (GVHD) in a fully major histocompatibility complex (MHC) plus multiple minor antigen-mismatched bone marrow transplantation (BMT) model (A/J-->B10). The protective effect was enhanced by administration of T-cell-depleted host-type BM cells, and complete donor-type lymphohematopoietic reconstitution was observed in most animals. Treatment with a protective course of IL-12 led to increased serum interferon-gamma (IFN-gamma) levels as compared with those for GVHD controls at early time points, when IFN-gamma was produced predominantly by host-type natural killer cells, but led to almost complete inhibition of the later GVHD-associated increase in serum IFN-gamma levels, when IFN-gamma is produced predominantly by CD4+ T cells. Furthermore, IL-12 treatment was associated with marked alterations in the kinetics of donor T-cell expansion. Reductions in donor CD4+ and CD8+ T cells were observed in the spleen on day 4 post- BMT, but a marked increase in donor CD8+ cells was observed on day 7. Unlike broadly immunosuppressive methods for inhibiting GVHD, which are associated with loss of antileukemic effects, IL-12 has the potential to mediate antileukemic effects of its own; therefore, the GVHD- inhibitory effects of IL-12 described here suggest a potential application for this cytokine in clinical BMT.

Blood ◽  
2020 ◽  
Vol 136 (4) ◽  
pp. 418-428 ◽  
Author(s):  
Geoffrey R. Hill ◽  
Motoko Koyama

Abstract Allogeneic hematopoietic stem cell transplantation (alloSCT) is an important curative therapy for high-risk hematological malignancies, but the development of severe and/or steroid-refractory acute graft-versus-host disease (aGVHD) remains a significant limitation to optimal outcomes. New approaches to prevent and treat aGVHD remain an unmet need that can be best addressed by understanding the complex disease pathophysiology. It is now clear that chemoradiotherapy used prior to alloSCT induces the release of endogenous alarmins (eg, HMGB-1, ATP, IL-1α, IL-33) from recipient tissue. Exogenous pathogen-derived molecules (eg, lipopolysaccharide, nucleic acids) also translocate from the gastrointestinal tract lumen. Together, these danger signals activate antigen-presenting cells (APCs) to efficiently present alloantigen to donor T cells while releasing cytokines (eg, interleukin-12 [IL-12], IL-23, IL-6, IL-27, IL-10, transforming growth factor-β) that expand and differentiate both pathogenic and regulatory donor T cells. Concurrent costimulatory signals at the APC–T-cell interface (eg, CD80/CD86-CD28, CD40-CD40L, OX40L-OX40, CD155/CD112-DNAM-1) and subsequent coinhibitory signals (eg, CD80/CD86-CTLA4, PDL1/2-PD1, CD155/CD112-TIGIT) are critical to the acquisition of effector T-cell function and ensuing secretion of pathogenic cytokines (eg, IL-17, interferon-γ, tissue necrosis factor, granulocyte-macrophage colony-stimulating factor) and cytolytic degranulation pathway effectors (eg, perforin/granzyme). This review focuses on the combination of cytokine and costimulatory networks at the T-cell surface that culminates in effector function and subsequent aGVHD in target tissue. Together, these pathways now represent robust and clinically tractable targets for preventing the initiation of deleterious immunity after alloSCT.


Blood ◽  
2002 ◽  
Vol 100 (6) ◽  
pp. 2216-2224
Author(s):  
David Spaner ◽  
Xiaofang Sheng-Tanner ◽  
Andre C. Schuh

Acute graft-versus-host disease (GVHD) after allogeneic stem cell transplantation is associated with impaired deletion and anergy of host-reactive T cells. To elucidate the immunoregulatory events that may contribute to such dysregulated T-cell responses in GVHD, we studied superantigen (SAg) responses after adoptive T-cell transfer into severe combined immunodeficient (SCID) mice. SAg responses are normally regulated by mechanisms involving deletion and anergy, with SAg-reactive T cells typically being deleted rapidly in vivo. In a SCID mouse model of GVHD, however, allogeneic host SAg-reactive T cells were not deleted rapidly, but rather persisted in increased numbers for several months. Moreover, depending on the timing of SAg stimulation and the numbers of T cells transferred, dysregulation (impaired deletion and anergy) of SAg responses could be demonstrated following the adoptive transfer of syngeneic T cells into SCID mice as well. Transgenic T-cell receptor-bearing KJ1-26.1+ T cells were then used to determine the fate of weakly reactive T cells after adoptive transfer and SAg stimulation. When transferred alone, KJ1-26.1+ T cells demonstrated impaired deletion and anergy. In the presence of more strongly staphylococcal enterotoxin B (SEB)–reactive T cells, however, KJ1-26.1+ T cells were regulated normally, in a manner that could be prevented by inhibiting the effects of more strongly SEB-reactive cells or by increasing the level of activation of the KJ1-26.1+ T cells themselves. We suggest that the control mechanisms that normally regulate strongly activated T cells in immunocompetent animals are lost following adoptive transfer into immunodeficient hosts, and that this impairment contributes to the development of GVHD.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3693-3701 ◽  
Author(s):  
Ypke V. J. M. van Oosterhout ◽  
Liesbeth van Emst ◽  
Anton V. M. B. Schattenberg ◽  
Wil J. M. Tax ◽  
Dirk J. Ruiter ◽  
...  

Abstract This study evaluated the anti-graft versus host disease (GVHD) potential of a combination of immunotoxins (IT), consisting of a murine CD3 (SPV-T3a) and CD7 (WT1) monoclonal antibody both conjugated to deglycosylated ricin A. In vitro efficacy data demonstrated that these IT act synergistically, resulting in an approximately 99% elimination of activated T cells at 10−8 mol/L (about 1.8 μg/mL). Because most natural killer (NK) cells are CD7+, NK activity was inhibited as well. Apart from the killing mediated by ricin A, binding of SPV-T3a by itself impaired in vitro cytotoxic T-cell cytotoxicity. Flow cytometric analysis revealed that this was due to both modulation of the CD3/T-cell receptor complex and activation-induced cell death. These results warranted evaluation of the IT combination in patients with refractory acute GVHD in an ongoing pilot study. So far, 4 patients have been treated with 3 to 4 infusions of 2 or 4 mg/m2 IT combination, administered intravenously at 48-hour intervals. The T1/2 was 6.7 hours, and peak serum levels ranged from 258 to 3210 ng/mL. Drug-associated side effects were restricted to limited edema, fever, and a modest rise of creatine kinase levels. One patient developed low-titer antibodies against ricin A. Infusions were associated with an immediate drop of circulating T cells, followed by a more gradual but continuing elimination of T/NK cells. One patient mounted an extensive CD8 T-cell response directly after treatment, not accompanied with aggravating GVHD. Two patients showed nearly complete remission of GVHD, despite unresponsiveness to the extensive pretreatment. These findings justify further investigation of the IT combination for treatment of diseases mediated by T cells.


Blood ◽  
2020 ◽  
Author(s):  
Cheng Yin Yuan ◽  
Vivian Zhou ◽  
Garrett Sauber ◽  
Todd M Stollenwerk ◽  
Richard Komorowski ◽  
...  

Graft versus host disease (GVHD) pathophysiology is a complex interplay between cells that comprise the adaptive and innate arms of the immune system. Effective prophylactic strategies are therefore contingent upon approaches that address contributions from both immune cell compartments. In the current study, we examined the role of the type 2 cannabinoid receptor (CB2R) which is expressed on nearly all immune cells and demonstrated that absence of the CB2R on donor CD4+ or CD8+ T cells, or administration of a selective CB2R pharmacological antagonist, exacerbated acute GVHD lethality. This was accompanied primarily by the expansion of proinflammatory CD8+ T cells indicating that constitutive CB2R expression on T cells preferentially regulated CD8+ T cell alloreactivity. Using a novel CB2R-EGFP reporter mouse, we observed significant loss of CB2R expression on T cells, but not macrophages, during acute GVHD, indicative of differential alterations in receptor expression under inflammatory conditions. Therapeutic targeting of the CB2R with the agonists, tetrahydrocannabinol (THC) and JWH-133, revealed that only THC mitigated lethal T cell-mediated acute GVHD. Conversely, only JWH-133 was effective in a sclerodermatous chronic GVHD model where macrophages contribute to disease biology. In vitro, both THC and JWH-133 induced arrestin recruitment and ERK phosphorylation via CB2R, but THC had no effect on CB2R-mediated inhibition of adenylyl cyclase. These studies demonstrate that the CB2R plays a critical role in the regulation of GVHD and suggest that effective therapeutic targeting is dependent upon agonist signaling characteristics and receptor selectivity in conjunction with the composition of pathogenic immune effector cells.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3440-3448 ◽  
Author(s):  
G Hoffmann-Fezer ◽  
C Gall ◽  
U Zengerle ◽  
B Kranz ◽  
S Thierfelder

Abstract Surprisingly little graft-versus-host disease (GVHD) has been observed in severe combined immunodeficient (SCID) mice injected intraperitoneally (IP) with human blood lymphocytes (hu-PBL-SCID), which raised the question as to whether GVHD in such a distant species is sporadic or suppressed because of immunologic reasons. After screening for blood T-cell chimerism, we hereby describe generalized lethal xenogeneic human GVHD in unconditioned SCID chimeras, which resembles GVHD in SCID mice injected with allogeneic lymphocytes. We adapted an immunocytochemical slide method for minute cell numbers, which allowed us to follow, by multimarker phenotyping of weekly mouse- tail bleeds, the chimeric status of 100 hu-PBL-SCID injected with 10(7) or 10(8) hu-PBL of Epstein-Barr virus- (EBV-) donors. More than half of the mice showed no or less than 2% T cells. However, 13% to 21% developed substantial blood T-lymphocyte chimerism (10% to 80% human CD+ cells) and high mortality. Immunohistology showed more human CD8+ than CD4+ T cells in the splenic white pulp. The cells developed HLA-DR activation markers and infiltrated the red pulp where human B cells also appeared. Expression of activation and proliferation markers increased within 5 to 6 weeks. Many human CD3+ cells were also found in the portal triads of the liver and in the lung, pancreas, and kidney. The thymus also became heavily infiltrated. The intestines and skin of hu-PBL-SCID were less infiltrated by donor cells than in SCID with allogeneic GVHD. The tongue contained almost no human T cells. Our data show that a relatively low overall incidence of human xenogeneic GVHD, even when high numbers of human PBL are injected, is the consequence of a dichotomy between mice with no or transient T-cell chimerism and a minority of mice with high-blood T-lymphocyte chimerism and GVHD mortality.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2560-2569 ◽  
Author(s):  
M Sykes ◽  
MW Harty ◽  
GL Szot ◽  
DA Pearson

Abstract We have recently shown that a short course of high-dose interleukin-2 (IL-2) can markedly inhibit the graft-versus-host disease (GVHD)- promoting activity of donor CD4+ T cells. The difficulty in dissociating GVHD-promoting from graft-versus-leukemia (GVL) effects of alloreactive donor T cells currently prevents clinical bone marrow transplantation (BMT) from fulfilling its full potential. To test the capacity of IL-2 treatment to promote such a dissociation, we have developed a new murine transplantable acute myelogenous leukemia model using a class II major histocompatibility complex-positive BALB/c Moloney murine leukemia virus-induced promonocytic leukemia, 2B-4–2. BALB/c mice receiving 2.5 x 10(5) 2B-4–2 cells intravenously 1 week before irradiation and syngeneic BMT died from leukemia within 2 to 4 weeks after BMT. Administration of syngeneic spleen cells and/or a 2.5- day course of IL-2 treatment alone did not inhibit leukemic mortality. In contrast, administration of non-T-cell-depleted fully allogeneic B10 (H-2b) spleen cells and T-cell-depleted B10 marrow led to a significant delay in leukemic mortality in IL-2-treated mice. In these animals GVHD was inhibited by IL-2 treatment. GVL effects were mediated entirely by donor CD4+ and CD8+ T cells. Remarkably, IL-2 administration did not diminish the magnitude of the GVL effect of either T-cell subset. This was surprising, because CD4-mediated GVHD was inhibited in the same animals in which CD4-mediated GVL effects were not reduced by IL-2 treatment. These results suggest a novel mechanism by which GVHD and GVL effects of a single unprimed alloreactive T-cell subset can be dissociated; different CD4 activities promote GVHD and GVL effects, and the former, but not the latter activities are inhibited by treatment with IL-2.


Blood ◽  
2007 ◽  
Vol 109 (12) ◽  
pp. 5502-5510 ◽  
Author(s):  
Jack Gorski ◽  
Xiao Chen ◽  
Mariya Gendelman ◽  
Maryam Yassai ◽  
Ashley Krueger ◽  
...  

Abstract Graft versus host disease (GVHD) typically results in impaired T-cell reconstitution characterized by lymphopenia and repertoire skewing. One of the major causes of inadequate T-cell reconstitution is that T-cell survival and expansion in the periphery are impaired. In this report, we have performed adoptive transfer studies to determine whether the quantitative reduction in T-cell numbers is due to an intrinsic T-cell defect or whether the environmental milieu deleteriously affects T-cell expansion. These studies demonstrate that T cells obtained from animals with graft-versus-host disease (GVHD) are capable of significant expansion and renormalization of an inverted CD4/CD8 ratio when they are removed from this environment. Moreover, these cells can generate complex T-cell repertoires early after transplantation and are functionally competent to respond to third-party alloantigens. Our data indicate that T cells from mice undergoing GVHD can respond to homeostatic signals in the periphery and are not intrinsically compromised once they are removed from the GVHD environment. We thereby conclude that the host environment and not an intrinsic T-cell defect is primarily responsible for the lack of effective T-cell expansion and diversification of complex T-cell repertoires that occurs during GVHD.


2006 ◽  
Vol 106 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Masaki Kuwatani ◽  
Yoshinori Ikarashi ◽  
Akira Iizuka ◽  
Chihiro Kawakami ◽  
Gary Quinn ◽  
...  

Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2045-2051 ◽  
Author(s):  
Barry J. Kappel ◽  
Javier Pinilla-Ibarz ◽  
Adam A. Kochman ◽  
Jeffrey M. Eng ◽  
Vanessa M. Hubbard ◽  
...  

Major histocompatibility complex (MHC) molecules carrying selected peptides will bind specifically to their cognate T-cell receptor on individual clones of reactive T cells. Fluorescently labeled, tetrameric MHC-peptide complexes have been widely used to detect and quantitate antigen-specific T-cell populations via flow cytometry. We hypothesized that such MHC-peptide tetramers could also be used to selectively deplete unique reactive T-cell populations, while leaving the remaining T-cell repertoire and immune response intact. In this report, we successfully demonstrate that a tetramer-based depletion of T cells can be achieved in a murine model of allogeneic bone marrow transplantation. Depletion of a specific alloreactive population of donor splenocytes (< 0.5% of CD8+ T cells) prior to transplantation significantly decreased morbidity and mortality from graft-versus-host disease. There was no early regrowth of the antigen-specific T cells in the recipient and in vivo T-cell proliferation was greatly reduced as well. Survival was increased more than 3-fold over controls, yet the inherent antitumor activity of the transplant was retained. This method also provides the proof-of-concept for similar strategies to selectively remove other unwanted T-cell clones, which could result in novel therapies for certain autoimmune disorders, T-cell malignancies, and solid organ graft rejection.


Sign in / Sign up

Export Citation Format

Share Document