Clonal Origins of 'late' Relapses in ETV6-RUNX1 Acute Lymphoblastic Leukemia..

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1583-1583
Author(s):  
Frederik W van Delft ◽  
Sharon W Horsley ◽  
Kristina Anderson ◽  
Caroline M Bateman ◽  
Susan Colman ◽  
...  

Abstract Abstract 1583 Poster Board I-609 Approximately a quarter of B cell precursor childhood acute lymphoblastic leukemia (ALL) is characterized by an ETV6-RUNX1 (TEL-AML1) fusion gene and has an overall good prognosis. The majority of these children will be treated on the standard risk arm of the United Kingdom ALL treatment protocols. Relapse usually occurs after cessation of treatment but remarkably can present many years later. The incidence of ETV6-RUNX1 at relapse has been reported to be less than or similar to de novo ALL. Molecular studies on neonatal bloodspots and on twins with concordant ALL have demonstrated the prenatal origin of major subtypes of childhood ALL, including most ETV6-RUNX1 fusion gene positive cases. In addition these investigations have suggested the existence of a preleukaemic stem cell requiring additional mutations or ‘hits’ in order to develop frank leukemia. To understand the genetic basis and clonal origin of late relapses we have compared the profiles of genome-wide copy number alterations (CNA) at relapse versus presentation in samples matched with remission DNA from 24 patients. The selected samples had tumor cell purity >75% before DNA extraction. DNA copy number alteration data was generated using the Affymetrix 500K SNP arrays. LOH analysis was performed using CNAG 3.0 and dCHIP 2008. Overall we identified 168 CNA at presentation and 252 at relapse (excluding deletions at IgH and TCR loci), equating to 6.96 and 10.3 CNA at presentation and relapse respectively. Although the number of CNA increased at relapse, no single gene or pathway was uniquely targeted in relapse. The most frequent alterations involved loss of 12p3.2 (ETV6), 9p21.3 (CDKN2A/B), 6q16.2-3 and gain of 21q22.1-22.12. A novel observation was gain of part or whole of chromosome 16 (2 patients at presentation, 5 at relapse) and deletion of the oncogene Plasmocytoma Variant Translocation 1 (PVT1) in 3 patients. Pathway analysis demonstrated frequent involvement at presentation and relapse of genes implicated in both B cell development (44 versus 46%) and cell cycle control (46 versus 71%). In order to study the clonal origin of relapse, we devised a classification describing the change in CNA between presentation and relapse in each individual patient. The clonal relationship between the presentation and relapse clone was established by the persistence of both the ETV6-RUNX1 fusion and at least 1 Ig and/or TCR rearrangement. We used a classification focussed on ‘driver’ CNA, defined as CNA that target genes functionally involved in leukemogenesis or CNA that are recurrently targeted as described in the literature. The four categories of relapse were type 1 (the dominant clone at presentation presented unchanged at relapse), type 2 (the relapse clone was derived from the major subclone at presentation with additional CNA), type 3 (the relapse clone was derived from a minor clone at presentation with gains and losses of CNA) and type 4 (the relapse clone is derived from an ancestral or preleukemic clone at initial presentation with all CNA gained). Twenty-one of the 24 patients were classifiable in this way (Figure 1). Although comparative relapse / presentation CNA profiles cannot identify precise clonal origins of relapse, the data indicate that irrespective of time to relapse (<2 to 9.9 years), the relapse clone appeared to be derived from either a major or minor clone at diagnosis with none (0/6) of the very late relapses (>5 years) derived from pre-leukemic cells lacking CNA. This data indicate diverse clonal origins of relapse and extended periods of dormancy, possibly via quiescence, for stem cells in ETV6-RUNX1+ ALL. Relapse type Remission duration (years) < 2 2 - 5 > 5 1 • • 2 • ••••••• •• 3 •• •• ••• 4 •• Figure 1. Each patient is represented by a black dot. Each patient is classified on the basis of the relapse type and remission duration. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3158-3158
Author(s):  
Marina Bousquet ◽  
Marian Harris ◽  
Beiyan Zhou ◽  
Mark D. Fleming ◽  
Harvey Lodish

Abstract Abstract 3158 MicroRNA miR-125b has been shown to be involved in different kind of leukemia. Indeed, the chromosomal translocation t(2;11)(p21;q23) found in patients with myelodysplasia and acute myeloid leukemia leads to an overexpression of miR-125b up to 90 fold. Moreover, miR-125b is also upregulated in patients with B-cell acute lymphoblastic leukemia carrying the t(11;14)(q24;q32) translocation. To decipher the presumed oncogenic mechanism of miR-125b, we used transplantation experiments in mice. All of the mice transplanted with fetal liver cells ectopically expressing miR-125b showed an increase in white blood cell count, in particular in neutrophils and monocytes, associated with a macrocytic anemia. Among these mice, half of them died of B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, or a myeloproliferative disorder, suggesting an important role of miR-125b in myeloid and lymphoid lineages. Co-expression of miR-125b and the BCR-ABL fusion gene in transplanted cells accelerated the development of leukemia in mice, compared to control mice expressing only BCR-ABL, suggesting that miR-125b confers a proliferative advantage to the leukemic cells. Thus we showed that the overexpression of miR-125b is sufficient to induce leukemia in vivo and decrease the latency of BCR-ABL -induced leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 233-233
Author(s):  
Cai Chen ◽  
Christoph Bartenhagen ◽  
Michael Gombert ◽  
Vera Okpanyi ◽  
Vera Binder ◽  
...  

Abstract High hyperdiploid acute lymphoblastic leukemia (HeH-ALL) is characterized by 51-67 chromosomes and nonrandom gains of specific chromosomes (X, 4, 6, 10, 14, 17, 18, and 21). It presents the most frequent numerical cytogenetic alteration in childhood pre B-cell ALL occurring in 25-30% of cases. Recurrent disease will affect 15-20%. Pre-leukemic HeH clones are generated in utero, but cooperating oncogenic lesions are necessary for overt leukemia and remain to be determined. Recently, a phenomenon termed chromothripsis has been described in which massive structural variations occur in a single aberrant mitosis. Whole or partial chromosomes are shattered and some fragments are lost in the process of rejoining. Thus, characteristically, chromosomal copy numbers oscillate between two copy number states. Chromothripsis has been suggested to be a tumor-driving alteration that may be present in 2-3% of all human cancers. Its role as a potential cooperating or initiating lesion in HeH-ALL has not been determined. We applied state-of-the-art whole-genome next-generation-sequencing to analyze structural variations in six pediatric patients with recurrent HeH-ALL. Matched sample sets taken at diagnosis, remission and/or relapse were compared. Paired end sequencing was carried out on a Genome Analyzer IIx or a HiSeq 2000 (Illumina), respectively. Reads were aligned against the human reference genome (GRCh37) using BWA. Translocations were detected by GASV. Copy number variations were analyzed by FREEC. Structural variations were validated by PCR/Sanger sequencing and FISH. Of the six patients analyzed, five harbored on average one interchromosomal translocation or intrachromosomal inversion, but one patient presented with massive genomic rearrangements (Figure). These affected chromosome 3, 11, 12 and 20. Ten copy number shifts on chromosome 3 oscillating between two copy number states (2 and 3) indicated that these rearrangements were caused by chromothripsis. Breakpoint sequencing revealed that one of the identified translocations (t(12;20)(p13.1;p12.3)), was indeed a three-loci-rearrangement composed of small fragments derived from chromosomes 3, 12 and 20. Characteristically for chromothripsis, the breakpoints clustered closely. Three breakpoints separated by 224 bp and 64 kb were located in the transducin (beta)-like X-linked receptor 1 (TBL1XR1) gene. Other genes repeatedly targeted included the MACRO domain-containing protein 2 (MACROD2) gene (a deacetylase involved in deacetylation of lysine residues in histones and other proteins), the KIAA1467 gene (a transmembrane protein of the integrin alpha FG-GAP repeat containing 3 (ITFG3) family), and a novel regulatory lincRNA (ENSG00000243276). MACROD2 was previously observed as a target of chromothripsis in a colorectal carcinoma. Thus, the characterized breakpoints may identify fragile genomic sites prone to chromothriptic rearrangement. DNA repair was effectuated by non-homologous-end-joining as typical addition of non-template nucleotides with microhomologies of two to four nucleotides at the breakpoints demonstrated. Copy number profiles of this patient showed that at least two distinct leukemic clones could be identified at diagnosis. One had acquired chromothriptic alterations and presented the dominant clone at relapse indicating chemotherapy resistance and tumor-driving potential. Prior whole-exome sequencing did not reveal mutations in known oncogenes or tumor suppressor genes. Therefore, loss of function or expression of genes affected by chromosomal rearrangements, such as TBL1XR1 that is recurrently mutated in childhood ALL with ETV6-RUNX1 translocation, may account for the tumor-driving effect. All leukemic cells at diagnosis showed conformity concerning number and pattern of whole chromosome gains demonstrating that chromothripsis was not an initiating oncogenic event, but occurred secondary to high hyperdiploidy. Further aberrations (t(4;7), loss of 4q) were gained by the chromothriptic clone and could be detected by FISH in minor subclones pointing at ongoing clonal evolution. Taken together, our study reveals chromothripsis as a novel assisting and tumor-driving lesion in HeH ALL. Chromothripsis in HeH-ALL. Copy number variations and translocations at diagnosis (left) and relapse (right). (magenta: chromothriptic translocations; green: other translocations) Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5283-5283
Author(s):  
Chuang Jiang ◽  
Jiabi Qian ◽  
Wenge Hao ◽  
Wei LIU ◽  
Shuhong Shen ◽  
...  

Abstract Background: Thanks to the total therapy and systemic basic-translation research, the overall survival rate in children with acute lymphoblastic leukemia (ALL) has dramatically improved to almost 90% over these past few decades. FOXO1 gene belongs to the forkhead family of transcription factors, which play roles in myogenic growth and differentiation. Translocation of FOXO1 with PAX3 has been reported in pediatric alveolar rhabdomyosarcoma. In B-cell precursor ALL, two cases with FOXO1 fusions have been identified already, while its function on ALL remains unknown. Here, we report a novel MEIS1-FOXO1 fusion gene in a case with B-ALL. Methods: Flowcytometery, karyotype, RT-PCR and fluorescence in were employed, MEIS1-FOXO1 was identified as novel fusion gene in a case of pediatric BCP-ALL. Using IL-3 dependent BaF3 cells as study model to test the leukemia transformation potential of MEIS1-FOXO1. Results: A novel MEIS1-FOXO1 fusion was identified in one cease of pediatric B-ALL. Panel next generation sequencing (NGS) showed that the leukemia clone had concurrent NRASG12D, TP53R273H, WHSC1E1099K, ABCC1R1166X, PHGR1H37P, HOXA3P219L and DSTP4606L somatic mutation. This patient was enrolled in CCCG-ALL2015 clinical trial (ChiCTR-IPR-14005706) and achieved completed remission and low minimal residual disease (MRD) level (MRD<0.01%) at day 19 from induction therapy. Functional study showed that MEIS1-FOXO1 fusion gene can potentiate BaF3 cells growth independent of IL3 supplement, as compared to those without MEIS1-FOXO1 fusion transduction. In the meanwhile, we have found that MEIS1-FOXO1 fusion gene can drive cells into S-phase with concurrent decreased G0/G1 phase, which might be its oncogenic role in leukemogenesis. Using qPCR methods, we have found that MEIS1-FOXO1 fusion gene altered the cell cycle related genes expression. Conclusions: Integrating the FOXO1-fusion reports, our data have added more evidence to underline the role of FOXO1 deregulation in the pathogenesis of acute lymphoblastic leukemia. Novel fusion of MEIS1-FOXO1 can potentiate B-ALL via cell cycle entry. Detailed mechanisms involved into the MEIS1-FOXO1 should be further investigated. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 583-583
Author(s):  
Elisabeth M.P. Steeghs ◽  
Isabel S. Jerchel ◽  
Willemieke de Goffau-Nobel ◽  
Alex Q. Hoogkamer ◽  
Judith M. Boer ◽  
...  

Abstract Background In high risk pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients, gain of function mutations and translocations affecting JAK2 have been described. These mutations and translocations result in aberrant kinase signaling and may therefore serve as an ideal target for precision medicines. Aim Evaluate the frequency and prognosis of JAK2 lesions among different subtypes of childhood BCP-ALL, and study the efficacy of the JAK1/2 inhibitors momelotinib and ruxolitinib. Methods This study comprised 77 BCR-ABL1-like cases and 76 B-other cases which were screened for JAK2 translocations using RT-PCR. Furthermore a representative pediatric cohort of 461 newly diagnosed BCP-ALL cases was screened for JAK2 mutations using targeted next-generation sequencing. Clinical analyses were performed in 341 BCP-ALL patients. Patient-derived-xenograft (PDX) cells were isolated from NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice, which were injected with primary leukemic cells. Purity of PDX cells was enriched to over 90% and presence or absence of JAK2 lesions was validated. PDX and primary leukemic cells were exposed to a dilution series of momelotinib or ruxolitinib for four days. Where indicated, cells were pre-incubated with 25 ng/ml TSLP for 1 hour. In mono-culture assays, cytotoxicity was quantified using MTT and in co-culture assays flow cytometry was used. Leukemic cells were discriminated from mesenchymal stromal cells (MSCs) using CD19 and viability was assessed by Annexin V and Propidium Iodide. Western blotting was used to study protein expression levels. Results JAK2 translocations were detected in 6.5% of BCR-ABL1-like cases (3 PAX5-JAK2 cases, 1 TERF2-JAK2 case and 1 BCR-JAK2 case), but not in B-other cases. JAK2 mutations were identified in 3.5% of all BCP-ALL cases, which included JAK2 mutations in BCR-ABL1-like (7.6%), B-other (11.9%), and high hyperdiploid cases (1.6%), but not in MLL rearranged, BCR-ABL1-positive, ETV6-RUNX1-positive or TCF3-PBX1-positive cases. Cumulative incidence of relapse in patients harboring JAK2 lesions was as poor as in JAK2 wildtype BCR-ABL1-like and B-other patients. Efficacy of the JAK1/2 inhibitors momelotinib and ruxolitinib was examined in JAK2 lesion positive (primary and PDX) leukemic cells. Inhibitors were cytotoxic in both translocated and mutated cells, although efficacy in JAK2 mutated cells highly depended on CRLF2 activation by TSLP. CRLF2 activation resulted in downstream STAT5 activation and sensitization towards ruxolitinib compared to unstimulated cells (p < 0.05). Cells harboring JAK2 translocations signaled independently of CRLF2. Although momelotinib and ruxolitinib exposure blocked downstream STAT1/5 phosphorylation, both inhibitors also induced accumulation of phosphorylated JAK2Y1007. Consequently, release of the inhibitors resulted in a profound re-activation of JAK2 signaling, observed by upregulation of downstream STAT1/5 signaling. Furthermore, we observed microenvironment-induced resistance. Culturing leukemic cells in the presence of primary bone marrow MSCs induced resistance to ruxolitinib, compared to leukemic cells in single cultures (p < 0.05). A similar trend was observed for momelotinib. In addition, patients harboring JAK2 mutations displayed a heterogeneous leukemic cell population. Mouse xenograft models revealed different outgrowth patterns of leukemic cells, in which the JAK2 mutated clone persisted, decreased or even disappeared, resulting in outgrowth of JAK2 wildtype leukemic cells. Moreover, JAK2 mutations were not mutually exclusive for other pathway mutations (e.g. KRAS). Conclusion JAK2 translocations and mutations were detected in poor prognostic BCP-ALL cases. In ex vivo assays, the JAK1/2 inhibitors momelotinib and ruxolitinib were cytotoxic in JAK2 aberrant cells. Despite these promising findings, we identified certain limitations of these inhibitors. Inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon their release. Furthermore, our data suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and by microenvironment-induced resistance. Taken together, our data yield important directives for the clinical use of JAK inhibitors in pediatric BCP-ALL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2653-2653
Author(s):  
Manon Queudeville ◽  
Sarah M. Eckhoff ◽  
Klaus-Michael Debatin ◽  
Lueder H. Meyer

Abstract Abstract 2653 Poster Board II-629 Oncogenesis and tumor progression are supported by alterations in cellular signaling. We used phospho-specific antibodies in combination with surface staining in flow cytometry to analyze specific signaling profiles of leukemia cells at a single cell level. We anayzed 22 xenograft samples derived from NOD/SCID-mice transplanted with primary pediatric B- cell precursor acute lymphoblastic leukemia (BCP- ALL) cells. The cells were isolated from the spleens of leukemia bearing mice and stimulated ex vivo in vitro with different stimulants and cytokines. Activation of various phosphoepitopes was analyzed by flow cytometry and compared to the basal state of unstimulated samples. TEL/AML1 fusion and MLL-rearrangements are the most common cytogenetic aberrations in childhood BCP- ALL and are associated with a good or very poor prognosis, respectively. Although there were no differences detectable in basal phosphorylation between the different cytogenetic subgroups, TEL/AML1- positive samples (n= 5) displayed a significantly lower phosphorylation of extracellular regulated kinase (ERK1/2) after stimulation with PMA (Phorbol-12-myristat-13-acetate, activator of protein kinase C) or interleukin 7 (IL-7), while they showed a significantly higher activation of p38 after stimulation with PMA, compared to samples without translocation (n= 13). Additionally, the fusion gene negative samples showed a downregulation of STAT1-phosphorylation after stimulation with interleukin 10 (IL-10) whereas the TEL/AML1-positive samples showed no change. Interestingly, the MLL- positive samples (n= 3) also did not show a difference in STAT1-phosphorylation after IL-10, but showed significantly stronger STAT1 activation in response to interferon alpha (IFN-a) compared to samples without fusion genes. Moreover, the MLL- positive samples also displayed a weaker reaction in ERK-phosphorylation after IL-7 compared to the leukemia samples without cytogenetic aberrations. Differences in other prognostic subgroups analysed include a weaker phosphorylation of p38 and JNK after anisomycin in samples where the patient initially presented with hyperleucocytosis (> 100.000 WBC/μl) (n= 3), an indicator of poor prognosis. A decrease in STAT3- activation after IL-10 was observed in samples where the patients displayed bone marrow remission on day 15 of therapy (n= 8), compared to no change in the samples of patients with > 5% residual blasts (n= 8), indicative of therapy resistance, at this timepoint. Similar to the results for the cytogenetic subgroups, there were no differences detectable at basal phosphorylation levels between the prognostic subgroups. Taken together, these data show that basal phosphorylation states of specific signaling molecules do not discriminate between the different prognostic subgroups of BCP- ALL analyzed. Cytogenetic and other prognostic subgroups however display specific profiles of signaling networks after stimulation. This strategy will prove helpful to identify mechanisms by which different subgroups with distinct clinical outcomes interpret environmental signals and hereby define pathways important for continued survival, proliferation and resistance eventually leading to novel biomarkers and targeted therapies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1444-1444
Author(s):  
Marilyn L Slovak ◽  
Ya-Hsuan Hsu ◽  
Jennifer A Otani-Rosa ◽  
Jennifer A Jahn ◽  
Zunyan Dai ◽  
...  

Abstract Abstract 1444 Objective: Risk-adapted therapeutic categories in acute lymphoblastic leukemia (ALL) take into account several key parameters, including cytogenetics. Because accurate conventional chromosome (CC) studies in ALL are hampered by low mitotic indexes and poor chromosome morphology, fluorescence in situ hybridization (FISH) and other molecular methods such as RT-PCR are currently used to complement karyotyping. We evaluated the contribution of oligo/SNP microarrays for providing additive genetic information in ALL that is not obtained by karyotype studies. Methods: Specimens from 24 children and young adults (12 M;12 F), including 3 patients with Down syndrome (DS), were processed for pre-B ALL cytogenetics work-up plus SNP/Oligo microarray. The median age was 4 y (range, 2–21 y); 23 patients had a pre-B-cell immunophenotype. Unstimulated CC (n=23) and pre-B ALL FISH studies (n=20) were performed using standard protocols. Genomic DNA was extracted from the residual bone marrow samples and processed for genome-wide copy number analyses on the Cytoscan HD oligo/SNP microarray (Affymetrix). Results: CC detected abnormalities that allowed prognostic subgrouping in 19 (83%) of 23 patients tested; the 24th patient was not tested with CC but showed an ETV6-RUNX1 fusion on FISH. Microarray genomic profiling allowed genetic subgrouping in the 4 cases with suboptimal or non-informative CC results. Overall, microarray detected a median of 5 additional copy number aberrations (CNAs) per patient (range, 1–27), including 18 additional CNAs in a T-cell ALL patient with only deletion 9p detected by CC and FISH. The 4 most common deletions detected by array involved CDKN2A (n=10, including 4 biallelic deletions) and ETV6, SESN1/6q16.1, and IKZF1 (6 cases each); sporadic deletions involved genes affecting B-cell development, cell cycle progression, DNA repair, and tumor progression were also seen. Five of the 7 patients with ETV6-RUNX1 translocation also showed deletions or disruptions at or near these 2 loci, suggesting the presence of the “cryptic” t(12;21). No balanced translocations were detected. Clonal diversity was easily detectable by microarray; however, a case with 64 chromosomes and a case with both 2n and 4n clones were difficult to interpret. At least 1 extended area of copy neutral loss-of heterozygosity (>5 Mb) was seen in 8/24 (33%) cases, including a 17q region that encompassed IKZF3; however, in most cases the significance of these CN-LOH changes was not clear. Significant “high risk” prognostic alterations identified by array but not detected by CC included 3 CRLF2-rearragements (found in 2 of the 3 DS patients) and disruption of the IKZF1 locus (6 patients). IKZF1 deletions were detected in a 5-y-old DS-ALL patient with CRLF2-P2PY8, a 20-y-old DS-ALL patient with high hyperdiploidy, an 18-y-old patients with IGH-CRLF2 confirmed by FISH (CC failed), another 18-y-old patient with a normal karyotype, and 1 patient each with iAMP(21) and dic(9;20) ALL. Conclusion: Submicroscopic IKZF1 deletions have been associated with drug resistance and a high risk of treatment failure in ALL, signifying critically important prognostic information needed for clinical management. Accordingly, OligoSNP arrays provide a comprehensive approach for accurately identifying clinically significant abnormalities in ALL that may be missed by routine chromosome study and targeted FISH panels alone. Array testing is a highly sensitive complementary molecular cytogenetic assay that should be offered to newly-diagnosed ALL patients, especially when CC is non-informative, to facilitate genetic subgrouping and define tumor markers that may help monitor a patient's clinical course. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3776-3776
Author(s):  
Katja Kaulfuss ◽  
Thomas Heiden ◽  
Jochen Hecht ◽  
Karl Seeger

Abstract Acute lymphoblastic leukemia (ALL) in childhood, a clinically and biologically heterogeneous disease, represents the most common malignant disease in childhood. Approximately 20-25% of B-cell precursor ALL (BCP-ALL) carry the cryptic chromosomal translocation t(12;21)(p13;q22), the most common reciprocal chromosomal translocation in childhood ALL. This translocation combines two transcription factors and essential regulators of normal hematopoiesis, ETV6 and RUNX1, into the fusion oncogene ETV6/RUNX1 (E/R; synonym TEL/AML1). Recent studies in various animal models have strengthened the view that E/R positive cells give rise to preleukemic clones with a differentiation block in the pro/pre-B stage of B cell development that, after acquisition of additional mutations, may transform into full malignancy. Regarding the molecular mechanism by which the chimeric fusion protein E/R causes gene expression changes, it is assumed that E/R binds with the runt homology domain of RUNX1 (RHD, DNA-binding domain) to RUNX1 target sequences of gene promoters and recruits corepressors and histone deacetylases through its ETV6 portion, leading to chromatin condensation and transcriptional repression. Thus, E/R appears to act mainly as an epigenetic repressor of genes that are normally activated by RUNX1. However, the precise mechanism of cellular transformation and the identity of E/R target genes are largely unknown. Therefore, we used chromatin immunoprecipitation (ChIP), followed by next generation sequencing (ChIP-Seq) to identify E/R target genes in the E/R positive BCP-ALL cell lines REH and UoC-B6 as well as in primary patient material from children with relapsed E/R positive ALL. We were able to detect a core gene set of 335 candidate target genes common to all samples analyzed. Those genes could be assigned to 15 significantly overrepresented KEGG pathways (e.g. cell cycle, pathways in cancer, hematopoietic cell lineage and B cell receptor signaling pathway). The results show, besides target genes already reported in the literature such as EPOR, MPO and IGLL1, numerous not previously described candidate E/R target genes, such as LEF1, E2F2, FLT3, FGFR1 and RUNX1 that are potentially important in the pathogenesis of E/R positive ALL and may lead to new treatment options. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2643-2643 ◽  
Author(s):  
Lieke C.J. van den Berk ◽  
Arian van der Veer ◽  
Marieke E. Willemse ◽  
Myrte J.G.A. Theeuwes ◽  
Mirjam W. Luijendijk ◽  
...  

Abstract Malignant cells that infiltrate the bone marrow (BM) interfere with the normal cellular behavior of supporting cells, thereby creating an alternative malignant niche. This intercellular communication is mostly mediated by cytokines and their receptors. In this study, we find that expression of the CXCR4 receptor is significantly increased in pediatric precursor B-cell acute lymphoblastic leukemia (BCP-ALL) cells compared with normal mononuclear hematopoietic cells derived of the bone marrow (p=0.016). Furthermore, we show that high CXCR4 expression is correlated with an unfavorable clinical outcome in BCP-ALL (5-yr CIR ±SE: 38.4% ±6.9% in CXCR4-high versus 12.0% ±4.6% in CXCR4-low expressing patients, p<0.001). Interestingly, BM serum levels of the CXCR4 ligand (CXCL12) are 2.7-fold lower (p=0.005) in samples taken at initial diagnosis of BCP-ALL compared with the levels in samples taken of non-leukemic controls. We show that induction chemotherapy restores CXCL12 levels in the BM to normal levels. Blocking the CXCR4 receptor with Plerixafor (FDA-approved drug) showed that the lower CXCL12 serum levels at initial diagnosis could not be explained by consumption by the leukemic cells, nor did we observe an altered CXCL12-production capacity of BM-MSC at this time-point. We rather observed that a very high density of leukemic cells negatively affected CXCL12 production by the BM-MSC while stimulating the secretion levels of G-CSF. These results suggest that highly proliferative leukemic cells are able to down-regulate the production of cytokines involved in homing (CXCL12), while simultaneously up-regulating the production of cytokines involved in hematopoietic mobilization (G-CSF). This disbalance may stimulate the spreading of BCP-ALL outside the BM. The data presented here suggest that interference with the CXCR4/CXCL12 axis (for instance by using Plerixafor) may be an effective way to mobilize BCP-ALL cells; the more ALL cells become mobilized, the less ALL cells may escape from combination chemotherapy. In proof-of concept studies, this hypothesis needs to be validated to pave the way for implementation in future treatment protocols for children with ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1297-1297
Author(s):  
Bob de Rooij ◽  
Roel Polak ◽  
Rob Pieters ◽  
Monique L. Den Boer

Abstract Background Acute lymphoblastic leukemia (ALL) cells create a leukemic niche that protects malignant cells from the effects of cytostatic agents and immune cells by altering their bone marrow microenvironment. This malignant process can be counteracted by impairing the homing of leukemic cells towards the bone marrow. Hematopoietic cells express the chemokine receptor CXCR4 and migrate towards its ligand CXCL12, which is actively produced by MSCs in the bone marrow. Therefore clinical trials have been initiated using the CXCR4 antagonist AMD3100 (Plerixafor) during leukemia treatment. However, these trials, as well as priming of AML in more than 4000 patients using a CXCR4 dependent mechanism, have not resulted in improved overall survival rates. This suggests that CXCR4 inhibition is not sufficient to disrupt leukemic niches. Objectives In this study we investigated how leukemic cells regulate the chemoattractive properties of their microenvironment. Results Here we show, using an ex vivo niche model with primary MSCs, that B-cell precursor ALL (BCP-ALL) cells affect their healthy microenvironment without altering CXCL12 secretion. Using a transwell migration assay we studied the chemoattractive properties and chemokine secretion patterns of several cell types and co-cultures. We confirmed that BCP-ALL cells migrate towards a CXCL12 gradient produced by primary MSCs (11-fold more migrated cells compared to background, p < 0.001). Inhibition of CXCR4 by AMD3100 reduced migration towards MSCs by 80% (p < 0.01). BCP-ALL cells migrated even more towards co-cultures of BCP-ALL cells and primary MSCs (24-fold more migrated cells compared to background, p < 0.001). Strikingly, this ex vivo leukemic niche did not produce higher levels of CXCL12 compared to MSC mono-cultures. Moreover, the induced migration towards MSC-ALL co-cultures could not be inhibited by AMD3100 treatment, indicating that BCP-ALL cells enhance the chemoattractive properties of their microenvironment in a CXCL12-independent manner. In contrast to BCP-ALL cells, the migration of CD34+ progenitor cells towards co-cultures of BCP-ALL cells and MSCs was significantly reduced (0.8-fold compared to migration towards MSCs, p < 0.05). Similar results were observed when we studied the migratory behavior of MSCs. MSCs actively migrated towards BCP-ALL cells (1.7 fold compared to background, p < 0.001), while migration of MSCs was significantly reduced towards MSC-ALL co-cultures (0.4-fold compared to migration towards BCP-ALL, p < 0.001). To find candidate factors influencing this process, we quantified the secreted levels of 64 cytokines in co-cultures of patient-derived BCP-ALL cells and MSCs. We observed leukemia-driven cytokine secretion patterns that were not influenced by the source of primary MSCs. In contrast to unaltered levels of CXCL12, we observed significant inductions of MCP-1/CCL2 and MDC/CCL22 (CCR4-ligands), IL8 and GRO-1 (CXCR1/2-ligands) and IP10/CXCL10 (CXCR3-ligands). Conclusion Our data indicate that leukemic cells alter the chemoattractive properties of their microenvironment, resulting in the secretion of multiple chemokines into the leukemic niche. This leukemic niche is highly potent in attracting BCP-ALL cells and repels the influx of healthy hematopoietic cells and MSCs using a CXCL12-independent mechanism. Furthermore, our results identify candidate factors that might be valuable future therapeutic targets. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 29 (23) ◽  
pp. 3185-3193 ◽  
Author(s):  
Jana Hof ◽  
Stefanie Krentz ◽  
Claudia van Schewick ◽  
Gabriele Körner ◽  
Shabnam Shalapour ◽  
...  

Purpose In the clinical management of children with relapsed acute lymphoblastic leukemia (ALL), treatment resistance remains a major challenge. Alterations of the TP53 gene are frequently associated with resistance to chemotherapy, but their significance in relapsed childhood ALL has remained controversial because of small studies. Patients and Methods Therefore, we systematically studied 265 first-relapse patients enrolled in the German Acute Lymphoblastic Leukemia Relapse Berlin-Frankfurt-Mü nster 2002 (ALL-REZ BFM 2002) trial for sequence and copy number alterations of the TP53 gene by using direct sequencing and multiplex ligation-dependent probe amplification. Results We observed copy number and sequence alterations of TP53 in 12.4% (27 of 218) of patients with B-cell precursor ALL and 6.4% (three of 47) of patients with T-cell ALL relapse. Backtracking to initial ALL in 23 matched samples revealed that 54% of all TP53 alterations were gained at relapse. Within B-cell precursor ALL, TP53 alterations were consistently associated with nonresponse to chemotherapy (P < .001) and poor event-free survival (P < .001) and overall survival rates (P = .002). TP53 alterations also had a significant impact on survival within intermediate-risk (S2) and high-risk (S3/S4) relapse patients (P = .007 and P = .019, respectively). This prognostic significance of TP53 alterations was confirmed in multivariate analysis. Besides their clinical impact, TP53 alterations were associated with a higher fraction of leukemic cells in S/G2-M phase of the cell cycle at relapse diagnosis. Conclusion Alterations of the TP53 gene are of particular importance in the relapse stage of childhood ALL, in which they independently predict high risk of treatment failure in a significant number of patients. Therefore, they will aid in future risk assessment of children with ALL relapse.


Sign in / Sign up

Export Citation Format

Share Document