In Vitro Co-Culture of CLL-B Cells Reveals Long-Term Survival, Proliferation, and Maintenance of Telomere Length

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 350-350
Author(s):  
Ceri H Jones ◽  
Thet Thet Lin ◽  
Elisabeth Jane Walsby ◽  
Guy E Pratt ◽  
Christopher Fegan ◽  
...  

Abstract Telomere length is a prognostic factor in Chronic Lymphocytic Leukemia (CLL) with short telomere length a powerful predictor of early time to first treatment and reduced overall survival. However, little is known about telomere dynamics through the course of an individual patient's disease. Our recent longitudinal analysis of CLL B-cell telomere length revealed very little dynamic change within individual patients with a mean erosion rate of -52bp/year (p=0.05). In marked contrast, T-cells derived from the same patients showed a significantly higher mean erosion rate of -119bp/year (p=0.02) with a median follow up time of 69 months. Here we present data derived from long-term in-vitro co-culture of peripheral blood from CLL patients coupled with temporal analysis of their telomere length dynamics. We utilized a multi-cellular co-culture system, comprised of autologous T-cells and CD40L-expressing mouse fibroblasts, to maintain CLL cells in long-term culture. Patient-derived peripheral blood mononuclear cells (n=16) were maintained for a median of 70 days (range 54-154); samples were analyzed every two weeks for tumor cell telomere length and evidence of proliferation. We used fluorescence-activated cell sorting (FACS) to sort populations of CD19+CD5+ CLL B-cells and CD3+ T-cells from each of the cultures. We then performed high-resolution single telomere length analysis (STELA) on these sorted subsets of cells and analyzed their telomere dynamics over this extended time course. Analysis of CLL B-cells from these cultures revealed significantly increased Ki-67+ at day 14 when compared to day 0 (p<0.001) and this was evident for the duration of the cultures. Despite sustained tumor cell proliferation, we observed no significant difference in the CLL B-cell telomere length with a mean TL at the start of 4.5kb vs 4.3kb at the end (p=0.14). The presence of T-cells was shown to be critical for the maintenance of the long-term cultures in two ways. Firstly, cultures that were treated with 4μM fludarabine showed a catastrophic reduction in T-cells (p=0.01), which was associated with a significantly shorter duration of survival of CLL B-cells when compared to untreated controls (median 17.5 days (range 7-70); p<0.001). Secondly, it proved impossible to maintain T-cell depleted, purified CLL B-cells, in long-term culture. T-cells isolated from the long-term cultures showed evidence of proliferation with Ki-67+ again being increased at day 14 in comparison to baseline (p=0.003). Furthermore, T-cells derived from these cultures showed a significant alteration in subset composition over time with a decrease in the numbers of naive CD4+ (p=0.05) and CD8+ (p=0.02) T-cells and a corresponding increase in effector memory (p=0.2) and terminally differentiated effector memory (EMRA) subsets (p=0.07). In conclusion, this study demonstrates that we have developed a robust, long-term culture method for the maintenance of CLL cells. Despite evidence of sustained CLL proliferation, CLL B-cells showed little telomere length erosion during long-term co-culture and this is compatible with our recent ex-vivo analysis, which showed that the telomere length of CLL B-cells are remarkably stable with a mean erosion rate of only -52bp/year. In both ex-vivo and in-vitro analysis, telomere erosion correlated with starting telomere length (r2=0.14, p=0.04 and r2=0.3 p=0.03 respectively). Taken together, our in-vitro and ex-vivo data imply that the radically short telomeres observed in some CLL patients are not the result of increased proliferation of the malignant B-cell, but rather the mutagenic event occurs in a B-cell which already has short telomeres. Furthermore, our novel long-term culture model has reinforced the vital role of T-cells in sustaining CLL B-cells viability and proliferation in-vitro. Given the consistent skewing of the T-cell pool towards a memory phenotype it seems unlikely that this is driven in-vitro by cognate TCR antigen recognition but rather a cytokine-mediated response. Disclosures Fegan: Gilead Sciences: Honoraria; Roche: Honoraria; AbbVie: Honoraria.

2016 ◽  
Vol 213 (11) ◽  
pp. 2413-2435 ◽  
Author(s):  
Yi Wang ◽  
Cindy S. Ma ◽  
Yun Ling ◽  
Aziz Bousfiha ◽  
Yildiz Camcioglu ◽  
...  

Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell–intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients’ B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi100-vi100
Author(s):  
David Hou ◽  
Brandyn Castro ◽  
Mark Dapash ◽  
Aida Rashidi ◽  
Peng Zhang ◽  
...  

Abstract While immunotherapy is used clinically to treat many cancers, its translation into brain tumors remains elusive. The importance of B cells in cancer immunity has become increasingly clear, and we previously developed a B cell-based cellular vaccine (BVax) against glioblastoma (GBM) by further activating 4-1BBL+ B cells with CD40 agonism and IFNγ. BVax were characterized as professional antigen-presenting cells (APCs) that promote CD8+ T cell migration and persistence in murine tumor-bearing brains. This study seeks to understand the mechanisms underlying BVax-induced CD8+ T cell fitness in the tumor microenvironment. Initial transcriptomic analysis highlighted that Bvax express high levels of IL15Rα, indicating their potential ability to trans-present IL15. Considering IL15 trans-presentation is fundamental in T-cell memory differentiation, we used BVax to induce T cell activation in the presence of exogenous IL15. BVax were better capable of activating antigen-specific CD8+ T cells and promoting a memory phenotype when compared to other professional APCs such as dendritic cells (DCs). T cell receptor (TCR) CDR3β sequencing showed that BVax expanded a number of TCR clones in-vitro that were found in brains of CT2A tumor-bearing mice in-vivo. These BVax-activated CD8+ T cells displayed a stronger antigen recall response and unique metabolic profile compared to DC-activated CD8+ T cells as shown by metabolomic analysis of tumor-infiltrating CD8+ T cells. When comparing the anti-tumor effects of CD8+ T cells activated by various APCs, BVax with exogenous IL15 promoted CD8+ T cells that displayed the most potent cytotoxicity against GBM cells in-vitro. Collectively, this study suggests that the IL15/IL15Rα axis and interactions with CD8+ T cell are key factors of BVax therapy in promoting a robust survival benefit and long-term immunologic memory against GBM in preclinical models. Additionally, the development of T cell therapies based on B cell licensing can be a promising future approach for glioblastoma therapy.


1987 ◽  
Vol 165 (6) ◽  
pp. 1675-1687 ◽  
Author(s):  
A G Rolink ◽  
T Radaszkiewicz ◽  
F Melchers

A quantitative analysis of the frequencies of autoantibody-producing B cells in GVHD and in normal mice has been undertaken by generating collections of hybridomas of activated B cells. These hybridomas secreted sufficient quantities of Ig to allow binding analyses on a panel of autoantigens. B cells have been activated in a variety of ways. In vivo they were activated by injection of alloreactive T cells of one parent, leading to GVHD by a foreign antigen, sheep erythrocytes, in a secondary response, or by the polyclonal activator LPS. B cells from an experimentally unstimulated animal were used for an analysis of the normal background. In vitro B cells were activated by alloreactive T cells or by LPS. The frequencies of hybridomas and, therefore, of activated B cells producing autoantibodies to DNA or to kidney were not significantly different in mice activated by a graft-vs.-host T cell response as compared with B cell populations activated by any of the other procedures. They were found to compose 7.1-17.1% of the total repertoire of activated B cells. Moreover, the frequencies of autoantibody-producing activated B cells does not change with time after induction of the graft-vs.-host reaction. The pattern and frequencies of autoantigen-binding specificities to cytoskeleton, smooth muscle, nuclei, mitochondria, and DNA were not found to be different in any of the groups of hybridomas. The single notable exception, found in GVHD mice, were hybridomas producing autoantibodies to kidney proximal tubular brush border. These results allow the conclusion that autoantigen-binding B cells exist in an activated state in GVHD mice, as well as in mice activated by a foreign antigen or by a polyclonal activator, in B cell populations activated in vitro either by alloreactive T cells or by a polyclonal activator, and even in the background of experimentally unstimulated animals. T cell-mediated graft-vs.-host activation, in large part, does not lead to a selective expansion of autoantigen-binding B cells. The main difference between the graft-vs.-host-activated B cell repertoire and all others is that approximately 90% of teh autoantibodies were of the IgG class, whereas al autoantibodies found in the other groups were IgM.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 494-500
Author(s):  
O Ayanlar-Batuman ◽  
J Shevitz ◽  
UC Traub ◽  
S Murphy ◽  
D Sajewski

Immunoregulatory T and B cell functions in 15 patients with primary myelodysplastic syndrome (MDS) were studied by measuring the proliferative and the stimulatory capacity of T and B cells, respectively, in autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR). T cell proliferation in the auto MLR was 25% of the control (P less than .02), whereas proliferation in the allo MLR was normal. When control T cells were stimulated by MDS B cells, their proliferative response was only 57% of the control (P less than .01). The mechanism responsible for these abnormalities was studied by determining the capacity of MDS and normal T cells to produce interleukin 2 (IL 2) and to generate IL 2 receptors (IL 2R) following stimulation with control and MDS B cells. In the auto MLR of MDS patients, only 3% +/- 2% of T cells developed IL 2R positivity, whereas in control cultures 12% +/- 2% of T cells were positive, as determined by immunofluorescence, using a monoclonal antibody (MoAb) directed against the IL 2R, and FACS analysis. When MDS T cells were stimulated by control B cells, IL 2R generation and the production of IL 2 were within normal limits. In contrast, when control T cells were stimulated by MDS B cells or control B cells, the MDS B cells induced production of only 26% of IL 2 as compared with control B cells. In parallel experiments, IL 2R generation in control T cells stimulated by either MDS or control B cells was similar. We conclude that in the primary MDS, T and B cell interactions are impaired. Although MDS T cells develop normal quantities of IL 2R and produce normal amounts of IL 2 when stimulated by control B cells, they are markedly impaired when stimulated by self B cells. Similarly, MDS B cells can induce IL 2R generation in control T cells but not in MDS T cells. Myelodysplastic B cells are also defective in inducing IL 2 production by normal T cells in an allo MLR. These in vitro abnormalities strongly suggest that generation of lymphocytes with immunoregulatory functions is impaired in patients with MDS.


2013 ◽  
Vol 156 (1-2) ◽  
pp. 82-93 ◽  
Author(s):  
Masahiro Takahara ◽  
Yasuhiro Nemoto ◽  
Shigeru Oshima ◽  
Yu Matsuzawa ◽  
Takanori Kanai ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2612
Author(s):  
Lei Tao ◽  
Muhammad Asad Farooq ◽  
Yaoxin Gao ◽  
Li Zhang ◽  
Congyi Niu ◽  
...  

B cell aplasia caused by “on-target off-tumor” toxicity is one of the clinical side effects during CD19-targeted chimeric antigen receptor (CAR) T (CD19-CAR-T) cells treatment for B cell malignancies. Persistent B cell aplasia was observed in all patients with sustained remission, which increased the patients’ risk of infection. Some patients even died due to infection. To overcome this challenge, the concept of incorporating an inhibitory CAR (iCAR) into CAR-T cells was introduced to constrain the T cells response once an “on-target off-tumor” event occurred. In this study, we engineered a novel KIR/PD-1-based inhibitory CAR (iKP CAR) by fusing the extracellular domain of killer cell immunoglobulin-like receptors (KIR) 2DL2 (KIR2DL2) and the intracellular domain of PD-1. We also confirmed that iKP CAR could inhibit the CD19 CAR activation signal via the PD-1 domain and CD19-CAR-T cells bearing an iKP CAR (iKP-19-CAR-T) exerted robust cytotoxicity in vitro and antitumor activity in the xenograft model of CD19+HLA-C1− Burkitt’s lymphoma parallel to CD19-CAR-T cells, whilst sparing CD19+HLA-C1+ healthy human B cells both in vitro and in the xenograft model. Meanwhile, iKP-19-CAR-T cells exhibited more naïve, less exhausted phenotypes and preserved a higher proportion of central memory T cells (TCM). Our data demonstrates that the KIR/PD-1-based inhibitory CAR can be a promising strategy for preventing B cell aplasia induced by CD19-CAR-T cell therapy.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 241-247 ◽  
Author(s):  
D Delia ◽  
G Cattoretti ◽  
N Polli ◽  
E Fontanella ◽  
A Aiello ◽  
...  

Abstract The CD1 cluster of monoclonal antibodies (MoAbs) CD1a, CD1b, and CD1c, identifies molecules that are differentially expressed on hematopoietic and nonhematopoietic tissues. Our earlier finding that the mantle zone (MZ) but not the germinal center (GC) of normal lymph nodes (LN) is CD1c+, CD1a-, and CD1b- prompted us to further investigate the expression of these molecules on normal, activated, and malignant B cells. We report that blood and spleen contain CD1c+ B cells that account for 49% +/- 20.4% (mean +/- SD) and 50.9% +/- 4.4% of the total B cell population, respectively. CD1a- and CD1b-specific MoAbs are unreactive with both B and T cells; these latter are CD1c- as well. When CD1c+ and CD1c- B cells are activated in vitro, the CD1c molecule is upregulated in the former subset and induced de novo in the latter. Conversely, activated blood T cells remain CD1c-. Neither CD1a nor CD1b molecules are detected on activated T and B lymphocytes. At ultrastructural level, the CD1c+ B cells exhibit distinctive features, namely, condensed chromatin with or without a nucleolus and a unique cluster of cytoplasmic vesicles and organelles; the number of nucleolated cells is higher in the spleen (95%) than in the tonsil (40%) or blood (5%). These findings further confirm the similarity between blood and MZ B cells. The CD1c expression assessed on 27 B-cell chronic lymphocytic leukemias (B-CLL) and 46 B non-Hodgkin's lymphomas (B-NHL) was detected on 41% and 32% of cases, respectively; the latter comprised four follicular and 11 diffuse histotypes. The Burkitt's lymphomas were CD1c-negative. The B-cell neoplasms were all CD1a- and, except for four with a weak cytoplasmic staining, all CD1b- as well. The clear-cut CD1c distribution in normal LN (MZ+, GC-) contrasted with the evidence that some B-NHL cells of GC origin (eg, follicular with predominantly small cleaved cells) were CD1c+. Overall, the finding that CD1c expression is restricted to a fraction of B cells present in lymphoid organs and in peripheral blood indicates that CD1c is a powerful marker for the identification and dissection of B-cell subsets whose functional properties can now be evaluated.


2018 ◽  
Vol 92 (8) ◽  
pp. e00131-18 ◽  
Author(s):  
Brigitta M. Laksono ◽  
Christina Grosserichter-Wagener ◽  
Rory D. de Vries ◽  
Simone A. G. Langeveld ◽  
Maarten D. Brem ◽  
...  

ABSTRACTMeasles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils toin vitroMV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (TH) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that TH1TH17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression.IMPORTANCEMeasles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the importance of MV infection of B cellsin vivo. However, information on the relative susceptibility of B-cell subsets is scarce. Here, we compared the susceptibility and permissiveness toin vitroMV infection of human naive and memory T- and B-cell subsets isolated from peripheral blood or tonsils. Our results demonstrate that both naive and memory B cells are more permissive to MV infection than T cells. The highest infection levels were detected in plasma cells and germinal center B cells, suggesting that infection and depletion of these populations contribute to reduced host resistance.


Sign in / Sign up

Export Citation Format

Share Document