scholarly journals Monoclonal Antibodies Specific to the Acute Lymphoblastic Leukemia t(1; 19)-Associated E2A/pbx1 Chimeric Protein: Characterization and Diagnostic Utility

Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2909-2914 ◽  
Author(s):  
Bi-Ching Sang ◽  
Liangru Shi ◽  
Peter Dias ◽  
Li Liu ◽  
Jia Wei ◽  
...  

Abstract Nonrandom chromosomal abnormalities are found in most human malignancies, particularly leukemias and lymphomas. A characteristic t(1; 19) (q23; p13.3) chromosomal translocation is detected in 5% of childhood acute lymphoblastic leukemia (ALL) cases. This translocation results in the formation of a fusion gene, which leads to the expression of an oncogenic E2A/pbx1 protein. Breakpoints in the E2A gene almost invariably occur within a single intron, and the identical portion of PBX1 is joined consistently to exon 13 of E2A in fusion mRNA. In this article, we report the development of monoclonal antibodies against E2A/pbx1 fusion protein using a specific peptide that corresponds to the junction region of the protein. The obtained antibodies recognize specifically the chimeric E2A/pbx1 fusion protein and lack cross-reactivities with E2A and pbx1. Immunohistochemical staining and flow cytometric studies show that these antibodies can distinguish t(1; 19)-positive from t(1; 19)-negative leukemic cells. These results indicate that the obtained E2A/pbx1-specific monoclonal antibodies might prove to be valuable diagnostic reagents and important tools for elucidating the mechanisms involved in oncogenesis and progression of t(1; 19)-positive childhood ALL.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1583-1583
Author(s):  
Frederik W van Delft ◽  
Sharon W Horsley ◽  
Kristina Anderson ◽  
Caroline M Bateman ◽  
Susan Colman ◽  
...  

Abstract Abstract 1583 Poster Board I-609 Approximately a quarter of B cell precursor childhood acute lymphoblastic leukemia (ALL) is characterized by an ETV6-RUNX1 (TEL-AML1) fusion gene and has an overall good prognosis. The majority of these children will be treated on the standard risk arm of the United Kingdom ALL treatment protocols. Relapse usually occurs after cessation of treatment but remarkably can present many years later. The incidence of ETV6-RUNX1 at relapse has been reported to be less than or similar to de novo ALL. Molecular studies on neonatal bloodspots and on twins with concordant ALL have demonstrated the prenatal origin of major subtypes of childhood ALL, including most ETV6-RUNX1 fusion gene positive cases. In addition these investigations have suggested the existence of a preleukaemic stem cell requiring additional mutations or ‘hits’ in order to develop frank leukemia. To understand the genetic basis and clonal origin of late relapses we have compared the profiles of genome-wide copy number alterations (CNA) at relapse versus presentation in samples matched with remission DNA from 24 patients. The selected samples had tumor cell purity >75% before DNA extraction. DNA copy number alteration data was generated using the Affymetrix 500K SNP arrays. LOH analysis was performed using CNAG 3.0 and dCHIP 2008. Overall we identified 168 CNA at presentation and 252 at relapse (excluding deletions at IgH and TCR loci), equating to 6.96 and 10.3 CNA at presentation and relapse respectively. Although the number of CNA increased at relapse, no single gene or pathway was uniquely targeted in relapse. The most frequent alterations involved loss of 12p3.2 (ETV6), 9p21.3 (CDKN2A/B), 6q16.2-3 and gain of 21q22.1-22.12. A novel observation was gain of part or whole of chromosome 16 (2 patients at presentation, 5 at relapse) and deletion of the oncogene Plasmocytoma Variant Translocation 1 (PVT1) in 3 patients. Pathway analysis demonstrated frequent involvement at presentation and relapse of genes implicated in both B cell development (44 versus 46%) and cell cycle control (46 versus 71%). In order to study the clonal origin of relapse, we devised a classification describing the change in CNA between presentation and relapse in each individual patient. The clonal relationship between the presentation and relapse clone was established by the persistence of both the ETV6-RUNX1 fusion and at least 1 Ig and/or TCR rearrangement. We used a classification focussed on ‘driver’ CNA, defined as CNA that target genes functionally involved in leukemogenesis or CNA that are recurrently targeted as described in the literature. The four categories of relapse were type 1 (the dominant clone at presentation presented unchanged at relapse), type 2 (the relapse clone was derived from the major subclone at presentation with additional CNA), type 3 (the relapse clone was derived from a minor clone at presentation with gains and losses of CNA) and type 4 (the relapse clone is derived from an ancestral or preleukemic clone at initial presentation with all CNA gained). Twenty-one of the 24 patients were classifiable in this way (Figure 1). Although comparative relapse / presentation CNA profiles cannot identify precise clonal origins of relapse, the data indicate that irrespective of time to relapse (<2 to 9.9 years), the relapse clone appeared to be derived from either a major or minor clone at diagnosis with none (0/6) of the very late relapses (>5 years) derived from pre-leukemic cells lacking CNA. This data indicate diverse clonal origins of relapse and extended periods of dormancy, possibly via quiescence, for stem cells in ETV6-RUNX1+ ALL. Relapse type Remission duration (years) < 2 2 - 5 > 5 1 • • 2 • ••••••• •• 3 •• •• ••• 4 •• Figure 1. Each patient is represented by a black dot. Each patient is classified on the basis of the relapse type and remission duration. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 98 (3) ◽  
pp. 558-564 ◽  
Author(s):  
Anthony M. Ford ◽  
Karin Fasching ◽  
E. Renate Panzer-Grümayer ◽  
Margit Koenig ◽  
Oskar A. Haas ◽  
...  

Abstract Approximately 20% of childhood B-precursor acute lymphoblastic leukemia (ALL) has a TEL-AML1 fusion gene, often in association with deletions of the nonrearranged TEL allele.TEL-AML1 gene fusion appears to be an initiating event and usually occurs before birth, in utero. This subgroup of ALL generally presents with low- or medium-risk features and overall has a very good prognosis. Some patients, however, do have relapses late or after the cessation of treatment, at least on some therapeutic protocols. They usually achieve sustained second remissions. Posttreatment relapses, or even very late relapses (5-20 years after diagnosis), in childhood ALL are clonally related to the leukemic cells at diagnosis (by IGH or T-cell receptor [TCR] gene sequencing) and are considered, therefore, to represent a slow re-emergence or escape of the initial clone seen at diagnosis. Microsatellite markers and fluorescence in situ hybridization identified deletions of the unrearranged TEL allele and IGH/TCR gene rearrangements were analyzed; the results show that posttreatment relapse cells in 2 patients with TEL-AML1–positive ALL were not derived from the dominant clone present at diagnosis but were from a sibling clone. In contrast, a patient who had a relapse while on treatment with TEL-AML1 fusion had essentially the sameTEL deletion, though with evidence for microsatellite instability 5′ of TEL gene deletion at diagnosis, leading to extended 5′ deletion at relapse. It is speculated that, in some patients, combination chemotherapy for childhood ALL may fail to eliminate a fetal preleukemic clone with TEL-AML1 and that a second, independent transformation event within this clone after treatment gives rise to a new leukemia masquerading as relapse.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 148-148 ◽  
Author(s):  
Tillmann Taube ◽  
Shabnam Shalapour ◽  
Georg J. Seifert ◽  
Madlen Pfau ◽  
Guenter Henze ◽  
...  

Abstract The BCR-ABL fusion protein p190 resulting from the translocation t(9;22) exhibits dysregulated tyrosine kinase activity and was shown to cause acute lymphoblastic leukemia (ALL). Detection of the BCR-ABL fusion gene in childhood ALL is associated with an adverse prognosis and defines a group of high risk patients. Because the BCR-ABL gene fusion is specific for leukemic cells it represents an ideal target for leukemia specific treatment approaches. Catalytic DNAzymes are able to cleave mRNA in a sequence specific manner, causing inhibition of protein translation from the DNAzyme targeted mRNA both in vitro and in vivo. In order to cut off the BCR-ABL driven malignant proliferation, we designed DNAzymes to impede the expression of p190 BCR-ABL by cleaving the BCR-ABL mRNA adjacent to the fusion site. One construct was found that cleaved the target mRNA efficiently and specifically leaving BCR and ABL, relevant for normal cell survival and proliferation, unaffected. Activity and specificity of the BCR-ABL DNAzyme was investigated in cleavage assays with in vitro transcribed BCR-ABL, BCR and ABL mRNA. DNAzymes were delivered to cultured BCR-ABL+ ALL cells by lipid transfection. The efficiency of cellular delivery reached 90% as studied by flow cytometry, fluorescence microscopy and confocal microscopy after transfection of FITC labeled DNAzymes. To control for unspecific effects of DNAzyme delivery as well as for antisense effects, a catalytically inactive DNAzyme still exhibiting BCR-ABL antisense activity was designed. Fourty-eight hours after a single treatment of BCR-ABL+ ALL-cells with DNAyzmes the BCR-ABL mRNA concentration, as measured by quantitative real-time RT-PCR, was significantly reduced by 56% and 66% compared to controls treated with the inactivated DNAzyme and to untreated cells, respectively. Western blot analysis showed a decrease in p190 protein levels after DNAzyme treatment in comparison to the control treated with inactive DNAzyme as well as to the untreated cells. Most noteworthy, four days after a single DNAzyme treatment the net growth of BCR-ABL+ ALL cells treated with the active DNAzyme was inhibited by 68% compared to the untreated control. From these data we conclude, firstly, DNAzymes targeting mRNA coding for the minor BCR-ABL variant are able to significantly reduce the amount of fusion mRNA in the cells, leading to a reduction in protein expression, followed by the inhibition of BCR-ABL driven proliferation of ALL cells. Secondly, this exemplified setting gives a hint that DNAzymes might be of therapeutic use in hematopoietic malignancies associated with specific mutations, expressing oncogenic fusion genes or overexpressing oncogenic genes.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 88-88
Author(s):  
Bernd Gruhn ◽  
Nadine Pfaffendorf ◽  
Susan Wittig ◽  
Roland Zell ◽  
Ralf Häfer ◽  
...  

Abstract The proof for the prenatal origin of childhood acute lymphoblastic leukemia (ALL) comes from the detection of concordant leukemia in monozygotic twins and the identification of translocation breakpoint genomic sequences at birth in a limited number of ALL patients with t(4;11) or t(12;21) chromosomal translocation. However, most patients with childhood ALL lack leukemia-specific fusion gene sequences. Therefore, we have used the rearranged immunoglobulin heavy chain (IgH) genes as a marker for the detection of preleukemic clones at birth. Guthrie card blood spots of 32 children with B-lineage ALL treated at our institution were available for this retrospective study. The ALL patients had a median age of 5 years (range, 15 months to 14 years) and had median presenting white blood cell (WBC) counts of 10150/μl (range, 800 to 103800/μl). In all patients a monoclonal IgH gene rearrangement was obtained from diagnostic bone marrow and sequenced. Clone-specific primers were designed using the specific D-N-J and N-D-N sequences. A two-stage polymerase chain reaction (PCR) using a semi-nested approach was developed to improve sensitivity and specificity of amplification. In all 32 patients, one leukemic cell could be detected in a background of 105 normal blood mononuclear cells. Nineteen of the 32 patients (59%) had detectable IgH gene rearrangements at birth using the sensitive semi-nested PCR. Sequencing of the PCR products obtained from Guthrie card blood spots revealed the identical sequences identified from diagnostic leukemic cells. The fetal characteristics of the leukemic cells were indicated by the small numbers of nucleotides inserted into the N region and the shortened D germ line segments. Interestingly, five of the six children (83%) with hyperdiploid ALL had detectable preleukemic clones at birth. Four of the five children (80%) with pro-B ALL, 13 of the 21 children (62%) with cALL and only two of the six children (33%) with pre-B ALL had preleukemic clones on their cards. We did not observe any differences in age at diagnosis or presenting WBC count between the 19 patients with preleukemic clones at birth and the 13 patients whose Guthrie cards were tested negative. Our results suggest that the majority of children with B-lineage ALL has preleukemic clones already at birth indicating a prenatal origin of leukemia. In addition, postnatal factors are important in leukemogenesis as well because of the long latency periods until clinical diagnosis of leukemia.


Blood ◽  
1985 ◽  
Vol 66 (4) ◽  
pp. 902-907
Author(s):  
LW Dow ◽  
P Martin ◽  
J Moohr ◽  
M Greenberg ◽  
LG Macdougall ◽  
...  

To determine whether acute lymphoblastic leukemia (ALL) is a clonal disease and to define the pattern of differentiation shown by the involved progenitor cells, we studied the glucose-6-phosphate dehydrogenase (G6PD) types in the cells of 19 girls heterozygous for this X chromosome-linked enzyme. Lymphoblast immunophenotypes were those of HLA-DR+, CALLA+ ALL (six patients); HLA-DR+, CALLA- ALL (four patients); pre-B cell ALL (two patients); T cell ALL (four patients); and undefined ALL (three patients). Malignant blast cells at diagnosis from ten patients displayed a single G6PD type, indicative of clonal disease. In contrast, both A and B G6PD in ratios similar to those found in skin were observed in morphologically normal blood cells from the same patients. The leukemic cells of three patients were examined at both diagnosis and relapse; in each instance the same G6PD type was found, consistent with regrowth of the original leukemic clone at relapse. Results of studies of cells from nine additional patients tested only at relapse were similar. Our results indicate that childhood ALL is a clonally derived disease involving progenitor cells with differentiation expression detected only in the lymphoid lineage.


Blood ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 205-212 ◽  
Author(s):  
DL Williams ◽  
J Harber ◽  
SB Murphy ◽  
AT Look ◽  
DK Kalwinsky ◽  
...  

Abstract Certain types of chromosomal abnormalities have been shown to exert strong independent influence on treatment outcome in acute lymphoblastic leukemia (ALL). To identify the changes most closely associated with prognosis, we analyzed the completely banded blast cell karyotypes of 161 children with this disease. One hundred twenty-five cases had one or more chromosomal abnormalities, with 45 showing translocations. The frequency of translocations was highest (58%) among patients with pseudodiploid karyotypes and lowest (0%) in the hyperdiploid group defined by 51 or more chromosomes. During the maximum 6-year follow-up period, 30 of the 45 patients with a translocation failed therapy, compared with only 27 of the 116 who lacked this feature. Life-table estimates of event-free survival indicate that only 14% of the translocation group will be in complete remission at 3 years. The percentages of failures associated with random and nonrandom translocations were virtually identical (68% v 65%). When entered in a Cox proportional hazards model with seven other types of chromosomal abnormalities, and then with 11 clinical and laboratory variables of known prognostic value in ALL, translocation emerged as the strongest single predictor of treatment outcome (P less than 0.0001). The model indicated that translocation increases the risk of treatment failure six times by comparison with the absence of this feature. These findings offer an explanation for the majority of early treatment failures in childhood ALL, including those previously attributed to ploidy classification.


Blood ◽  
1996 ◽  
Vol 87 (3) ◽  
pp. 1155-1161 ◽  
Author(s):  
DI Marks ◽  
BW Kurz ◽  
MP Link ◽  
E Ng ◽  
JJ Shuster ◽  
...  

Previous studies have indicated that p53 gene mutations were an uncommon event in acute lymphoblastic leukemia (ALL) in children. In one series of 330 patients, p53 mutations were seen in fewer than 3%. We analyzed bone marrow mononuclear cells derived from 10 children with ALL at diagnosis who subsequently failed to achieve a complete remission or who developed relapse within 6 months of attaining complete remission for p53 gene mutations and mdm-2 overexpression. We found that three children had p53 gene mutations, and four overexpressed mdm-2. Also, experiments comparing relative levels of mdm- 2 RNA and protein in these patients demonstrated that mdm-2 overexpression can occur at the transcriptional and posttranscriptional level in primary leukemic cells. Although we were unable to link Waf-1 RNA expression with p53 status in childhood ALL, our data show potential p53 inactivation by multiple mechanisms in a large percentage of these patients and demonstrate that these alterations can be detected at diagnosis. Inactivation of the p53 pathway may, therefore, be important in children with ALL who fail to respond to treatment and may be useful for the early identification of children requiring alternative therapies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1451-1451
Author(s):  
Isamu Hanada ◽  
Kiminori Terui ◽  
Tsutomu Toki ◽  
Ko Kudo ◽  
Tomohiko Sato ◽  
...  

Abstract Abstract 1451 Children with Down syndrome (DS) have a 10- to 20-fold increased risk of developing acute lymphoblastic leukemia (ALL). In DS-associated ALL (DS-ALL), the chromosome aberrations which are generally common in childhood ALL, such as hyperdiploidy and t(12;21), are less frequent. Recent studies have shown that activating JAK2 mutations and overexpression of cytokine receptor-like factor 2 (CRLF2) gene are identified in approximately 20% and 50–60% of DS-ALL in Western countries, respectively. Most of the patients with CRLF2 overexpression have been reported to be associated with interstitial deletions of the pseudoautosomal region 1 (PAR1) of the sex chromosomes and the P2RY8-CRLF2 fusion gene. In addition, one report showed that the activating CRLF2 F232C mutation was identified in about 10% of DS-ALL. However, there have been no studies to determine the incidence of these genetic aberrations in Asian patients with DS-ALL. In this study, 23 patients with DS-ALL in Japan were screened for mutations in the pseudokinase domain of the JAK2 gene, the P2RY8-CRLF2 fusion gene, and the CRLF2 F232C mutation by PCR/RT-PCR and direct sequencing. Fourteen patients, whose bone marrow RNAs were available, were also screened for CRLF2 overexpression by real-time quantitative RT-PCR. We identified the JAK2 R683G mutation in 2 patients (9%) and the P2RY8-CRLF2 fusion gene in 4 patients (17%). The CRLF2 F232C mutation was not detected in any patient. CRLF2 overexpression was observed in 2 of 14 patients examined (14%). Although bone marrow RNA was available in only 1 of 4 patients positive for P2RY8-CRLF2, high-level expression of CRLF2 was confirmed in this patient. The other patient with CRLF2 overexpression was negative for P2RY8-CRLF2, indicating the involvement of the other type of CRLF2 rearrangement, IGH@-CRLF2 in this patient. We also performed a preliminary study on JAK1, JAK3, and Interleukin-7 receptor-α (IL7R) mutations, and 14, 11, and 12 patients were screened for mutations in the pseudokinase domain of JAK1, JAK3, and exon 5 and 6 of IL7R, respectively. However, no mutations were identified in any patient. Our results show the lower incidence of CRLF2 rearrangements in DS-ALL patients in Japan than that in Western countries. Gene alterations other than CRLF2 rearrangements may contribute to leukemogenesis in Japanese patients with DS-ALL. To clarify if the incidences of the mutations in JAK1-3, CRLF2, and IL7R are also lower in DS-ALL patients in Japan than those in Western counties, more patients need to be studied. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 786-786 ◽  
Author(s):  
Kathryn G. Roberts ◽  
Yung-Li Yang ◽  
Debbie Payne-Turner ◽  
Richard C. Harvey ◽  
I-Ming Chen ◽  
...  

Abstract Introduction: Ph-like or BCR-ABL1-like B-progenitor acute lymphoblastic leukemia (ALL) is a high-risk subtype characterized by a gene expression profile similar to BCR-ABL1 ALL. The prevalence of Ph-like ALL rises from 10% in standard risk childhood ALL to over 25% in young adults. Next-generation sequencing of Ph-like ALL identified a variety of alterations involving kinase or cytokine receptor genes, including rearrangement, sequence mutation and copy number alterations. Chromosomal rearrangements in about one-third of Ph-like ALL cases create fusion genes of a variety of 5’ partners that involve ABL1-class genes (ABL1, ABL2, CSF1R and PDGFRB) or activate JAK family members (JAK2, TYK2, IL2RB) that are potentially amenable to treatment with ABL1-class or JAK-class tyrosine kinase inhibitors (TKIs). Notably, ABL2 (Abelson-related gene, ARG), a homolog of ABL1, has rarely been identified as a rearrangement partner in ALL. CSF1R (encoding the macrophage colony stimulating receptor) regulates the differentiation of macrophages, and is not normally expressed in lymphocytes. Likewise, rearrangements involving the JAK family member TYK2, the beta chain of the interleukin 2 cytokine receptor (IL2RB), and the neurotrophic tyrosine kinase receptor type 3 (NTRK3), have not been previously described in leukemia. The goals of this study were to assess the role of these kinase alterations in leukemogenesis, to determine the activation of signaling pathways, and to investigate the efficacy of TKIs. Methods: Kinase fusions were expressed in interleukin-3 dependent Ba/F3 cells, and co-expressed with the dominant negative isoform of IKAROS (IK6) in interleukin-7 dependent Arf-/- mouse pre-B cells. Xenograft models of 10 Ph-like ALL tumors - ETV6-ABL1, RANBP2-ABL1, PAG1-ABL2, RCSD1-ABL2, SSBP2-CSF1R, IGH-EPOR, ETV6-NTRK3, ATF7IP-JAK2, PAX5-JAK2 and ZEB2-PDGFRB - were generated by engrafting primary human leukemia cells into NOD-SCID IL2R gamma null (NSG) mice. Activation of kinase signaling was performed using phosphoflow cytometry analysis, and sensitivity to TKIs was assessed ex vivo and in vivo. Results: All kinase fusions (PAG1-ABL2, MYH9-IL2RB, ATF7IP-JAK2, ETV6-NTRK3 or MYB-TYK2) induced cytokine-independent proliferation of Ba/F3 cells. Mice transplanted with Arf-/- pre-B cells co-expressing IK6 and either RCSD1-ABL2 or SSBP2-CSF1R developed pre-B ALL (CD43+, B220+, CD19+, BP-1+ and IgM-) with a median latency of 36 and 40 days respectively, providing evidence that ABL2 and CSF1R fusions contribute to leukemogenesis. In human leukemic cells harvested from xenograft mice we observed distinct patterns of kinase signaling activation and TKI sensitivity for the different fusions. Xenograft cells expressing ABL1-class kinase fusions showed activation of STAT5 that was inhibited with imatinib or dasatinib. Phosphorylation of CRKL, a known target of ABL1 and ABL2, was only observed in cells expressing ABL1/2 fusions. Cells harboring ATF7IP-JAK2, PAX5-JAK2 or IGH-EPOR showed phosphorylation of STAT5 that was attenuated with the JAK2 inhibitor, ruxolitinib. In contrast, cells expressing ETV6-NTRK3 signaled through the MAPK pathway with constitutive pERK1/2 that was inhibited with the ALK-inhibitor, crizotinib. This TKI response profile was confirmed by cytotoxicity assays in xenograft cells, with ABL1-class fusions being sensitive to dasatinib (IC50 range 1-2nM), whilst cases harboring ATF7IP-JAK2 or EPOR rearrangement uniquely responded to ruxolitinib with IC50 values of 500nM and 850nM respectively. Interestingly, in human leukemic cells harboring the ETV6-NTRK3 fusion we observed selective inhibition with both crizotinib and the FLT3 inhibitor, lestaurtinib. Pre-clinical studies on three xenograft models of Ph-like ALL - ETV6-ABL1, RCSD1-ABL2 and SSBP2-CSF1R – showed significantly reduced leukemic burden in dasatinib treated mice (20mg/kg/day p.o) compared to vehicle treated mice. Conclusions: These data provide important insight on new targets of rearrangement in ALL and describe the first engineered mouse models of Ph-like B-ALL. Functional modeling of these alterations is essential to improve the clinical management of Ph-like ALL by identifying patients with specific genomic lesions at diagnosis and directing them to treatment with appropriate TKIs combined with chemotherapy, analogous to current treatment for BCR-ABL1 B-ALL. Disclosures Hunger: Bristol Myers Squibb: Consultancy.


Blood ◽  
1990 ◽  
Vol 75 (5) ◽  
pp. 1170-1177
Author(s):  
CH Pui ◽  
AJ Carroll ◽  
SC Raimondi ◽  
VJ Land ◽  
WM Crist ◽  
...  

Cytogenetic and DNA flow cytometric analyses of leukemic cells from 2,184 children with newly diagnosed acute lymphoblastic leukemia (ALL) identified 27 cases (1.2%) that had a hypodiploid line with fewer than 45 chromosomes per cell. Had cytogenetic techniques been used alone, seven cases would have been missed, compared with five if only flow cytometry had been used. For comparative purposes, the 27 cases were divided into three groups: near-haploid (n = 10), hypodiploid 30–40 (n = 9), and hypodiploid 41–44 (n = 8). Blast cells from patients with near-haploid ALL lacked structural chromosomal abnormalities; showed nonrandom retention of two copies of chromosomes 8, 10, 14, 18, 21, and the sex chromosomes; and had a second leukemic line with exactly twice the number of chromosomes or DNA content. Karyotypic analysis of the hypodiploid 30–40 and hypodiploid 41–44 groups disclosed structural abnormalities in the stemline or sideline of most of the well-banded cases; those in the latter group were similar to findings in cases with 45 chromosomes. As in the near-haploid group, chromosome 21 and the sex chromosomes were preferentially retained in the hypodiploid 30–40 and 41–44 cases. Except for a slight excess of female patients in the near- haploid group and an older age at diagnosis in the hypodiploid 30–40 cases, there were no initial clinical features that distinguished these patients from the general ALL population. Despite intensive treatment and short follow-up, 17 of the 27 patients have relapsed. This study suggests that the poor treatment responsiveness of hypodiploid ALL is not limited to the more than 80% of the patients who have 45 chromosomes per leukemic cell and demonstrates that cytogenetic and flow cytometric analyses are complementary in the evaluation of children with ALL.


Sign in / Sign up

Export Citation Format

Share Document