Fluid Shear Stress Attenuates Tumor Necrosis Factor-α–Induced Tissue Factor Expression in Cultured Human Endothelial Cells

Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4164-4172 ◽  
Author(s):  
Yutaka Matsumoto ◽  
Yohko Kawai ◽  
Kiyoaki Watanabe ◽  
Kazuo Sakai ◽  
Mitsuru Murata ◽  
...  

Abstract Hemodynamic forces modulate various endothelial cell functions under gene regulation. Previously, we have shown that fibrinolytic activity of endothelial cells is enhanced by the synergistic effects of shear stress and cytokines. In this study, we investigated the effect of shear stress on tumor necrosis factor (TNF)-α–induced tissue factor (TF) expression in cultured human umbilical vein endothelial cells (HUVECs), using a modified cone-plate viscometer. Shear stresses at physiological levels reduced TNF-α (100 U/mL)–induced TF expression at both mRNA and antigen levels, in a shear-intensity and exposure-time dependent manner, whereas shear stress itself did not induce TF expression in HUVECs. TF expressed on the cell surfaces measured by flow cytometry using an anti-TF monoclonal antibody (HTF-K180) was also decreased to one third by shear force applied at 18 dynes/cm2 for 15 hours before and 6 hours after TNF-α stimulation. Furthermore, functional activity of TF, as assessed by the activation of factor X in the presence of FVIIa and Ca2+, was also decreased by shear application. However, the stability of TF mRNA was not decreased in the presence of shear stress. These results suggest that shear force acts as an important regulator of TF expression in endothelium at the transcriptional level.

Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4164-4172
Author(s):  
Yutaka Matsumoto ◽  
Yohko Kawai ◽  
Kiyoaki Watanabe ◽  
Kazuo Sakai ◽  
Mitsuru Murata ◽  
...  

Hemodynamic forces modulate various endothelial cell functions under gene regulation. Previously, we have shown that fibrinolytic activity of endothelial cells is enhanced by the synergistic effects of shear stress and cytokines. In this study, we investigated the effect of shear stress on tumor necrosis factor (TNF)-α–induced tissue factor (TF) expression in cultured human umbilical vein endothelial cells (HUVECs), using a modified cone-plate viscometer. Shear stresses at physiological levels reduced TNF-α (100 U/mL)–induced TF expression at both mRNA and antigen levels, in a shear-intensity and exposure-time dependent manner, whereas shear stress itself did not induce TF expression in HUVECs. TF expressed on the cell surfaces measured by flow cytometry using an anti-TF monoclonal antibody (HTF-K180) was also decreased to one third by shear force applied at 18 dynes/cm2 for 15 hours before and 6 hours after TNF-α stimulation. Furthermore, functional activity of TF, as assessed by the activation of factor X in the presence of FVIIa and Ca2+, was also decreased by shear application. However, the stability of TF mRNA was not decreased in the presence of shear stress. These results suggest that shear force acts as an important regulator of TF expression in endothelium at the transcriptional level.


Blood ◽  
2003 ◽  
Vol 102 (8) ◽  
pp. 2828-2834 ◽  
Author(s):  
Sajila Sheikh ◽  
G. Ed Rainger ◽  
Zoe Gale ◽  
Mahbub Rahman ◽  
Gerard B. Nash

Abstract Vascular endothelial cells are able to sense changes in the forces acting on them and respond, for instance, by modifying expression of a range of genes. However, there is little information on how such responses are integrated to modify homeostatic functions. We hypothesized that different shear stresses experienced in different regions of the circulation might influence endothelial sensitivity to inflammatory stimuli. We cultured human endothelial cells in tubes and exposed them for varying periods to shear stresses ranging from those typically found in postcapillary venules to those in arteries. When tumor necrosis factor-α was included in the flow cultures, we found startling differential effects of shear stress on the ability of endothelial cells to induce adhesion and migration of flowing neutrophils. Compared with static cultures, endothelial cells cultured at low shear stress (0.3 Pa) captured similar numbers of neutrophils but failed to induce their transendothelial migration. After exposure of endothelial cells to high shear stress (1.0 or 2.0 Pa), capture of neutrophils was largely ablated. The modification in response was detectable after 4 hours of exposure to flow but was much greater after 24 hours. From analysis of gene expression, loss of capture or migration was attributable to reduction in tumor necrosis factor–induced expression of selectins or CXC-chemokines, respectively. Thus, conditioning of endothelial cells by different flow environments may underlie variations in susceptibility to inflammation between different tissues or parts of the vascular tree.


Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1429-1439 ◽  
Author(s):  
Mausumee Guha ◽  
Maria A. O'Connell ◽  
Rafal Pawlinski ◽  
Angela Hollis ◽  
Patricia McGovern ◽  
...  

Lipopolysaccharide (LPS) induces human monocytes to express many proinflammatory mediators, including the procoagulant molecule tissue factor (TF) and the cytokine tumor necrosis factor alpha (TNF-α). The TF and TNF-α genes are regulated by various transcription factors, including nuclear factor (NF)-κB/Rel proteins and Egr-1. In this study, the role of the MEK-ERK1/2 mitogen-activated protein kinase (MAPK) pathway in LPS induction of TF and TNF-α gene expression in human monocytic cells was investigated. The MAPK kinase (MEK)1 inhibitor PD98059 reduced LPS induction of TF and TNF-α expression in a dose-dependent manner. PD98059 did not affect LPS-induced nuclear translocation of NF-κB/Rel proteins and minimally affected LPS induction of κB-dependent transcription. In contrast, PD98059 and dominant-negative mutants of the Ras-Raf1-MEK-ERK (extacellular signal–regulated kinase) pathway strongly inhibited LPS induction of Egr-1 expression. In kinetic experiments LPS induction of Egr-1 expression preceded induction of TF expression. In addition, mutation of the Egr-1 sites in the TF and TNF-α promoters reduced expression of these proinflammatory genes. It was demonstrated that LPS induction of the Egr-1 promoter was mediated by 3 SRE sites, which bound an LPS-inducible complex containing serum response factor and Elk-1. LPS stimulation transiently induced phosphorylation of Elk-1 and increased the functional activity of a GAL4–Elk-1TA chimeric protein via the MEK-ERK1/2 pathway. The data indicate that LPS induction of Egr-1 gene expression is required for maximal induction of the TNF-α and TF genes in human monocytic cells.


1997 ◽  
Vol 186 (9) ◽  
pp. 1603-1608 ◽  
Author(s):  
Claudia Rieser ◽  
Günther Böck ◽  
Helmut Klocker ◽  
Georg Bartsch ◽  
Martin Thurnher

Interleukin (IL)-12 is a proinflammatory cytokine that contributes to innate resistance and to the development of antigen-specific T cell responses. Among other effects, prostaglandin E2 (PGE2) inhibits the production of IL-12 by macrophages activated with lipopolysaccharide (LPS). Here we investigated the effects of PGE2 on human dendritic cells (DCs) which develop in the presence of GM-CSF and IL-4. We demonstrate that in the absence of LPS, PGE2 dose dependently stimulated the production of IL-12 by DCs. Although PGE2 alone stimulated the production of low amounts of IL-12 only, it synergized with tumor necrosis factor (TNF)-α to induce high levels of IL-12 production by DCs. Addition of TNF-α in the absence of PGE2 had no effect on IL-12 production. Conversely, in the presence of LPS, PGE2 inhibited IL-12 production by DCs in a dose-dependent manner. The combination of PGE2 and TNF-α efficiently silenced mannose receptor–mediated endocytosis in DCs and readily induced neo-expression of the CD83 antigen. In addition, the expression of various surface antigens such as major histocompatibility complex class I and II, adhesion, as well as costimulatory molecules was upregulated by this treatment. The effects of PGE2 on IL-12 synthesis and CD83 expression could be mimicked by dibutyryl-cAMP and forskolin, indicating that they were due to the intracellular elevation of cAMP levels. DC treated with PGE2 and TNF-α were most potent in stimulating allogeneic T cell proliferation. Our data demonstrate that PGE2 contributes to the maturation of human DCs and that PGE2 can be a potent enhancer of IL-12 production by human DCs.


1990 ◽  
Vol 259 (2) ◽  
pp. L123-L129
Author(s):  
K. B. Nolop ◽  
U. S. Ryan

Tumor necrosis factor (TNF), a potent polypeptide mediator released by activated monocytes and macrophages, has a number of proinflammatory effects on endothelial cells. TNF is cytotoxic to tumor cells in vivo and in vitro, but TNF-induced toxicity to endothelial cells is less well established. We now report that cycloheximide (CHX), an inhibitor of protein synthesis, renders endothelial cells highly susceptible to TNF-induced lysis. TNF alone did not change the overall rate of protein synthesis by endothelial cells, whereas the addition of CHX completely abolished protein synthesis. Endothelial cells incubated in TNF alone in high concentrations (up to 1,000 U/ml) showed minimal rounding up and release of 51Cr. Likewise, CHX alone (5 micrograms/ml) had no significant effect on endothelial cell morphology and release of 51Cr. However, incubation of endothelial cells in both CHX and TNF caused injury in a dose-dependent manner. Morphological evidence of cell retraction, rounding, and detachment began within 2 h, but specific 51Cr release did not begin to rise until after 4 h. These changes were not observed when endothelial cells were incubated with TNF/CHX at 4 degrees C. The combination of TNF/CHX was lethal to all endothelial cells tested (bovine pulmonary artery, human umbilical vein, and human aorta), with human aortic cells showing the most pronounced changes. We conclude that healthy endothelial cells are resistant to TNF-induced lysis, but inhibition of their ability to make protein renders them highly susceptible.


2004 ◽  
Vol 11 (6) ◽  
pp. 1140-1147 ◽  
Author(s):  
Hidenori Matsuzaki ◽  
Hiroshi Kobayashi ◽  
Tatsuo Yagyu ◽  
Kiyoshi Wakahara ◽  
Toshiharu Kondo ◽  
...  

ABSTRACT Bikunin, a Kunitz-type protease inhibitor, exhibits anti-inflammatory activity in protection against cancer and inflammation. To investigate the molecular mechanism of this inhibition, we analyzed the effect of bikunin on tumor necrosis factor alpha (TNF-α) production in human peripheral mononuclear cells stimulated by lipopolysaccharide (LPS), an inflammatory inducer. Here, we show the following results. (i) LPS induced TNF-α expression in time- and dose-dependent manners through phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase pathways. (ii) Bikunin inhibits LPS-induced up-regulation of TNF-α protein expression in a dose-dependent manner, reaching 60% inhibition at the highest doses of bikunin tested (5.0 μM). (iii) Inhibition by bikunin of TNF-α induction correlates with the suppressive capacity of ERK1/2, JNK, and p38 signaling pathways, implicating repressions of at least three different signals in the inhibition. (iv) Bikunin blocks the induction of TNF-α target molecules interleukin-1β (IL-1β) and IL-6 proteins. (v) Bikunin is functional in vivo, and this glycoprotein blocks systemic TNF-α release in mice challenged with LPS. (vi) Finally, bikunin can prevent LPS-induced lethality. In conclusion, bikunin significantly inhibits LPS-induced TNF-α production, suggesting a mechanism of anti-inflammation by bikunin through control of cytokine induction during inflammation. Bikunin might be a candidate for the treatment of inflammation, including septic shock.


2010 ◽  
Vol 58 (14) ◽  
pp. 8430-8436 ◽  
Author(s):  
Domenico Trombetta ◽  
Francesco Cimino ◽  
Mariateresa Cristani ◽  
Giuseppina Mandalari ◽  
Antonella Saija ◽  
...  

2004 ◽  
Vol 48 (7) ◽  
pp. 2538-2543 ◽  
Author(s):  
Silvia M. Uriarte ◽  
Robert E. Molestina ◽  
Richard D. Miller ◽  
Jorge Bernabo ◽  
Alicia Farinati ◽  
...  

ABSTRACT The anti-inflammatory activities of three quinolones, levofloxacin, moxifloxacin, and gatifloxacin, were investigated with an in vitro model of transendothelial migration (TEM). Human umbilical vein endothelial cells (HUVEC) were seeded in Transwell inserts, treated with serial dilutions of antibiotics, infected with Chlamydia pneumoniae, or stimulated with tumor necrosis factor alpha (TNF-α). Neutrophils or monocytes were also preincubated with serial dilutions of each antibiotic. TEM was assessed by light microscopic examination of the underside of the polycarbonate membrane, and levels of interleukin-8 (IL-8) and monocyte chemotactic protein 1 (MCP-1) were measured by enzyme-linked immunosorbent assay. In HUVEC infected with C. pneumoniae or stimulated with TNF-α, all fluoroquinolones significantly decreased neutrophil and monocyte TEM, compared to antibiotic-free controls. Moxifloxacin and gatifloxacin produced a significant decrease in IL-8 in C. pneumoniae-infected and TNF-α-stimulated HUVEC; however, moxifloxacin was the only fluoroquinolone that produced a significant decrease in MCP-1 levels under both conditions. Results from this study indicate similarities in the anti-inflammatory activities of these fluoroquinolones, although no statistically significant decrease in chemokine secretion was observed when levofloxacin was used. Mechanisms of neutrophil and monocyte TEM inhibition by fluoroquinolone antibiotics are unknown but may be partially due to inhibition of IL-8 and MCP-1 production, respectively.


Sign in / Sign up

Export Citation Format

Share Document