scholarly journals Hereditary Hyperferritinemia-Cataract Syndrome Caused by a 29-Base Pair Deletion in the Iron Responsive Element of Ferritin L-Subunit Gene

Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 2084-2088 ◽  
Author(s):  
Domenico Girelli ◽  
Roberto Corrocher ◽  
Luigi Bisceglia ◽  
Oliviero Olivieri ◽  
Leopoldo Zelante ◽  
...  

Abstract Iron availability regulates ferritin synthesis posttranscriptionally by the interaction between iron-regulatory proteins (IRPs) and an iron responsive element (IRE), a stem-loop sequence located on the 5′ untranslated region of ferritin mRNA. IRPs recognize IREs as a sequence/structure motif, blocking ferritin translation. Recently, we and others independently described families with a combination of hyperferritinemia (serum L-ferritin ≥ 1,000 μg/L, without iron overload) and congenital bilateral cataract, transmitted as an autosomal-dominant trait. The molecular basis were two distinct point mutations in the highly conserved CAGUG(X) hexaloop of L-ferritin IRE on chromosome 19. A new three-generation family with a similar phenotype and a unique genotype is here reported. DNA amplification by polymerase chain reaction and sequence analysis showed a 29-base pair deletion in the L-ferritin IRE, involving the whole 5′ sequence essential to the base pairing of the IRE stem. This deletion is predicted to cause the disruption of IRE stem-loop secondary structure and the nearly complete abolition of the negative control of ferritin synthesis by IRE/IRP binding. Hereditary Hyperferritinemia-Cataract Syndrome (HHCS) appears as a new genetic disorder with a unique phenotype associated with at least four different mutations in the L-ferritin IRE. Hematologists should take into account HHCS in the differential diagnosis of unexplained hyperferritinemia.

Blood ◽  
1995 ◽  
Vol 86 (11) ◽  
pp. 4050-4053 ◽  
Author(s):  
D Girelli ◽  
R Corrocher ◽  
L Bisceglia ◽  
O Olivieri ◽  
L De Franceschi ◽  
...  

Recently,we described a new genetic disorder (the “hereditary hyperferritinemia-cataract syndrome”) clinically characterized by the combination of elevated serum ferritin and congenital bilateral nuclear cataract, both cotransmitted as an autosomal dominant trait. In affected subjects, hyperferritinemia (ranging from 950 to 2,259 micrograms/L) is typically not related to iron overload. Differently from subjects with hereditary hemochromatosis, they have normal to low levels of serum iron and percent of transferrin saturation and absence of iron overload in parenchymal organs. When unnecessary phlebotomies are performed, they rapidly develop iron-deficient anemia, with persistently elevated levels of serum ferritin. By RNA-single-strand conformation polymorphism screening of the L-subunit ferritin gene on chromosome 19, we were able to identify in affected subjects a mutation in the 5′ untranslated region. This mutation involves the five nucleotides sequence [CAGUG] of the iron-responsive element (IRE), which is critical for the posttranscriptional regulation of ferritin synthesis by means of IRE-binding protein (IRE-BP). Thus, it is very likely to provide the molecular basis for the iron-insensitive upregulation of ferritin synthesis in affected subjects.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1365
Author(s):  
Karl Volz

Iron responsive elements (IREs) are mRNA stem-loop targets for translational control by the two iron regulatory proteins IRP1 and IRP2. They are found in the untranslated regions (UTRs) of genes that code for proteins involved in iron metabolism. There are ten “classic” IRE types that define the conserved secondary and tertiary structure elements necessary for proper IRP binding, and there are 83 published “IRE-like” sequences, most of which depart from the established IRE model. Here are structurally-guided discussions regarding the essential features of an IRE and what is important for IRE family membership.


1989 ◽  
Vol 9 (11) ◽  
pp. 5055-5061
Author(s):  
D J Haile ◽  
M W Hentze ◽  
T A Rouault ◽  
J B Harford ◽  
R D Klausner

The 5' untranslated region of the ferritin heavy-chain mRNA contains a stem-loop structure called an iron-responsive element (IRE), that is solely responsible for the iron-mediated control of ferritin translation. A 90-kilodalton protein, called the IRE binding protein (IRE-BP), binds to the IRE and acts as a translational repressor. IREs also explain the iron-dependent control of the degradation of the mRNA encoding the transferrin receptor. Scatchard analysis reveals that the IRE-BP exists in two states, each of which is able to specifically interact with the IRE. The higher-affinity state has a Kd of 10 to 30 pM, and the lower affinity state has a Kd of 2 to 5 nM. The reversible oxidation or reduction of a sulfhydryl is critical to this switching, and the reduced form is of the higher affinity while the oxidized form is of lower affinity. The in vivo rate of ferritin synthesis is correlated with the abundance of the high-affinity form of the IRE-BP. In lysates of cells treated with iron chelators, which decrease ferritin biosynthesis, a four- to fivefold increase in the binding activity is seen and this increase is entirely caused by an increase in high-affinity binding sites. In desferrioxamine-treated cells, the high-affinity form makes up about 50% of the total IRE-BP, whereas in hemin-treated cells, the high-affinity form makes up less than 1%. The total amount of IRE-BP in the cytosol of cells is the same regardless of the prior iron treatment of the cell. Furthermore, a mutated IRE is not able to interact with the IRE-BP in a high-affinity form but only at a single lower affinity Kd of 0.7 nM. Its interaction with the IRE-BP is insensitive to the sulfhydryl status of the protein.


2020 ◽  
Vol 39 (7) ◽  
pp. 973-983
Author(s):  
Y Sheng ◽  
Y-J Chen ◽  
Z-M Qian ◽  
J Zheng ◽  
Y Liu

Objective: Oxidative stress is one of the major mechanisms of cyclophosphamide (CPX)-induced toxicities. However, it is unknown how CPX induces oxidative stress. Based on the available information, we speculated that CPX could increase iron content in the tissues and then induce oxidative stress. Method: We tested this hypothesis by investigating the effects of CPX on iron and ferritin contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), hepcidin, and nuclear factor erythroid 2-related factor-2 (Nrf2) in the liver and spleen, and also on reticulocyte count, immature reticulocyte fraction, and hemoglobin (Hb) in the blood in c57/B6 mouse. Results: We demonstrated that CPX could induce a significant increase in iron contents and ferritin expression in the liver and spleen, notably inhibit erythropoiesis and Hb synthesis and lead to a reduction in iron usage. The reduced expression in TfR1 and Fpn1 is a secondary effect of CPX-induced iron accumulation in the liver and spleen and also partly associated with the suppressed IRP/iron-responsive element system, upregulation of hepcidin, and downregulation of Nrf2. Conclusions: The reduced iron usage is one of the causes for iron overload in the liver and spleen and the increased tissue iron might be one of the mechanisms for CPX to induce oxidative stress and toxicities.


2001 ◽  
Vol 47 (3) ◽  
pp. 491-497 ◽  
Author(s):  
Laura Cremonesi ◽  
Antonella Fumagalli ◽  
Nadia Soriani ◽  
Maurizio Ferrari ◽  
Sonia Levi ◽  
...  

Abstract Background: Hereditary hyperferritinemia-cataract syndrome is an autosomic dominant disorder caused by heterogeneous mutations on the iron-responsive element (IRE) of ferritin L-chain mRNA. The mutations described to date were identified by direct sequencing of DNA from probands with hyperferritinemia often associated to bilateral cataracts. A direct genetic approach on a large population is useful to recognize polymorphisms in the DNA region and the prevalence of mutations associated with minor increases in serum ferritin and subclinical cataracts. We developed a rapid DNA scanning technique to detect mutations in a single electrophoretic analysis. Methods: The double-gradient denaturing gradient gel electrophoresis (DG-DGGE) method consisted of PCR amplification of the target genomic DNA with GC-clamped oligonucleotides. The sequence encoded the 5′ untranslated flanking region of ferritin L-chain mRNA, which includes an IRE stem-loop structure. The product was subjected to DG-DGGE (8.5–15% polyacrylamide and 50–95% denaturant) to separate the homo- and heteroduplexes. Results: The method clearly identified all eight accessible mutations, including C-G transversions, which are the most difficult to detect. The method was applied to scan DNA samples from 50 healthy subjects and from 230 subjects with serum ferritin >400 μg/L. The new mutation G14C was identified. Conclusions: The DG-DGGE method detects all the mutations in the L-ferritin IRE sequence, is rapid and economical, and can be applied to scan large populations. The first population study indicated that the mutations are rare and may involve regions of the IRE structure not yet characterized.


1989 ◽  
Vol 9 (11) ◽  
pp. 5055-5061 ◽  
Author(s):  
D J Haile ◽  
M W Hentze ◽  
T A Rouault ◽  
J B Harford ◽  
R D Klausner

The 5' untranslated region of the ferritin heavy-chain mRNA contains a stem-loop structure called an iron-responsive element (IRE), that is solely responsible for the iron-mediated control of ferritin translation. A 90-kilodalton protein, called the IRE binding protein (IRE-BP), binds to the IRE and acts as a translational repressor. IREs also explain the iron-dependent control of the degradation of the mRNA encoding the transferrin receptor. Scatchard analysis reveals that the IRE-BP exists in two states, each of which is able to specifically interact with the IRE. The higher-affinity state has a Kd of 10 to 30 pM, and the lower affinity state has a Kd of 2 to 5 nM. The reversible oxidation or reduction of a sulfhydryl is critical to this switching, and the reduced form is of the higher affinity while the oxidized form is of lower affinity. The in vivo rate of ferritin synthesis is correlated with the abundance of the high-affinity form of the IRE-BP. In lysates of cells treated with iron chelators, which decrease ferritin biosynthesis, a four- to fivefold increase in the binding activity is seen and this increase is entirely caused by an increase in high-affinity binding sites. In desferrioxamine-treated cells, the high-affinity form makes up about 50% of the total IRE-BP, whereas in hemin-treated cells, the high-affinity form makes up less than 1%. The total amount of IRE-BP in the cytosol of cells is the same regardless of the prior iron treatment of the cell. Furthermore, a mutated IRE is not able to interact with the IRE-BP in a high-affinity form but only at a single lower affinity Kd of 0.7 nM. Its interaction with the IRE-BP is insensitive to the sulfhydryl status of the protein.


Sign in / Sign up

Export Citation Format

Share Document